Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The isomers 2,3-, (I), 2,4-, (II), and 2,5-di­fluoro-N-(4-pyrid­yl)benzamide, (III), all with formula C12H8F2N2O, all exhibit intra­molecular C—H...O=C and N—H...F contacts [both with S(6) motifs]. In (I), inter­molecular N—H...O=C inter­actions form one-dimensional chains along [010] [N...O = 3.0181 (16) Å], with weaker C—H...N inter­actions linking the chains into sheets parallel to the [001] plane, further linked into pairs via C—H...F contacts about inversion centres; a three-dimensional herring-bone network forms via C—H...π(py) (py is pyrid­yl) inter­actions. In (II), weak aromatic C—H...N(py) inter­actions form one-dimensional zigzag chains along [001]; no other inter­actions with H...N/O/F < 2.50 Å are present, apart from long N/C—H...O=C and C—H...F contacts. In (III), N—H...N(py) inter­actions form one-dimensional zigzag chains [as C(6) chains] along [010] augmented by a myriad of weak C—H...π(arene) and O=C...O=C inter­actions and C—H...O/N/F contacts. Compound (III) is isomorphous with the parent N-(4-pyrid­yl)benzamide [Noveron, Lah, Del Sesto, Arif, Miller & Stang (2002). J. Am. Chem. Soc. 124, 6613–6625] and the three 2/3/4-fluoro-N-(4-pyrid­yl)benzamides [Donnelly, Gallagher & Lough (2008). Acta Cryst. C64, o335–o340]. The study expands our series of fluoro­(pyrid­yl)benzamides and augments our understanding of the competition between strong hydrogen-bond formation and weaker influences on crystal packing.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108022634/gd3225sup1.cif
Contains datablocks global, II, III, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108022634/gd3225Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108022634/gd3225IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108022634/gd3225IIIsup4.hkl
Contains datablock III

CCDC references: 703728; 703729; 703730

Comment top

Our group has initiated a structural systematic study of fluoro-N'-(pyridyl)benzamide isomers (Donnelly et al., 2008) and are augmenting this research with the closely related difluoro-N-(pyridyl)benzamide series (see scheme) of which a total of 18 isomers are possible through condensation of the 2,3-, 2,4-, 2,5-, 2,6-, 3,4-, 3,5-difluorobenzoyl chlorides with the 4-/3-/2-aminopyridines. In contrast to the abundance of monosubstituted fluorobenzene FC6H4X and pentafluorobenzene F5C6Y derivatives in structural chemistry, there is a paucity of structural information on all six possible difluorobenzene derivatives F2C6H3Z (X,Y,Z = remainder of molecule) from analysis of structural data in the Cambridge Structural Database (CSD, Version 5.29; Allen, 2002) (Fig. 1). In contrast to the 3531 (8) structures containing the pentafluorobenzene C6F5Y group, the cumulative reported total of the six C6F2H3Z difluorobenzene moieties in compounds (at 438) is only < 13% of the C6F5 reported systems (see scheme).

Disorder in the orientation of the aromatic ring can arise and can influence the choice of a particular difluorobenzene fragment in crystal structures in order to minimize solid-state disorder effects. The potential for twofold rotational disorder is at a minimum in the more symmetrical 2,6-F2 and 3,5-F2 (no change on twofold rotation about the Cipso—Cpara axis) and at a maximum in the 2,3-F2, 2,5-F2 systems (two F atoms have to occupy different H-atom sites): the potential for disorder also exists for 2,4-F2 and 3,4-F2 substitution (where only one F atom has to swop sites with an H atom after twofold rotation). No disorder is present in either of the 2,3-, (I), 2,4-, (II) or 2,5-difluoro(4-pyridyl)benzamide systems (III).

Many structural studies have been reported to date on a variety of organic molecular classes and often with a particular emphasis on polymorphism, pseudopolymorphism and isomers (Gelbrich et al., 2007; Wardell et al., 2007; 2008; Chopra & Row, 2008). Augmenting our initial communication (Donnelly et al., 2008) we report here the molecular and crystal structures of the 2,3-difluoro-N-(4-pyridyl)benzamide, (I), 2,4-difluoro-N-(4-pyridyl)benzamide, (II), and 2,5-difluoro-N-(4-pyridyl)benzamide, (III), isomers.

The three isomers (I)–(III) are depicted in Figs. 2–4 and in the packing diagrams (Figs. 5–8). The geometric data (bond lengths and angles) are normal and are not discussed except for comparisons with related systems and their hydrogen bonding/packing (interactions in Tables 1–3 and torsion angles in Table 4). The defining feature of the molecular conformation is the benzene–pyridine dihedral angle, which is mutally oriented at 10.02 (8)° in (I), 7.02 (13)° in (II) and 42.39 (6)° in (III). In all three systems the ortho-F atom is positioned cisoid to the carbonyl O atom and as such there are two intramolecular contacts present involving C22···O1 and N1···F12 [both with S(6) motifs]. The C22···O1 distances vary from 2.868 (2) to 2.8807 (18) Å [C—H···O = 114–120°]; however, N1···F1 varies from 2.720 (3) (II) to 2.7803 (14) Å (I) and with angles 109.7 (15)° (III) to 131 (3)° (I) (as C1—N1—C21—C26 increases in angle, Table 4). The intramolecular contact data for (III) are similar to data for 2-fluoro-N'-(4-pyridyl)benzamide (Fop) (Donnelly et al., 2008). Moreover, (III) is isomorphous with all three 4-/3-/2-fluoro-N'-(4-pyridyl)benzamide isomers (Fpp/Fmp/Fop) and differs in composition with an extra F atom replacing a H atom on the benzene ring (see scheme) (Donnelly et al., 2008). For comparison, the unit-cell similarity indices Π of (III) with Fmp and Fop are 0.003 and 0.002, respectively, (Kálmán et al., 1993).

In (I), standard amide N—H···OC hydrogen bonds (Table 1) form chains along [010], further linked by C—H14···N interactions to form sheets of R44(28) rings parallel to (001) (Fig. 5). Pairs of inversion-related sheets form short C—H···F contacts and these pairs of sheets form a three-dimensional network via C—H···π(pyridyl) interactions (Table 1).

In (II), a C—H···N hydrogen bond (Table 2) forms a zigzag C(10) chain along [001] (Fig. 6): there are no other interactions with an H···O/N/F distance < 2.5 Å. Conventional amide N—H···OC interactions [as C(4) chains or R22(8) rings] are absent and the closest amide···amide contact for N1···O1i = 3.460 (3) Å: this is 0.45 Å longer than for (I) [symmetry code: (i) = x,y + 1,z]. The three closest intermolecular contacts with the carbonyl O1 atom range from 2.69 to 2.76 Å and with corresponding C—H···O1 angles of 126–141°. There are also two weak C15/23—H15/23···F14 contacts with C···F distances of 3.322 (3), 3.339 (3) Å. Though the interaction distances differ between (I) and (II), there is a broad similarity in overall packing.

In (III), the primary interaction is an N—H···N hydrogen bond (Table 3) which forms a zigzag C(96) chain along the [010] direction (Fig. 7). This interaction is augmented by longer C—H···π(arene) hydrogen bonds (Table 3), dipolar C=O···OC interactions (Fig. 8) and weaker C—H···N/O/F contacts forming a three-dimensional network. The C=O···(OC)i interactions link molecules about inversion centres in an antiparallel arrangement, with C1···O1i distances of 3.150 (2) Å [symmetry code: (i) = -x + 2,-y,-z + 1] (Fig. 8). The internal angles within the [C=O···(OC)i] motif are 85.00 (10)° (for C1=O1···C1i) and 95.00 (10)° (for O1=C1···O1i) and close to the idealized antiparallel arrangement [90° angles – motif (II)] (Allen et al., 1998).

Data for (III) are similar to Fop (Donnelly et al., 2008) where the C1···O1i distance is 3.1919 (16) Å. The closest intermolecular amide···amide N1···O1ii distance is 4.005 (2) Å [with H1···O1ii 3.37 (2) Å] along the [100] axis, highlighting the lack of conventional intermolecular amide···amide hydrogen bonding in (III). This N1···O1ii distance [symmetry code: (ii) = x - 1,y,z] is longer than the corresponding N···O distances in the three isomers (Fpp), (Fmp) and (Fop) [3.438 (2)–3.7854 (16) Å] (Table 5) (these isomers have N—H···Npy as their primary interaction) (Donnelly et al., 2008). The trend of increasing amideN···Ocarbonyl distance correlates well with the increasing unit-cell 'a' dimension (amide···amide distance along [100]) and decreasing C6/C5N dihedral angle (preventing closer intermolecular N···O approach).

The primary interactions in (I)–(III) differ, although (I) and (II) are more closely matched in comparison to the hydrogen bonding in (III) (where N—H···Npy hydrogen bonding dominates) and they also differ in intermolecular N—H···O distance. The influence of π···π stacking interactions is small for (I)–(III) and with no substantial aromatic ring overlap: there are no parallel and overlapping aromatic planes within 3.5 Å of each other.

It is of interest that (III) crystallizes in the same space group, P21/c (No. 14), and with a similar unit cell as the (Fpp/Fmp/Fop) series (Donnelly et al., 2008) and also the parent N-(4-pyridyl)benzamide (IV) (Noveron et al., 2002) (Table 5). This isomorphous series of five compounds facilitates comparisons (where H is replaced by F) on progressing from the parent C12H10N2O (MOHQOP) (IV) to the isomorphous (Fpp/Fmp/Fop) C12H9FN2O series to C12H8F2N2O (III). The molecular conformations of (III) and the (Fpp/Fmp/Fop) series are similar as the spatial orientation of the 2,5-F2 atoms on the C6 benzene ring in (III) compares favourably with the ortho (2-substituted) F atom in (Fop) and the meta (3-substituted) F atom in (Fmp) (Table 5). The dominance and influence of the amideN—H···Npy hydrogen bonding in the packing for all five compounds is notable as it competes with potential N—H···OC interactions and other weaker types of hydrogen bonding: there is a negligible influence of the isosteric replacement of H atoms by F atoms on packing. The molecular similarity in combination with the dominance of N—H···N hydrogen bonding influences the observed isomorphism in the five structures (IV), (Fpp/Fmp/Fop) and (III).

In expanding our structural systematic study of fluoro(pyridyl)benzamides, incorporating isomers, polymorphs and pseudopolymorphs, we will strive to group together examples with similar properties and behaviour as well as making comparisons with related published work so as 'not to impose a discontinuity on Nature's continuum' (Threlfall & Gelbrich, 2007). Work is in progress to expand these fluoro(pyridyl)benzamide series.

Related literature top

For related literature, see: Allen (2002); Chopra & Row (2008); Donnelly et al. (2008); Gelbrich et al. (2007); Kálmán et al. (1993); Noveron et al. (2002); Sheldrick (2008); Threlfall & Gelbrich (2007); Wardell et al. (2007, 2008).

Experimental top

For the preparation of (I)–(III) (Fink & Kurys, 1996), typically, the 2,3-, 2,4- and 2,5-difluorobenzoyl chlorides in dry CH2Cl2 (20–30 ml) were added dropwise (over a period of 2–3 min) to a cold (273 K) 20–30 ml solution of 4-aminopyridine containing Et3N (1.5 ml), and the reaction was stirred overnight at room temperature. Typical organic workup and washings furnished the products in reasonable yields of 40–90%. Crystals suitable for diffraction were grown from CHCl3 as colourless blocks over a period of 1–2 weeks. The three compounds gave clean 1H and 13C NMR spectra in δ6-DMSO and the infrared spectra (in CHCl3 solution, KBr disks) are as expected.

For (I), m.p. 385–387 K (uncorrected). IR (νC=O cm-1): 1684s, 1674m (CHCl3); 1667s (KBr). 1H NMR (400 MHz, DMSO): δ 10.98 (s, 1H, N—H), 8.51 (d, 2H, 4-pyr), 7.70 (d, 2H, 4-pyr), 7.67 (m [2 td], 1H, 2,3-Fbenz), 7.53 (m [tt], 1H, 2,3-Fbenz), 7.38 (m [2 t d], 1H, 2,3-Fbenz).

For (II), m.p. 391–393 K (uncorrected). IR (νC=O cm-1): 1662s (CHCl3); 1685s, 1674s (KBr). 1H NMR (400 MHz, DMSO): δ 10.85 (s, 1H, N—H), 8.50 (d, 2H, 4-pyr), 7.69 (d, 2H, 4-pyr), 7.80 (m, 1H, 2,4-Fbenz), 7.47 (m [td], 1H, 2,4-Fbenz), 7.26 (m [td], 1H, 2,4-Fbenz).

For (III), m.p. 433–435 K (uncorrected). IR (νC=O cm-1): 1684s (CHCl3); 1685s (KBr). 1H NMR (400 MHz, DMSO): δ 10.93 (s, 1H, N—H), 8.51 (d, 2H, 4-pyr), 7.70 (d, 2H, 4-pyr), 7.61 (m, 1H, 2,5-Fbenz), 7.48 (m, 2H, 2,5-Fbenz).

Refinement top

H atoms attached to C atoms were treated as riding using SHELXL97 (Sheldrick, 2008) defaults at 150 (1) K with [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C); N-bound H atoms were refined freely with isotropic displacement parameters to bond lengths of 0.88 (2) Å in (I), 0.92 (4) Å in (II) and 0.89 (2) Å in (III).

Computing details top

For all compounds, data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and SORTX (McArdle, 1995); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PREP8 (Ferguson, 1998).

Figures top
[Figure 1] Fig. 1. Relative abundance of difluorobenzene fragments in the CSD (version 5.29, January updates 2008)]. X = any element, Z = any element but H.
[Figure 2] Fig. 2. A view of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. A view of (II), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4] Fig. 4. A view of (III), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 5] Fig. 5. The primary N—H···OC interactions in (I) forming C(4) chains along [010] and linked by C—H···N interactions to form sheets: H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) x,y + 1,z; (ii) x + 1,y,z].
[Figure 6] Fig. 6. A view of the C—H···N interaction propagating in the [001] direction and forming a chain in (II): H atoms attached to C not involved in hydrogen bonding have been omitted for clarity. [Symmetry code: (i) x,y - 1/2,z + 1/2].
[Figure 7] Fig. 7. A view of the N—H···N intermolecular interaction in (III) forming zigzag chains along [010] and similar to the isomorphous series, (Donnelly et al., 2008). [Symmetry codes: (i) -x + 1,y + 1/2,-z + 1/2; (ii) -x + 1,y - 1/2,-z + 1/2].
[Figure 8] Fig. 8. A view of the C—H···π(arene) (linking chains into sheets) and antiparallel C=O···OC interactions in (III) (linking sheets into a three-dimensional network): H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) -x + 2,-y,-z + 1; (ii) x,-y + 1/2,z + 1/2].
(I) 2,3-difluoro-N-(4-pyridyl)benzamide top
Crystal data top
C12H8F2N2OF(000) = 480
Mr = 234.20Dx = 1.536 Mg m3
Monoclinic, P21/nMelting point: 385 K
Hall symbol: -p 2ynMo Kα radiation, λ = 0.71073 Å
a = 12.5700 (6) ÅCell parameters from 12328 reflections
b = 5.1257 (2) Åθ = 2.6–27.5°
c = 16.5178 (8) ŵ = 0.13 mm1
β = 107.847 (2)°T = 150 K
V = 1013.03 (8) Å3Block, colourless
Z = 40.38 × 0.36 × 0.30 mm
Data collection top
Nonius KappaCCD
diffractometer
2292 independent reflections
Radiation source: fine-focus sealed X-ray tube1872 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ, ω scans with κ offsetsθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 1616
Tmin = 0.889, Tmax = 0.965k = 66
5827 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.3718P]
where P = (Fo2 + 2Fc2)/3
2292 reflections(Δ/σ)max < 0.001
158 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C12H8F2N2OV = 1013.03 (8) Å3
Mr = 234.20Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.5700 (6) ŵ = 0.13 mm1
b = 5.1257 (2) ÅT = 150 K
c = 16.5178 (8) Å0.38 × 0.36 × 0.30 mm
β = 107.847 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2292 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
1872 reflections with I > 2σ(I)
Tmin = 0.889, Tmax = 0.965Rint = 0.033
5827 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.24 e Å3
2292 reflectionsΔρmin = 0.18 e Å3
158 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F120.20330 (7)0.77680 (17)0.02099 (5)0.0309 (2)
F130.40168 (7)0.87823 (19)0.00503 (6)0.0377 (3)
O10.14765 (9)0.1291 (2)0.14635 (8)0.0360 (3)
C10.16668 (11)0.3556 (3)0.13137 (9)0.0251 (3)
N10.09370 (10)0.5544 (2)0.12683 (8)0.0254 (3)
C110.27630 (11)0.4290 (3)0.11850 (8)0.0239 (3)
C120.29056 (11)0.6304 (3)0.06672 (9)0.0245 (3)
C130.39432 (12)0.6836 (3)0.05801 (9)0.0279 (3)
C140.48711 (12)0.5420 (3)0.10112 (9)0.0308 (3)
C150.47431 (12)0.3376 (3)0.15251 (9)0.0320 (3)
C160.37000 (12)0.2807 (3)0.16037 (9)0.0288 (3)
C210.01346 (11)0.5355 (3)0.13734 (9)0.0240 (3)
C220.04349 (12)0.3409 (3)0.18500 (9)0.0270 (3)
C230.15038 (12)0.3501 (3)0.19325 (10)0.0300 (3)
N240.22677 (10)0.5331 (3)0.15855 (9)0.0327 (3)
C250.19528 (12)0.7184 (3)0.11343 (10)0.0326 (4)
C260.09093 (12)0.7281 (3)0.10129 (10)0.0285 (3)
H10.1150 (15)0.710 (4)0.1162 (12)0.038 (5)*
H140.55840.58300.09590.037*
H150.53730.23610.18250.038*
H160.36230.13820.19490.035*
H220.00740.20610.21100.032*
H230.17060.21710.22580.036*
H250.24760.85130.08820.039*
H260.07290.86440.06880.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F120.0274 (4)0.0300 (5)0.0369 (5)0.0041 (4)0.0121 (4)0.0083 (4)
F130.0361 (5)0.0365 (5)0.0462 (5)0.0037 (4)0.0212 (4)0.0076 (4)
O10.0373 (6)0.0210 (5)0.0572 (7)0.0001 (4)0.0254 (5)0.0019 (5)
C10.0259 (7)0.0229 (7)0.0275 (7)0.0010 (6)0.0098 (5)0.0012 (6)
N10.0238 (6)0.0205 (6)0.0340 (6)0.0008 (5)0.0121 (5)0.0023 (5)
C110.0242 (7)0.0232 (7)0.0252 (7)0.0005 (6)0.0086 (5)0.0029 (5)
C120.0231 (7)0.0242 (7)0.0257 (7)0.0024 (6)0.0068 (5)0.0009 (5)
C130.0302 (7)0.0275 (7)0.0289 (7)0.0040 (6)0.0133 (6)0.0013 (6)
C140.0234 (7)0.0377 (9)0.0330 (8)0.0034 (6)0.0110 (6)0.0081 (7)
C150.0259 (7)0.0374 (9)0.0312 (7)0.0070 (6)0.0067 (6)0.0017 (7)
C160.0299 (7)0.0294 (8)0.0277 (7)0.0034 (6)0.0097 (6)0.0010 (6)
C210.0225 (6)0.0237 (7)0.0264 (7)0.0030 (6)0.0084 (5)0.0045 (6)
C220.0261 (7)0.0248 (7)0.0307 (7)0.0010 (6)0.0097 (6)0.0003 (6)
C230.0292 (7)0.0283 (8)0.0356 (8)0.0048 (6)0.0145 (6)0.0024 (6)
N240.0256 (6)0.0322 (7)0.0414 (7)0.0017 (5)0.0118 (5)0.0053 (6)
C250.0254 (7)0.0289 (8)0.0420 (9)0.0032 (6)0.0082 (6)0.0013 (7)
C260.0279 (7)0.0242 (7)0.0333 (7)0.0006 (6)0.0095 (6)0.0011 (6)
Geometric parameters (Å, º) top
F12—C121.3523 (16)C21—C221.393 (2)
F13—C131.3487 (17)C22—C231.392 (2)
O1—C11.2259 (17)C23—N241.339 (2)
C1—N11.3574 (18)N24—C251.340 (2)
C1—C111.5048 (19)C25—C261.387 (2)
N1—C211.4133 (17)N1—H10.88 (2)
C11—C121.3872 (19)C14—H140.9500
C11—C161.394 (2)C15—H150.9500
C12—C131.3824 (19)C16—H160.9500
C13—C141.373 (2)C22—H220.9500
C14—C151.389 (2)C23—H230.9500
C15—C161.388 (2)C25—H250.9500
C21—C261.386 (2)C26—H260.9500
O1—C1—N1123.47 (13)N24—C23—C22124.67 (14)
O1—C1—C11120.58 (12)C23—N24—C25116.06 (12)
N1—C1—C11115.93 (12)N24—C25—C26124.02 (14)
C1—N1—C21126.54 (12)C21—C26—C25118.90 (14)
C1—C11—C12124.75 (12)C1—N1—H1116.9 (12)
C1—C11—C16117.70 (13)C21—N1—H1116.5 (12)
C12—C11—C16117.54 (13)C13—C14—H14120.8
F12—C12—C11121.43 (12)C15—C14—H14120.8
F12—C12—C13117.53 (13)C16—C15—H15119.8
C11—C12—C13121.02 (13)C14—C15—H15119.8
F13—C13—C12117.90 (13)C15—C16—H16119.4
F13—C13—C14120.74 (13)C11—C16—H16119.4
C12—C13—C14121.36 (14)C23—C22—H22121.1
C13—C14—C15118.48 (13)C21—C22—H22121.1
C14—C15—C16120.36 (13)N24—C23—H23117.7
C15—C16—C11121.21 (14)C22—C23—H23117.7
C26—C21—C22118.45 (13)N24—C25—H25118.0
C22—C21—N1123.50 (13)C26—C25—H25118.0
C26—C21—N1117.98 (13)C21—C26—H26120.6
C21—C22—C23117.89 (13)C25—C26—H26120.6
O1—C1—N1—C210.6 (2)F13—C13—C14—C15177.70 (13)
O1—C1—C11—C12149.52 (15)C12—C13—C14—C151.7 (2)
C11—C1—N1—C21179.45 (12)C13—C14—C15—C160.6 (2)
C1—N1—C21—C26156.89 (14)C14—C15—C16—C111.2 (2)
N1—C1—C11—C1231.6 (2)C12—C11—C16—C151.9 (2)
O1—C1—C11—C1629.2 (2)C1—C11—C16—C15179.31 (13)
N1—C1—C11—C16149.63 (13)C1—N1—C21—C2226.1 (2)
C16—C11—C12—F12177.19 (12)C26—C21—C22—C230.4 (2)
C1—C11—C12—F121.5 (2)N1—C21—C22—C23177.44 (13)
C16—C11—C12—C130.8 (2)C21—C22—C23—N240.0 (2)
C1—C11—C12—C13179.54 (13)C22—C23—N24—C250.3 (2)
F12—C12—C13—F130.4 (2)C23—N24—C25—C260.2 (2)
C11—C12—C13—F13178.43 (12)C22—C21—C26—C250.5 (2)
F12—C12—C13—C14179.05 (13)N1—C21—C26—C25177.72 (13)
C11—C12—C13—C141.0 (2)N24—C25—C26—C210.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.88 (2)2.21 (2)3.0181 (16)152.3 (16)
N1—H1···F120.88 (2)2.212 (18)2.7803 (14)122.2 (15)
C22—H22···O10.952.362.8807 (18)114
C14—H14···N24ii0.952.593.4273 (19)147
C15—H15···Cg1iii0.952.863.5941 (16)135
C25—H25···F13iv0.952.493.4240 (18)166
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x+1/2, y1/2, z+1/2; (iv) x, y+2, z.
(II) 2,4-Difluoro-N-(4-pyridyl)benzamide top
Crystal data top
C12H8F2N2OF(000) = 480
Mr = 234.20Dx = 1.559 Mg m3
Monoclinic, P21/cMelting point: 391 K
Hall symbol: -p 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.3187 (6) ÅCell parameters from 12237 reflections
b = 5.5868 (6) Åθ = 2.6–27.5°
c = 21.715 (2) ŵ = 0.13 mm1
β = 98.517 (6)°T = 150 K
V = 998.07 (16) Å3Block, colourless
Z = 40.24 × 0.16 × 0.03 mm
Data collection top
Nonius KappaCCD
diffractometer
2248 independent reflections
Radiation source: fine-focus sealed X-ray tube1197 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.083
ϕ, ω scans with κ offsetsθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 1010
Tmin = 0.969, Tmax = 0.996k = 67
6812 measured reflectionsl = 2728
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0684P)2]
where P = (Fo2 + 2Fc2)/3
2248 reflections(Δ/σ)max < 0.001
158 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C12H8F2N2OV = 998.07 (16) Å3
Mr = 234.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.3187 (6) ŵ = 0.13 mm1
b = 5.5868 (6) ÅT = 150 K
c = 21.715 (2) Å0.24 × 0.16 × 0.03 mm
β = 98.517 (6)°
Data collection top
Nonius KappaCCD
diffractometer
2248 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
1197 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.996Rint = 0.083
6812 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.22 e Å3
2248 reflectionsΔρmin = 0.27 e Å3
158 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F120.33130 (18)0.2730 (2)0.08087 (6)0.0475 (4)
F140.06367 (18)0.0413 (3)0.23708 (6)0.0528 (5)
O10.2144 (2)0.3342 (3)0.02686 (8)0.0520 (5)
C10.2306 (3)0.1351 (5)0.00339 (11)0.0371 (6)
N10.2865 (2)0.0569 (4)0.03263 (9)0.0390 (5)
C110.1865 (3)0.0936 (4)0.06019 (11)0.0362 (6)
C120.2364 (3)0.0969 (4)0.10006 (11)0.0383 (6)
C130.1983 (3)0.1188 (4)0.15936 (11)0.0420 (6)
C140.1035 (3)0.0589 (5)0.17904 (11)0.0403 (6)
C150.0484 (3)0.2528 (5)0.14245 (12)0.0417 (6)
C160.0914 (3)0.2671 (4)0.08382 (11)0.0398 (6)
C210.3302 (3)0.0663 (4)0.09274 (11)0.0353 (6)
C220.2967 (3)0.1138 (5)0.13730 (11)0.0391 (6)
C230.3446 (3)0.0780 (5)0.19485 (12)0.0430 (7)
N240.4182 (2)0.1182 (4)0.21226 (9)0.0427 (6)
C250.4485 (3)0.2890 (5)0.16867 (11)0.0419 (7)
C260.4088 (3)0.2708 (4)0.10933 (11)0.0404 (6)
H10.296 (4)0.200 (7)0.0118 (14)0.083 (11)*
H130.23580.25010.18540.050*
H150.01710.37270.15730.050*
H160.05500.40040.05840.048*
H220.24270.25670.12830.047*
H230.32350.20330.22450.052*
H250.50050.43140.17930.050*
H260.43490.39660.08010.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F120.0610 (10)0.0400 (9)0.0426 (9)0.0101 (7)0.0115 (7)0.0039 (7)
F140.0730 (11)0.0510 (10)0.0385 (9)0.0092 (8)0.0218 (7)0.0011 (7)
O10.0809 (14)0.0355 (11)0.0441 (11)0.0072 (9)0.0238 (9)0.0036 (9)
C10.0426 (14)0.0324 (15)0.0365 (14)0.0010 (11)0.0067 (11)0.0007 (11)
N10.0489 (13)0.0343 (13)0.0354 (12)0.0026 (10)0.0114 (9)0.0005 (10)
C110.0408 (14)0.0333 (14)0.0351 (14)0.0031 (11)0.0079 (11)0.0016 (11)
C120.0422 (14)0.0338 (15)0.0396 (15)0.0020 (11)0.0081 (11)0.0045 (11)
C130.0521 (16)0.0353 (15)0.0383 (15)0.0044 (12)0.0055 (12)0.0038 (12)
C140.0485 (15)0.0425 (16)0.0315 (14)0.0098 (12)0.0113 (11)0.0040 (12)
C150.0471 (15)0.0388 (15)0.0412 (15)0.0004 (12)0.0130 (11)0.0049 (12)
C160.0461 (15)0.0343 (15)0.0393 (15)0.0004 (11)0.0078 (12)0.0003 (11)
C210.0388 (14)0.0301 (14)0.0378 (14)0.0024 (10)0.0081 (10)0.0029 (11)
C220.0444 (14)0.0339 (15)0.0398 (15)0.0014 (11)0.0085 (11)0.0004 (11)
C230.0538 (16)0.0335 (15)0.0414 (15)0.0005 (12)0.0064 (12)0.0035 (12)
N240.0546 (13)0.0361 (13)0.0394 (13)0.0027 (10)0.0132 (10)0.0014 (10)
C250.0514 (16)0.0332 (15)0.0431 (16)0.0014 (11)0.0141 (12)0.0020 (11)
C260.0496 (15)0.0323 (15)0.0401 (15)0.0002 (11)0.0095 (11)0.0019 (11)
Geometric parameters (Å, º) top
F12—C121.365 (3)C21—C221.395 (3)
F14—C141.353 (3)C22—C231.381 (3)
O1—C11.222 (3)C23—N241.337 (3)
C1—N11.363 (3)N24—C251.341 (3)
C1—C111.498 (3)C25—C261.381 (3)
N1—C211.407 (3)N1—H10.92 (4)
C11—C121.396 (3)C13—H130.9500
C11—C161.396 (3)C15—H150.9500
C12—C131.376 (3)C16—H160.9500
C13—C141.375 (4)C22—H220.9500
C14—C151.381 (4)C23—H230.9500
C15—C161.375 (3)C25—H250.9500
C21—C261.390 (3)C26—H260.9500
O1—C1—N1123.1 (2)N24—C23—C22125.5 (2)
O1—C1—C11119.9 (2)C23—N24—C25115.4 (2)
N1—C1—C11117.0 (2)N24—C25—C26124.1 (2)
C1—N1—C21127.9 (2)C25—C26—C21119.3 (2)
C12—C11—C16115.7 (2)C1—N1—H1118 (2)
C12—C11—C1126.8 (2)C21—N1—H1114 (2)
C16—C11—C1117.4 (2)C14—C13—H13121.7
F12—C12—C13116.4 (2)C12—C13—H13121.7
F12—C12—C11119.5 (2)C16—C15—H15121.0
C13—C12—C11124.0 (2)C14—C15—H15121.0
C14—C13—C12116.7 (2)C15—C16—H16118.7
F14—C14—C13117.9 (2)C11—C16—H16118.7
F14—C14—C15119.1 (2)C23—C22—H22121.0
C13—C14—C15123.0 (2)C21—C22—H22121.0
C16—C15—C14117.9 (2)C22—C23—H23117.3
C15—C16—C11122.7 (2)N24—C23—H23117.3
C26—C21—C22117.8 (2)N24—C25—H25118.0
C26—C21—N1117.9 (2)C26—C25—H25118.0
C22—C21—N1124.4 (2)C25—C26—H26120.4
C23—C22—C21117.9 (2)C21—C26—H26120.4
O1—C1—N1—C211.7 (4)F14—C14—C15—C16179.6 (2)
O1—C1—C11—C12161.5 (2)C13—C14—C15—C160.1 (4)
C11—C1—N1—C21177.7 (2)C14—C15—C16—C110.5 (4)
C1—N1—C21—C26169.8 (2)C12—C11—C16—C150.2 (4)
N1—C1—C11—C1219.1 (4)C1—C11—C16—C15177.6 (2)
O1—C1—C11—C1615.6 (3)C1—N1—C21—C2211.7 (4)
N1—C1—C11—C16163.8 (2)C26—C21—C22—C230.4 (3)
C16—C11—C12—F12179.25 (19)N1—C21—C22—C23178.9 (2)
C1—C11—C12—F122.2 (4)C21—C22—C23—N241.4 (4)
C16—C11—C12—C130.5 (4)C22—C23—N24—C251.2 (4)
C1—C11—C12—C13176.6 (2)C23—N24—C25—C260.1 (4)
F12—C12—C13—C14179.6 (2)N24—C25—C26—C211.1 (4)
C11—C12—C13—C140.9 (4)C22—C21—C26—C250.8 (3)
C12—C13—C14—F14179.7 (2)N1—C21—C26—C25177.9 (2)
C12—C13—C14—C150.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···F120.92 (4)2.03 (3)2.720 (3)131 (3)
C22—H22···O10.952.292.868 (3)118
C13—H13···N24i0.952.603.430 (3)146
Symmetry code: (i) x, y+1/2, z+1/2.
(III) 2,5-difluoro(4-pyridyl)benzamide top
Crystal data top
C12H8F2N2OF(000) = 480
Mr = 234.20Dx = 1.537 Mg m3
Monoclinic, P21/cMelting point: 433 K
Hall symbol: -p 2ybcMo Kα radiation, λ = 0.71073 Å
a = 6.2088 (4) ÅCell parameters from 3173 reflections
b = 11.0182 (5) Åθ = 2.6–27.5°
c = 14.8139 (9) ŵ = 0.13 mm1
β = 93.018 (3)°T = 150 K
V = 1012.01 (10) Å3Block, colourless
Z = 40.22 × 0.16 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
2295 independent reflections
Radiation source: fine-focus sealed X-ray tube1555 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ, ω scans with κ offsetsθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 88
Tmin = 0.932, Tmax = 0.988k = 1314
6136 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0625P)2 + 0.0245P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2295 reflectionsΔρmax = 0.21 e Å3
159 parametersΔρmin = 0.27 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (4)
Crystal data top
C12H8F2N2OV = 1012.01 (10) Å3
Mr = 234.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.2088 (4) ŵ = 0.13 mm1
b = 11.0182 (5) ÅT = 150 K
c = 14.8139 (9) Å0.22 × 0.16 × 0.10 mm
β = 93.018 (3)°
Data collection top
Nonius KappaCCD
diffractometer
2295 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
1555 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.988Rint = 0.036
6136 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.21 e Å3
2295 reflectionsΔρmin = 0.27 e Å3
159 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F120.52432 (15)0.14293 (9)0.52228 (6)0.0348 (3)
F151.22204 (17)0.43599 (9)0.56952 (8)0.0430 (3)
O11.06883 (18)0.04700 (10)0.40055 (8)0.0290 (3)
C10.8934 (3)0.09249 (14)0.41366 (11)0.0231 (4)
N10.7049 (2)0.05987 (12)0.36865 (9)0.0251 (3)
C110.8758 (2)0.19442 (14)0.48050 (10)0.0223 (4)
C120.6988 (3)0.21626 (15)0.53140 (11)0.0265 (4)
C130.6938 (3)0.30864 (16)0.59425 (12)0.0328 (4)
C140.8705 (3)0.38450 (16)0.60598 (12)0.0345 (5)
C151.0471 (3)0.36289 (15)0.55668 (12)0.0306 (4)
C161.0556 (3)0.26969 (14)0.49455 (11)0.0255 (4)
C210.6718 (3)0.03641 (14)0.30797 (10)0.0230 (4)
C220.8243 (3)0.12549 (14)0.29181 (11)0.0246 (4)
C230.7666 (3)0.21728 (15)0.23112 (11)0.0272 (4)
N240.5755 (2)0.22661 (12)0.18534 (9)0.0286 (4)
C250.4321 (3)0.13938 (15)0.20199 (12)0.0301 (4)
C260.4708 (3)0.04471 (14)0.26199 (11)0.0274 (4)
H10.592 (3)0.1084 (19)0.3720 (13)0.042 (6)*
H130.57080.31990.62890.039*
H140.86950.45030.64740.041*
H161.18140.25700.46200.031*
H220.96370.12340.32150.030*
H230.87090.27830.22130.033*
H250.29500.14290.17050.036*
H260.36200.01380.27170.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F120.0312 (6)0.0413 (6)0.0324 (6)0.0037 (5)0.0076 (5)0.0018 (4)
F150.0454 (7)0.0335 (6)0.0492 (8)0.0087 (5)0.0077 (5)0.0103 (5)
O10.0279 (7)0.0273 (7)0.0320 (7)0.0012 (5)0.0041 (5)0.0041 (5)
C10.0271 (9)0.0204 (8)0.0218 (9)0.0001 (7)0.0020 (7)0.0039 (6)
N10.0265 (8)0.0217 (7)0.0271 (8)0.0043 (6)0.0003 (6)0.0037 (6)
C110.0273 (9)0.0205 (8)0.0189 (8)0.0035 (7)0.0009 (7)0.0019 (6)
C120.0266 (9)0.0274 (9)0.0255 (9)0.0007 (7)0.0000 (7)0.0022 (7)
C130.0352 (10)0.0365 (10)0.0269 (10)0.0104 (9)0.0049 (8)0.0023 (8)
C140.0468 (12)0.0284 (9)0.0277 (10)0.0087 (9)0.0032 (8)0.0064 (7)
C150.0359 (10)0.0238 (9)0.0313 (10)0.0007 (8)0.0067 (8)0.0007 (7)
C160.0303 (9)0.0238 (8)0.0223 (9)0.0038 (7)0.0003 (7)0.0012 (6)
C210.0297 (9)0.0198 (8)0.0196 (9)0.0006 (7)0.0037 (7)0.0016 (6)
C220.0265 (9)0.0242 (8)0.0231 (9)0.0014 (7)0.0013 (7)0.0020 (7)
C230.0331 (9)0.0229 (9)0.0258 (9)0.0029 (7)0.0040 (7)0.0014 (7)
N240.0345 (8)0.0247 (7)0.0266 (8)0.0005 (6)0.0008 (6)0.0022 (6)
C250.0300 (10)0.0287 (9)0.0312 (10)0.0016 (8)0.0021 (7)0.0004 (7)
C260.0295 (9)0.0228 (8)0.0297 (10)0.0031 (7)0.0009 (7)0.0000 (7)
Geometric parameters (Å, º) top
F12—C121.3527 (18)C21—C261.393 (2)
F15—C151.357 (2)C22—C231.388 (2)
O1—C11.2239 (19)C23—N241.339 (2)
C1—N11.364 (2)N24—C251.342 (2)
C1—C111.505 (2)C25—C261.383 (2)
N1—C211.399 (2)N1—H10.89 (2)
C11—C121.386 (2)C13—H130.9500
C11—C161.397 (2)C14—H140.9500
C12—C131.381 (2)C16—H160.9500
C13—C141.383 (3)C22—H220.9500
C14—C151.370 (3)C23—H230.9500
C15—C161.382 (2)C25—H250.9500
C21—C221.393 (2)C26—H260.9500
O1—C1—N1124.22 (15)N24—C23—C22125.13 (16)
O1—C1—C11120.40 (15)C23—N24—C25115.51 (14)
N1—C1—C11115.35 (14)N24—C25—C26124.33 (16)
C1—N1—C21127.41 (14)C25—C26—C21118.99 (16)
C1—C11—C12125.07 (15)C1—N1—H1118.4 (13)
C1—C11—C16117.11 (14)C21—N1—H1113.8 (13)
C12—C11—C16117.76 (15)C12—C13—H13120.5
F12—C12—C11119.72 (14)C14—C13—H13120.5
F12—C12—C13117.45 (15)C15—C14—H14120.7
C11—C12—C13122.80 (16)C13—C14—H14120.7
C12—C13—C14118.95 (16)C15—C16—H16120.6
C13—C14—C15118.69 (16)C11—C16—H16120.6
F15—C15—C14118.63 (15)C23—C22—H22121.0
F15—C15—C16118.44 (16)C21—C22—H22121.0
C14—C15—C16122.94 (17)N24—C23—H23117.4
C11—C16—C15118.83 (16)C22—C23—H23117.4
C22—C21—C26117.98 (15)N24—C25—H25117.8
C26—C21—N1117.51 (15)C26—C25—H25117.8
C22—C21—N1124.50 (14)C25—C26—H26120.5
C21—C22—C23118.06 (15)C21—C26—H26120.5
O1—C1—N1—C217.0 (3)C13—C14—C15—C161.1 (3)
O1—C1—C11—C12148.88 (16)F15—C15—C16—C11179.62 (14)
C11—C1—N1—C21175.26 (14)C14—C15—C16—C110.6 (3)
C1—N1—C21—C26172.89 (16)C12—C11—C16—C151.2 (2)
N1—C1—C11—C1233.3 (2)C1—C11—C16—C15178.79 (14)
O1—C1—C11—C1628.5 (2)C1—N1—C21—C228.4 (3)
N1—C1—C11—C16149.35 (14)C26—C21—C22—C230.2 (2)
C16—C11—C12—F12177.66 (13)N1—C21—C22—C23178.52 (15)
C1—C11—C12—F120.3 (2)C21—C22—C23—N241.0 (3)
C16—C11—C12—C130.3 (2)C22—C23—N24—C250.7 (2)
C1—C11—C12—C13177.64 (15)C23—N24—C25—C260.3 (2)
F12—C12—C13—C14179.32 (14)N24—C25—C26—C211.0 (3)
C11—C12—C13—C141.3 (3)C22—C21—C26—C250.7 (2)
C12—C13—C14—C152.0 (3)N1—C21—C26—C25179.51 (15)
C13—C14—C15—F15178.76 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N24i0.89 (2)2.24 (2)3.010 (2)145.3 (17)
N1—H1···F120.89 (2)2.32 (2)2.7465 (17)109.7 (15)
C22—H22···O10.952.292.873 (2)119
C22—H22···Cg1ii0.952.863.4966 (18)126
C14—H14···Cg2iii0.952.953.8012 (19)149
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y, z+1; (iii) x, y+1/2, z+1/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC12H8F2N2OC12H8F2N2OC12H8F2N2O
Mr234.20234.20234.20
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)150150150
a, b, c (Å)12.5700 (6), 5.1257 (2), 16.5178 (8)8.3187 (6), 5.5868 (6), 21.715 (2)6.2088 (4), 11.0182 (5), 14.8139 (9)
β (°) 107.847 (2) 98.517 (6) 93.018 (3)
V3)1013.03 (8)998.07 (16)1012.01 (10)
Z444
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.130.130.13
Crystal size (mm)0.38 × 0.36 × 0.300.24 × 0.16 × 0.030.22 × 0.16 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Multi-scan
(SORTAV; Blessing, 1995)
Multi-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.889, 0.9650.969, 0.9960.932, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
5827, 2292, 1872 6812, 2248, 1197 6136, 2295, 1555
Rint0.0330.0830.036
(sin θ/λ)max1)0.6490.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.107, 1.05 0.055, 0.157, 1.01 0.044, 0.120, 1.04
No. of reflections229222482295
No. of parameters158158159
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.180.22, 0.270.21, 0.27

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and SORTX (McArdle, 1995), PLATON (Spek, 2003), SHELXL97 (Sheldrick, 2008) and PREP8 (Ferguson, 1998).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.88 (2)2.21 (2)3.0181 (16)152.3 (16)
N1—H1···F120.88 (2)2.212 (18)2.7803 (14)122.2 (15)
C22—H22···O10.952.362.8807 (18)114
C14—H14···N24ii0.952.593.4273 (19)147
C15—H15···Cg1iii0.952.863.5941 (16)135
C25—H25···F13iv0.952.493.4240 (18)166
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x+1/2, y1/2, z+1/2; (iv) x, y+2, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1···F120.92 (4)2.03 (3)2.720 (3)131 (3)
C22—H22···O10.952.292.868 (3)118
C13—H13···N24i0.952.603.430 (3)146
Symmetry code: (i) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N24i0.89 (2)2.24 (2)3.010 (2)145.3 (17)
N1—H1···F120.89 (2)2.32 (2)2.7465 (17)109.7 (15)
C22—H22···O10.952.292.873 (2)119
C22—H22···Cg1ii0.952.863.4966 (18)126
C14—H14···Cg2iii0.952.953.8012 (19)149
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y, z+1; (iii) x, y+1/2, z+1/2.
Comparison of selected torsion angles (°) in (I)–(III)a and (Fop)b top
Torsion (°)(I)a(II)a(III)a(Fop)b
O1—C1—N1—C21-0.6 (2)1.7 (4)7.0 (3)6.1 (2)
O1—C1—C11—C12149.52 (15)161.5 (2)-148.88 (16)-147.55 (14)
C11—C1—N1—C21-179.45 (12)-177.7 (2)-175.26 (14)-176.77 (12)
C1—N1—C21—C26-156.89 (14)-169.8 (2)-172.89 (16)11.2 (2)
C6/C5N10.02 (8)7.02 (8)42.39 (6)46.34 (5)
Notes: (a) this work (C12H8F2N2O). (b) 2-fluoro-N'-(4-pyridyl)benzamide (C12H9FN2O) (Donnelly et al., 2008)
Five isomorphous (4-pyridyl)benzamides: comparative unit cell, volume and selected geometrical parameters.a top
XMOHQOPb(Fpp)c(Fmp)c(Fop)c(III)d
FormulaC12H10N2OC12H9FN2OC12H9FN2OC12H9FN2OC12H8F2N2O
a5.6830 (2)5.6506 (3)5.7537 (3)5.9832 (3)6.2088 (3)
b11.1380 (3)11.3882 (8)11.2421 (4)11.1508 (5)11.0182 (5)
c15.2124 (16)15.4314 (8)15.1672 (7)14.8921 (7)14.8139 (9)
β95.0784 (13)95.602 (3)94.188 (2)94.986 (3)93.018 (3)
V (Å3)959.12 (6)988.27 (10)978.45 (8)989.80 (8)1012.01 (10)
N···N (Å)3.01412 (16)3.022 (2)3.049 (2)3.0213 (17)3.010 (2)
N···O (Å)3.4388 (13)3.438 (2)3.562 (2)3.7854 (16)4.005 (2)
C6/C5N (°)45.95 (6)51.95 (6)48.75 (6)46.34 (5)42.39 (6)
Notes: (a) Space group P21/c (No. 14) with Z=4. (b) MOHQOP = N'-(4-pyridyl)benzamide (Noveron et al., 2002). (c) (Donnelly et al., 2008) (Fpp/Fmp/Fop = 4-/3-/2-Fluoro-N'-(4-pyridyl)benzamides). (d) this research.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds