Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compounds, C22H29ClO3, (I), and C21H29ClO2, (II), respectively, the B rings adopt a half-chair conformation and the D rings adopt an envelope conformation. A twist of the steroid skeleton of both compounds is observed. There is a positional disorder of the acet­oxy group of (II), with the terminal atoms disordered over two positions with near equal occupancy. Quantum-mechanical ab initio calculations using a mol­ecular orbital Hartree–Fock method were performed for the isolated mol­ecules, thus allowing the distinction within the structural features of these two androstane derivatives of which characteristics are intrinsic to the mol­ecules and which are due to packing effects. The skeletal twisting was found to be innate to the mol­ecules, while the acet­oxy disorder is due to packing effects.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108025997/gd3236sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108025997/gd3236Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108025997/gd3236IIsup3.hkl
Contains datablock II

CCDC references: 703746; 703747

Comment top

Treatment of 17-oxoandrost-5-en-3β-yl acetate with POCl3 and dimethylformamide (Vilsmeier reagent) afforded 17-chloro-16-formylandrosta-5,16-dien-3β-yl acetate, (I), as the major and 17-chloroandrosta-5,16-dien-3β-yl acetate, (II), as the minor reaction product (Sciaky & Pallini, 1964; Marson, 1992; Siddiqui et al., 1995). Compound (I) was found to be an important precursor for the synthesis of steroidal inhibitors of cytochrome P450 17α-hydroxylase-C17,20-lyase as potential agents for prostate cancer treatment (Njar et al., 1998; Handratta et al., 2005; Moreira et al., 2007). We report here the molecular structures of (I) and (II) determined by single-crystal X-ray analysis, and compare them with those of the free molecules as given by quantum-mechanical ab initio calculations.

An ORTEPII (Johnson, 1976) plot of (I) is shown in Fig. 1 and a plot of (II) in Fig. 2. The two compounds are very similar: both have acetoxy and chloro substituents at the 3 and 17 positions and compound (I) has an extra formyl group at the 16 position. In both compounds, the A/B junction is quasi-trans and the remaining rings are trans fused. The acetoxy substituents at C3 are in equatorial positions, with angles to the normal (Cremer & Pople, 1975) of ring A of 68.43 (15) and 68.4 (2)°, respectively, for (I) and (II). In compound (II) the substituent is disordered, with atoms O2 and C31 and methyl group C32 occupying two positions with near-equal occupancy. Rings A and C have slightly flattened chair conformations, as shown by the mean values of their torsion angles [52.97 (12)–55.33 (14)°]. The unsaturated ring B adopts a half-chair conformation, with puckering parameters (Cremer & Pople, 1975) Q = 0.474 (3) Å, θ = 52.0 (4)° and ϕ = 210.0 (4)° for (I), and Q = 0.491 (3) Å, θ = 51.5 (3)° and ϕ = 211.0 (5)° for (II).

The five-membered ring D features a double bond at C16—C17 and shows a conformation that can be described as an envelope on C14, with P = 11.3 (3) and τ = 36.0 (2)° [P = 12.0 (4) and τ = 35.7 (2)° for (II)]. The values of the bowing angles, the angle between the least-squares plane of ring A and the least-squares plane that includes the atoms of rings B, C and D, are 23.43 (9) for (I) and 21.35 (4)° for (II). The corresponding distances between terminal atoms C3 and C16 are 8.921 (5) and 8.867 (5) Å, and the values for the pseudo torsion angle C19—C10···C13—C18 are 12.9 (5) for (I) and 9.4 (5)° for (II).

We have performed a quantum mechanical calculation of the equilibrium geometry of the free molecule using GAMESS (Schmidt et al., 1993) under conditions described previously (Ramos Silva et al., 2008). By comparing the calculated and experimental structural parameters it is possible to infer whether the molecular conformation is intrinsic to the free steroid molecule or is rather due to intermolecular interactions. The calculations reproduce the twist of the molecules as measured by the pseudo torsion angle C19—C10···C13—C18, slightly decreased for (I) at 10.2°, and slightly increased for (II) at 9.9°. Such twists are therefore intrinsic to the molecule and not a packing effect, as confirmed by previous studies (Ramos Silva et al., 2008; Pinto et al., 2008; Paixão et al., 2004). For compound (I), the geometry of the isolated molecule that corresponds to the energy minimum is quite similar to that observed in the solid state. Larger differences are found for the head and tail groups; the calculated C3—O1—C31—O2 torsion angle is 0.6° [observed 1.5 (4)°] and the calculated C15—C16—C161—O3 torsion angle is -1.7° [observed 3.2 (5)°].

There are no hydrogen bonds joining the molecules [of (I)?]. They pack in such a way that the terminal acetoxy/formyl groups come close, with the shortest intermolecular contact being O3···O1i at a distance of 3.440 (3)Å [symmetry code: (i) 3/2 - x, 1 - y, -1/2 + z]. Without the formyl substituent, the molecules of (II) pack in a different way. They assemble head to tail, with the shortest intermolecular contact being C14···O2'ii at a distance of 3.311 (9) Å [symmetry code: (ii) -x + 1, -1/2 + y, 1/2 - z].

Packing effects have a significant impact on the conformation of the molecule of (II), as seen by comparison with the calculation for the isolated molecule. The minimum energy for compound (II) is achieved with the acetoxy group in-plane with atoms C3 and C4, and C3—O1—C31—O2 converges to -0.3°, while in the solid state both alternative positions for the acetoxy group result in higher torsion angles [C3—O1—C31—O2 = -8.9 (13) and C3—O1—C31'—O2' = 4.7 (14)°].

Experimental top

Details of the synthesis have been previously reported (Siddiqui et al., 1995; Njar et al., 1998; Moreira et al., 2007). Compounds (I) and (II) were each crystallized from a solution in mixture of ethyl acetate and n-hexane [Ratio of solvents?] by slow evaporation.

Refinement top

All H atoms were refined as riding on their parent atoms, with C—H = 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). Atoms O2, C31 and C32 (and their riding H atoms) are disordered over two alternative conformations. The final refined occupancy of the major components was 0.504 (9). The disordered atoms were refined isotropically. The absolute configuration known from the synthesis route was confirmed from the X-ray data.

Computing details top

For both compounds, data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular structure of compound (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The minor component of the disordered acetoxy group is shown with broken bonds. [Please check added text]
(I) 17-chloro-16-formylandrosta-5,16-dien-3β-yl acetate top
Crystal data top
C22H29ClO3F(000) = 808
Mr = 376.90Dx = 1.253 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4667 reflections
a = 6.0689 (2) Åθ = 2.3–18.6°
b = 13.2879 (4) ŵ = 0.21 mm1
c = 24.7664 (8) ÅT = 293 K
V = 1997.24 (11) Å3Prism, colourless
Z = 40.42 × 0.17 × 0.09 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
3757 independent reflections
Radiation source: fine-focus sealed tube2563 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.084
ϕ and ω scansθmax = 25.7°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 77
Tmin = 0.863, Tmax = 0.98k = 1616
38455 measured reflectionsl = 2930
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0469P)2 + 0.1552P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3757 reflectionsΔρmax = 0.14 e Å3
238 parametersΔρmin = 0.23 e Å3
0 restraintsAbsolute structure: Flack (1983), with 1551 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (10)
Crystal data top
C22H29ClO3V = 1997.24 (11) Å3
Mr = 376.90Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.0689 (2) ŵ = 0.21 mm1
b = 13.2879 (4) ÅT = 293 K
c = 24.7664 (8) Å0.42 × 0.17 × 0.09 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
3757 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
2563 reflections with I > 2σ(I)
Tmin = 0.863, Tmax = 0.98Rint = 0.084
38455 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.105Δρmax = 0.14 e Å3
S = 1.03Δρmin = 0.23 e Å3
3757 reflectionsAbsolute structure: Flack (1983), with 1551 Friedel pairs
238 parametersAbsolute structure parameter: 0.02 (10)
0 restraints
Special details top

Experimental. Quantum-mechanical calculations of the equilibrium geometry of the free molecules were performed with the computer program GAMESS (Schmidt et al., 1993). A molecular-orbital Roothan Hartree–Fock method was used with an extended 6-31 G(d,p) basis set. Tight conditions for convergence of both the self-consistent field cycles and the maximum density and energy gradients were imposed (10-5 atomic units).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.25370 (14)0.70059 (8)0.81619 (3)0.0985 (3)
C10.3556 (4)0.4315 (2)1.09415 (10)0.0544 (7)
H110.25920.48921.09860.065*
H120.27560.38141.07350.065*
C20.4055 (4)0.3878 (2)1.15016 (10)0.0554 (7)
H210.46920.43971.17290.067*
H220.26970.36521.16690.067*
C30.5625 (4)0.3014 (2)1.14567 (9)0.0510 (7)
H30.49220.24641.12570.061*
O10.6090 (3)0.26842 (14)1.20060 (7)0.0563 (5)
C310.6815 (5)0.1745 (2)1.20749 (13)0.0670 (8)
O20.7134 (5)0.11780 (17)1.17084 (9)0.0949 (8)
C320.7140 (6)0.1511 (3)1.26598 (12)0.0908 (11)
H310.62630.09371.27560.136*
H320.66990.20801.28730.136*
H330.86660.13671.27260.136*
C40.7714 (4)0.3324 (2)1.11704 (9)0.0511 (7)
H410.86570.27411.11260.061*
H420.84980.38111.13900.061*
C50.7234 (4)0.37796 (18)1.06227 (9)0.0420 (6)
C60.8202 (4)0.34268 (18)1.01840 (10)0.0480 (6)
H60.91310.28751.02240.058*
C70.7920 (4)0.38455 (18)0.96276 (9)0.0493 (6)
H710.70510.33790.94150.059*
H720.93550.39060.94580.059*
C80.6800 (4)0.48692 (18)0.96248 (9)0.0410 (6)
H80.78690.53850.97300.049*
C90.4856 (4)0.48758 (18)1.00291 (9)0.0416 (6)
H90.39040.43150.99220.050*
C100.5582 (4)0.46448 (18)1.06133 (9)0.0418 (6)
C110.3424 (4)0.5825 (2)0.99809 (11)0.0583 (8)
H1110.20930.57241.01910.070*
H1120.42180.63841.01410.070*
C120.2761 (4)0.6118 (2)0.94048 (9)0.0605 (8)
H1210.17240.56290.92630.073*
H1220.20450.67710.94080.073*
C130.4797 (4)0.6158 (2)0.90426 (10)0.0497 (6)
C140.5897 (4)0.51183 (18)0.90722 (10)0.0432 (6)
H140.46890.46390.90180.052*
C150.7266 (5)0.50465 (19)0.85556 (9)0.0543 (7)
H1510.87080.53490.86020.065*
H1520.74390.43540.84390.065*
C160.5876 (5)0.5636 (2)0.81674 (10)0.0557 (7)
C1610.6006 (6)0.5532 (3)0.75833 (13)0.0741 (9)
H1610.51320.59550.73740.089*
O30.7159 (5)0.4940 (2)0.73529 (8)0.0925 (8)
C170.4456 (5)0.6211 (2)0.84412 (11)0.0574 (7)
C180.6321 (5)0.7036 (2)0.91963 (12)0.0667 (8)
H1810.56000.76620.91180.100*
H1820.76620.69910.89920.100*
H1830.66550.70020.95750.100*
C190.6669 (5)0.55694 (19)1.08863 (11)0.0608 (8)
H1910.55740.60771.09490.091*
H1920.77970.58341.06550.091*
H1930.73100.53701.12240.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0769 (5)0.1319 (8)0.0866 (6)0.0260 (6)0.0113 (5)0.0407 (5)
C10.0399 (14)0.075 (2)0.0487 (16)0.0110 (14)0.0053 (12)0.0010 (14)
C20.0464 (15)0.0729 (19)0.0470 (16)0.0047 (15)0.0063 (12)0.0010 (15)
C30.0557 (15)0.0568 (17)0.0407 (15)0.0009 (14)0.0013 (13)0.0077 (13)
O10.0691 (12)0.0532 (12)0.0466 (11)0.0048 (10)0.0041 (9)0.0021 (9)
C310.0616 (18)0.062 (2)0.078 (2)0.0073 (17)0.0160 (16)0.0059 (18)
O20.122 (2)0.0661 (15)0.0969 (17)0.0189 (16)0.0274 (16)0.0055 (13)
C320.102 (3)0.090 (2)0.080 (2)0.024 (2)0.013 (2)0.0322 (18)
C40.0464 (14)0.0600 (17)0.0469 (14)0.0071 (14)0.0004 (13)0.0042 (13)
C50.0368 (13)0.0495 (15)0.0398 (13)0.0009 (13)0.0009 (11)0.0025 (11)
C60.0455 (14)0.0468 (16)0.0517 (16)0.0069 (12)0.0005 (12)0.0005 (12)
C70.0524 (15)0.0523 (16)0.0432 (14)0.0034 (14)0.0077 (12)0.0039 (12)
C80.0380 (13)0.0432 (15)0.0419 (14)0.0017 (12)0.0002 (11)0.0069 (11)
C90.0356 (12)0.0492 (16)0.0401 (15)0.0009 (12)0.0000 (11)0.0045 (12)
C100.0371 (13)0.0485 (16)0.0399 (14)0.0048 (12)0.0017 (11)0.0083 (12)
C110.0478 (15)0.072 (2)0.0550 (17)0.0202 (15)0.0047 (13)0.0001 (14)
C120.0464 (15)0.075 (2)0.0601 (17)0.0172 (16)0.0012 (14)0.0088 (14)
C130.0444 (14)0.0556 (17)0.0491 (16)0.0023 (14)0.0047 (12)0.0030 (13)
C140.0410 (13)0.0495 (16)0.0392 (14)0.0052 (12)0.0013 (11)0.0028 (12)
C150.0569 (16)0.0600 (17)0.0461 (15)0.0005 (15)0.0030 (14)0.0027 (12)
C160.0589 (17)0.0660 (19)0.0421 (16)0.0132 (15)0.0066 (14)0.0070 (14)
C1610.079 (2)0.090 (3)0.053 (2)0.017 (2)0.0013 (18)0.0097 (19)
O30.117 (2)0.1088 (19)0.0517 (13)0.0194 (18)0.0144 (14)0.0061 (12)
C170.0476 (15)0.0644 (19)0.0603 (18)0.0055 (15)0.0090 (14)0.0134 (16)
C180.0742 (19)0.0536 (18)0.072 (2)0.0001 (17)0.0086 (16)0.0016 (15)
C190.0693 (18)0.0581 (18)0.0550 (17)0.0001 (16)0.0091 (15)0.0116 (14)
Geometric parameters (Å, º) top
Cl1—C171.717 (3)C8—H80.9800
C1—C21.534 (4)C9—C111.536 (3)
C1—C101.538 (3)C9—C101.543 (3)
C1—H110.9700C9—H90.9800
C1—H120.9700C10—C191.550 (3)
C2—C31.497 (4)C11—C121.533 (3)
C2—H210.9700C11—H1110.9700
C2—H220.9700C11—H1120.9700
C3—O11.457 (3)C12—C131.528 (3)
C3—C41.510 (3)C12—H1210.9700
C3—H30.9800C12—H1220.9700
O1—C311.335 (3)C13—C171.505 (4)
C31—O21.195 (3)C13—C141.536 (3)
C31—C321.494 (4)C13—C181.536 (4)
C32—H310.9600C14—C151.529 (3)
C32—H320.9600C14—H140.9800
C32—H330.9600C15—C161.500 (4)
C4—C51.514 (3)C15—H1510.9700
C4—H410.9700C15—H1520.9700
C4—H420.9700C16—C171.337 (4)
C5—C61.321 (3)C16—C1611.456 (4)
C5—C101.526 (3)C161—O31.197 (4)
C6—C71.496 (3)C161—H1610.9300
C6—H60.9300C18—H1810.9600
C7—C81.521 (3)C18—H1820.9600
C7—H710.9700C18—H1830.9600
C7—H720.9700C19—H1910.9600
C8—C141.511 (3)C19—H1920.9600
C8—C91.547 (3)C19—H1930.9600
C2—C1—C10115.3 (2)C5—C10—C1107.6 (2)
C2—C1—H11108.4C5—C10—C9110.59 (18)
C10—C1—H11108.4C1—C10—C9108.91 (19)
C2—C1—H12108.4C5—C10—C19108.12 (19)
C10—C1—H12108.4C1—C10—C19109.6 (2)
H11—C1—H12107.5C9—C10—C19111.9 (2)
C3—C2—C1110.4 (2)C12—C11—C9115.4 (2)
C3—C2—H21109.6C12—C11—H111108.4
C1—C2—H21109.6C9—C11—H111108.4
C3—C2—H22109.6C12—C11—H112108.4
C1—C2—H22109.6C9—C11—H112108.4
H21—C2—H22108.1H111—C11—H112107.5
O1—C3—C2106.54 (19)C13—C12—C11110.1 (2)
O1—C3—C4111.0 (2)C13—C12—H121109.6
C2—C3—C4111.1 (2)C11—C12—H121109.6
O1—C3—H3109.4C13—C12—H122109.6
C2—C3—H3109.4C11—C12—H122109.6
C4—C3—H3109.4H121—C12—H122108.2
C31—O1—C3117.7 (2)C17—C13—C12118.1 (2)
O2—C31—O1123.1 (3)C17—C13—C1498.6 (2)
O2—C31—C32125.7 (3)C12—C13—C14107.0 (2)
O1—C31—C32111.2 (3)C17—C13—C18107.0 (2)
C31—C32—H31109.5C12—C13—C18111.6 (2)
C31—C32—H32109.5C14—C13—C18114.1 (2)
H31—C32—H32109.5C8—C14—C15123.2 (2)
C31—C32—H33109.5C8—C14—C13113.4 (2)
H31—C32—H33109.5C15—C14—C13104.62 (19)
H32—C32—H33109.5C8—C14—H14104.6
C3—C4—C5111.6 (2)C15—C14—H14104.6
C3—C4—H41109.3C13—C14—H14104.6
C5—C4—H41109.3C16—C15—C14101.4 (2)
C3—C4—H42109.3C16—C15—H151111.5
C5—C4—H42109.3C14—C15—H151111.5
H41—C4—H42108.0C16—C15—H152111.5
C6—C5—C4120.6 (2)C14—C15—H152111.5
C6—C5—C10123.2 (2)H151—C15—H152109.3
C4—C5—C10116.2 (2)C17—C16—C161126.4 (3)
C5—C6—C7125.1 (2)C17—C16—C15109.6 (2)
C5—C6—H6117.5C161—C16—C15123.8 (3)
C7—C6—H6117.5O3—C161—C16124.6 (3)
C6—C7—C8112.84 (19)O3—C161—H161117.7
C6—C7—H71109.0C16—C161—H161117.7
C8—C7—H71109.0C16—C17—C13112.7 (2)
C6—C7—H72109.0C16—C17—Cl1125.8 (2)
C8—C7—H72109.0C13—C17—Cl1121.4 (2)
H71—C7—H72107.8C13—C18—H181109.5
C14—C8—C7111.24 (19)C13—C18—H182109.5
C14—C8—C9107.97 (18)H181—C18—H182109.5
C7—C8—C9110.06 (19)C13—C18—H183109.5
C14—C8—H8109.2H181—C18—H183109.5
C7—C8—H8109.2H182—C18—H183109.5
C9—C8—H8109.2C10—C19—H191109.5
C11—C9—C10113.4 (2)C10—C19—H192109.5
C11—C9—C8112.7 (2)H191—C19—H192109.5
C10—C9—C8112.83 (18)C10—C19—H193109.5
C11—C9—H9105.7H191—C19—H193109.5
C10—C9—H9105.7H192—C19—H193109.5
C8—C9—H9105.7
C10—C1—C2—C355.6 (3)C8—C9—C10—C1977.7 (3)
C1—C2—C3—O1177.1 (2)C10—C9—C11—C12176.9 (2)
C1—C2—C3—C456.1 (3)C8—C9—C11—C1247.2 (3)
C2—C3—O1—C31157.8 (2)C9—C11—C12—C1351.3 (3)
C4—C3—O1—C3181.1 (3)C11—C12—C13—C17167.1 (2)
C3—O1—C31—O21.5 (4)C11—C12—C13—C1457.2 (3)
C3—O1—C31—C32178.0 (3)C11—C12—C13—C1868.3 (3)
O1—C3—C4—C5173.50 (19)C7—C8—C14—C1550.8 (3)
C2—C3—C4—C555.2 (3)C9—C8—C14—C15171.6 (2)
C3—C4—C5—C6126.4 (3)C7—C8—C14—C13178.5 (2)
C3—C4—C5—C1053.1 (3)C9—C8—C14—C1360.6 (3)
C4—C5—C6—C7177.4 (2)C17—C13—C14—C8171.4 (2)
C10—C5—C6—C73.2 (4)C12—C13—C14—C865.6 (3)
C5—C6—C7—C812.8 (4)C18—C13—C14—C858.4 (3)
C6—C7—C8—C14162.0 (2)C17—C13—C14—C1534.5 (2)
C6—C7—C8—C942.4 (3)C12—C13—C14—C15157.5 (2)
C14—C8—C9—C1149.1 (3)C18—C13—C14—C1578.5 (3)
C7—C8—C9—C11170.7 (2)C8—C14—C15—C16164.5 (2)
C14—C8—C9—C10179.2 (2)C13—C14—C15—C1633.1 (3)
C7—C8—C9—C1059.2 (3)C14—C15—C16—C1718.1 (3)
C6—C5—C10—C1131.0 (3)C14—C15—C16—C161158.4 (3)
C4—C5—C10—C148.4 (3)C17—C16—C161—O3172.7 (3)
C6—C5—C10—C912.2 (3)C15—C16—C161—O33.2 (5)
C4—C5—C10—C9167.3 (2)C161—C16—C17—C13179.0 (3)
C6—C5—C10—C19110.6 (3)C15—C16—C17—C134.6 (3)
C4—C5—C10—C1969.9 (3)C161—C16—C17—Cl13.2 (4)
C2—C1—C10—C549.6 (3)C15—C16—C17—Cl1179.6 (2)
C2—C1—C10—C9169.5 (2)C12—C13—C17—C16139.3 (3)
C2—C1—C10—C1967.8 (3)C14—C13—C17—C1624.8 (3)
C11—C9—C10—C5172.6 (2)C18—C13—C17—C1693.8 (3)
C8—C9—C10—C542.9 (3)C12—C13—C17—Cl144.6 (3)
C11—C9—C10—C169.3 (3)C14—C13—C17—Cl1159.2 (2)
C8—C9—C10—C1161.0 (2)C18—C13—C17—Cl182.2 (3)
C11—C9—C10—C1952.0 (3)
(II) 17-chloro-androsta-5,16-dien-3β-yl acetate top
Crystal data top
C21H29ClO2F(000) = 752
Mr = 348.89Dx = 1.211 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4499 reflections
a = 6.0271 (2) Åθ = 2.4–19.2°
b = 15.4064 (6) ŵ = 0.21 mm1
c = 20.6081 (9) ÅT = 293 K
V = 1913.58 (13) Å3Prism, colourless
Z = 40.36 × 0.13 × 0.09 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
3615 independent reflections
Radiation source: fine-focus sealed tube2487 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
ϕ and ω scansθmax = 25.7°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 77
Tmin = 0.861, Tmax = 0.98k = 1818
35093 measured reflectionsl = 2525
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.165 w = 1/[σ2(Fo2) + (0.0733P)2 + 0.1121P]
where P = (Fo2 + 2Fc2)/3
S = 1.26(Δ/σ)max < 0.001
3615 reflectionsΔρmax = 0.42 e Å3
219 parametersΔρmin = 0.25 e Å3
0 restraintsAbsolute structure: Flack (1983), with 1496 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.14 (13)
Crystal data top
C21H29ClO2V = 1913.58 (13) Å3
Mr = 348.89Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.0271 (2) ŵ = 0.21 mm1
b = 15.4064 (6) ÅT = 293 K
c = 20.6081 (9) Å0.36 × 0.13 × 0.09 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
3615 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
2487 reflections with I > 2σ(I)
Tmin = 0.861, Tmax = 0.98Rint = 0.076
35093 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.165Δρmax = 0.42 e Å3
S = 1.26Δρmin = 0.25 e Å3
3615 reflectionsAbsolute structure: Flack (1983), with 1496 Friedel pairs
219 parametersAbsolute structure parameter: 0.14 (13)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.2582 (2)0.86349 (7)0.36536 (6)0.0872 (4)
O10.7517 (5)0.15522 (16)0.39783 (13)0.0808 (8)
C10.4533 (6)0.3690 (2)0.4171 (2)0.0631 (10)
H110.36400.39070.45280.076*
H120.36020.36810.37870.076*
C20.5249 (7)0.2760 (3)0.4327 (2)0.0707 (11)
H210.60370.27510.47370.085*
H220.39460.23950.43690.085*
C30.6730 (6)0.2408 (2)0.37979 (19)0.0646 (10)
H30.59070.23760.33880.078*
O20.4771 (13)0.0950 (5)0.3462 (4)0.103 (3)*0.504 (9)
C310.653 (2)0.0892 (6)0.3759 (4)0.069 (3)*0.504 (9)
C320.824 (2)0.0095 (6)0.3812 (5)0.077 (3)*0.504 (9)
H310.78740.03340.34920.116*0.504 (9)
H320.81420.01580.42370.116*0.504 (9)
H330.97210.03010.37390.116*0.504 (9)
O2'0.6819 (15)0.1018 (5)0.3057 (4)0.128 (4)*0.496 (9)
C31'0.7452 (18)0.0900 (6)0.3607 (5)0.064 (2)*0.496 (9)
C32'0.744 (2)0.0036 (6)0.3942 (5)0.071 (3)*0.496 (9)
H31'0.79780.04020.36500.106*0.496 (9)
H32'0.59550.01040.40730.106*0.496 (9)
H33'0.83830.00600.43170.106*0.496 (9)
C40.8747 (6)0.2988 (2)0.3717 (2)0.0647 (10)
H410.96340.29670.41100.078*
H420.96490.27730.33620.078*
C50.8094 (5)0.3915 (2)0.35818 (17)0.0522 (9)
C60.8875 (6)0.4341 (2)0.30731 (17)0.0587 (9)
H60.98140.40360.27970.070*
C70.8403 (6)0.5251 (2)0.29013 (17)0.0586 (9)
H710.74360.52630.25250.070*
H720.97800.55370.27840.070*
C80.7314 (5)0.5747 (2)0.34514 (15)0.0489 (8)
H80.84350.58930.37780.059*
C90.5495 (5)0.5174 (2)0.37662 (16)0.0487 (8)
H90.45280.49910.34090.058*
C100.6468 (5)0.4324 (2)0.40545 (16)0.0485 (8)
C110.3987 (6)0.5665 (2)0.42431 (18)0.0613 (10)
H1110.27200.53010.43440.074*
H1120.48010.57590.46430.074*
C120.3136 (6)0.6544 (2)0.39980 (19)0.0603 (9)
H1210.20770.64530.36500.072*
H1220.23850.68470.43480.072*
C130.5064 (5)0.7094 (2)0.37514 (16)0.0512 (8)
C140.6210 (5)0.6572 (2)0.32176 (15)0.0475 (8)
H140.50010.63740.29360.057*
C150.7441 (7)0.7262 (2)0.28149 (18)0.0639 (9)
H1510.88910.73900.29950.077*
H1520.76000.70850.23660.077*
C160.5877 (7)0.8022 (3)0.2883 (2)0.0686 (11)
H160.58580.85060.26130.082*
C170.4554 (6)0.7901 (3)0.33777 (19)0.0602 (10)
C180.6594 (6)0.7353 (2)0.43210 (18)0.0655 (10)
H1810.79200.76170.41540.098*
H1820.69780.68450.45660.098*
H1830.58360.77580.45970.098*
C190.7688 (7)0.4496 (2)0.47003 (16)0.0647 (10)
H1910.84630.39810.48320.097*
H1920.66290.46530.50280.097*
H1930.87300.49610.46430.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0749 (7)0.0736 (7)0.1132 (9)0.0154 (6)0.0010 (7)0.0005 (6)
O10.097 (2)0.0541 (15)0.0916 (19)0.0028 (17)0.0363 (18)0.0016 (14)
C10.0428 (19)0.065 (2)0.081 (3)0.0043 (17)0.0097 (18)0.015 (2)
C20.054 (2)0.069 (3)0.089 (3)0.008 (2)0.002 (2)0.017 (2)
C30.062 (2)0.061 (2)0.071 (2)0.0033 (18)0.017 (2)0.0060 (19)
C40.055 (2)0.069 (2)0.070 (2)0.0117 (19)0.005 (2)0.001 (2)
C50.0421 (18)0.060 (2)0.054 (2)0.0020 (15)0.0009 (16)0.0019 (17)
C60.052 (2)0.069 (2)0.055 (2)0.0034 (19)0.0085 (18)0.0078 (19)
C70.0483 (19)0.073 (2)0.055 (2)0.0045 (18)0.0120 (18)0.0016 (18)
C80.0397 (16)0.063 (2)0.0437 (17)0.0079 (17)0.0017 (15)0.0031 (15)
C90.0351 (16)0.061 (2)0.0499 (19)0.0009 (14)0.0029 (14)0.0026 (17)
C100.0356 (15)0.061 (2)0.0490 (18)0.0028 (15)0.0043 (15)0.0026 (16)
C110.0450 (19)0.067 (2)0.072 (2)0.0023 (18)0.0181 (18)0.006 (2)
C120.0440 (19)0.067 (2)0.070 (2)0.0007 (17)0.0138 (17)0.0011 (19)
C130.0431 (18)0.057 (2)0.053 (2)0.0062 (16)0.0008 (17)0.0023 (17)
C140.0423 (17)0.056 (2)0.0441 (18)0.0072 (16)0.0052 (15)0.0001 (16)
C150.063 (2)0.070 (2)0.059 (2)0.009 (2)0.004 (2)0.0082 (18)
C160.075 (3)0.064 (3)0.067 (3)0.010 (2)0.005 (2)0.009 (2)
C170.052 (2)0.057 (2)0.071 (3)0.0007 (17)0.010 (2)0.0067 (19)
C180.056 (2)0.080 (3)0.060 (2)0.0017 (19)0.0089 (19)0.010 (2)
C190.058 (2)0.080 (2)0.056 (2)0.007 (2)0.0002 (19)0.0001 (18)
Geometric parameters (Å, º) top
Cl1—C171.736 (4)C7—H710.9700
O1—C311.262 (10)C7—H720.9700
O1—C31'1.264 (9)C8—C141.513 (5)
O1—C31.450 (4)C8—C91.550 (4)
C1—C21.530 (5)C8—H80.9800
C1—C101.540 (4)C9—C111.538 (4)
C1—H110.9700C9—C101.553 (5)
C1—H120.9700C9—H90.9800
C2—C31.510 (6)C10—C191.544 (5)
C2—H210.9700C11—C121.533 (5)
C2—H220.9700C11—H1110.9700
C3—C41.518 (6)C11—H1120.9700
C3—H30.9800C12—C131.526 (5)
O2—C311.228 (11)C12—H1210.9700
C31—C321.606 (14)C12—H1220.9700
C32—H310.9600C13—C171.494 (5)
C32—H320.9600C13—C141.528 (5)
C32—H330.9600C13—C181.545 (5)
O2'—C31'1.209 (10)C14—C151.539 (4)
C31'—C32'1.500 (13)C14—H140.9800
C32'—H31'0.9600C15—C161.510 (5)
C32'—H32'0.9600C15—H1510.9700
C32'—H33'0.9600C15—H1520.9700
C4—C51.506 (5)C16—C171.307 (5)
C4—H410.9700C16—H160.9300
C4—H420.9700C18—H1810.9600
C5—C61.324 (5)C18—H1820.9600
C5—C101.519 (5)C18—H1830.9600
C6—C71.474 (5)C19—H1910.9600
C6—H60.9300C19—H1920.9600
C7—C81.517 (5)C19—H1930.9600
C31—O1—C3119.2 (5)C8—C9—C10111.9 (2)
C31'—O1—C3123.9 (5)C11—C9—H9105.7
C2—C1—C10114.4 (3)C8—C9—H9105.7
C2—C1—H11108.7C10—C9—H9105.7
C10—C1—H11108.7C5—C10—C1109.0 (3)
C2—C1—H12108.7C5—C10—C19108.5 (3)
C10—C1—H12108.7C1—C10—C19109.6 (3)
H11—C1—H12107.6C5—C10—C9110.4 (3)
C3—C2—C1110.6 (3)C1—C10—C9108.0 (3)
C3—C2—H21109.5C19—C10—C9111.4 (3)
C1—C2—H21109.5C12—C11—C9115.0 (3)
C3—C2—H22109.5C12—C11—H111108.5
C1—C2—H22109.5C9—C11—H111108.5
H21—C2—H22108.1C12—C11—H112108.5
O1—C3—C2109.6 (3)C9—C11—H112108.5
O1—C3—C4107.5 (3)H111—C11—H112107.5
C2—C3—C4110.0 (3)C13—C12—C11110.2 (3)
O1—C3—H3109.9C13—C12—H121109.6
C2—C3—H3109.9C11—C12—H121109.6
C4—C3—H3109.9C13—C12—H122109.6
O2—C31—O1121.8 (8)C11—C12—H122109.6
O2—C31—C32130.0 (8)H121—C12—H122108.1
O1—C31—C32106.9 (9)C17—C13—C12118.5 (3)
O2'—C31'—O1117.2 (8)C17—C13—C1499.2 (3)
O2'—C31'—C32'124.3 (8)C12—C13—C14106.9 (3)
O1—C31'—C32'115.3 (8)C17—C13—C18107.5 (3)
C31'—C32'—H31'109.5C12—C13—C18110.2 (3)
C31'—C32'—H32'109.5C14—C13—C18114.4 (3)
H31'—C32'—H32'109.5C8—C14—C13114.3 (3)
C31'—C32'—H33'109.5C8—C14—C15122.7 (3)
H31'—C32'—H33'109.5C13—C14—C15104.0 (3)
H32'—C32'—H33'109.5C8—C14—H14104.7
C5—C4—C3111.6 (3)C13—C14—H14104.7
C5—C4—H41109.3C15—C14—H14104.7
C3—C4—H41109.3C16—C15—C14100.6 (3)
C5—C4—H42109.3C16—C15—H151111.6
C3—C4—H42109.3C14—C15—H151111.6
H41—C4—H42108.0C16—C15—H152111.6
C6—C5—C4121.6 (3)C14—C15—H152111.6
C6—C5—C10122.1 (3)H151—C15—H152109.4
C4—C5—C10116.3 (3)C17—C16—C15110.0 (3)
C5—C6—C7126.4 (3)C17—C16—H16125.0
C5—C6—H6116.8C15—C16—H16125.0
C7—C6—H6116.8C16—C17—C13113.3 (3)
C6—C7—C8112.6 (3)C16—C17—Cl1125.4 (3)
C6—C7—H71109.1C13—C17—Cl1120.9 (3)
C8—C7—H71109.1C13—C18—H181109.5
C6—C7—H72109.1C13—C18—H182109.5
C8—C7—H72109.1H181—C18—H182109.5
H71—C7—H72107.8C13—C18—H183109.5
C14—C8—C7112.1 (3)H181—C18—H183109.5
C14—C8—C9107.5 (3)H182—C18—H183109.5
C7—C8—C9109.4 (3)C10—C19—H191109.5
C14—C8—H8109.3C10—C19—H192109.5
C7—C8—H8109.3H191—C19—H192109.5
C9—C8—H8109.3C10—C19—H193109.5
C11—C9—C8113.9 (3)H191—C19—H193109.5
C11—C9—C10113.2 (3)H192—C19—H193109.5
C10—C1—C2—C355.9 (5)C2—C1—C10—C1970.1 (4)
C31—O1—C3—C297.4 (7)C2—C1—C10—C9168.4 (3)
C31'—O1—C3—C2131.4 (7)C11—C9—C10—C5175.0 (3)
C31—O1—C3—C4143.1 (7)C8—C9—C10—C544.7 (4)
C31'—O1—C3—C4109.1 (7)C11—C9—C10—C165.9 (4)
C1—C2—C3—O1175.8 (3)C8—C9—C10—C1163.7 (3)
C1—C2—C3—C457.8 (4)C11—C9—C10—C1954.4 (4)
C31'—O1—C31—O2117.0 (18)C8—C9—C10—C1975.9 (3)
C3—O1—C31—O28.9 (13)C8—C9—C11—C1246.1 (4)
C31'—O1—C31—C3251.1 (13)C10—C9—C11—C12175.4 (3)
C3—O1—C31—C32159.2 (6)C9—C11—C12—C1351.0 (4)
C31—O1—C31'—O2'94.8 (16)C11—C12—C13—C17168.5 (3)
C3—O1—C31'—O2'4.7 (14)C11—C12—C13—C1457.7 (4)
C31—O1—C31'—C32'65.9 (15)C11—C12—C13—C1867.2 (4)
C3—O1—C31'—C32'156.0 (8)C7—C8—C14—C13179.4 (3)
O1—C3—C4—C5175.4 (3)C9—C8—C14—C1359.2 (3)
C2—C3—C4—C556.1 (4)C7—C8—C14—C1553.3 (4)
C3—C4—C5—C6126.5 (4)C9—C8—C14—C15173.5 (3)
C3—C4—C5—C1052.6 (4)C17—C13—C14—C8170.6 (3)
C4—C5—C6—C7178.3 (3)C12—C13—C14—C865.8 (3)
C10—C5—C6—C72.7 (5)C18—C13—C14—C856.5 (4)
C5—C6—C7—C813.2 (5)C17—C13—C14—C1534.2 (3)
C6—C7—C8—C14162.5 (3)C12—C13—C14—C15157.9 (3)
C6—C7—C8—C943.4 (4)C18—C13—C14—C1579.8 (3)
C14—C8—C9—C1147.3 (4)C8—C14—C15—C16164.3 (3)
C7—C8—C9—C11169.2 (3)C13—C14—C15—C1632.7 (3)
C14—C8—C9—C10177.3 (3)C14—C15—C16—C1718.4 (4)
C7—C8—C9—C1060.8 (3)C15—C16—C17—C134.0 (4)
C6—C5—C10—C1131.9 (3)C15—C16—C17—Cl1176.9 (3)
C4—C5—C10—C147.2 (4)C12—C13—C17—C16139.6 (4)
C6—C5—C10—C19108.9 (4)C14—C13—C17—C1624.6 (4)
C4—C5—C10—C1972.1 (4)C18—C13—C17—C1694.7 (4)
C6—C5—C10—C913.5 (4)C12—C13—C17—Cl147.1 (4)
C4—C5—C10—C9165.6 (3)C14—C13—C17—Cl1162.1 (2)
C2—C1—C10—C548.5 (4)C18—C13—C17—Cl178.5 (3)

Experimental details

(I)(II)
Crystal data
Chemical formulaC22H29ClO3C21H29ClO2
Mr376.90348.89
Crystal system, space groupOrthorhombic, P212121Orthorhombic, P212121
Temperature (K)293293
a, b, c (Å)6.0689 (2), 13.2879 (4), 24.7664 (8)6.0271 (2), 15.4064 (6), 20.6081 (9)
V3)1997.24 (11)1913.58 (13)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.210.21
Crystal size (mm)0.42 × 0.17 × 0.090.36 × 0.13 × 0.09
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Bruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Multi-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.863, 0.980.861, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
38455, 3757, 2563 35093, 3615, 2487
Rint0.0840.076
(sin θ/λ)max1)0.6090.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.105, 1.03 0.063, 0.165, 1.26
No. of reflections37573615
No. of parameters238219
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.230.42, 0.25
Absolute structureFlack (1983), with 1551 Friedel pairsFlack (1983), with 1496 Friedel pairs
Absolute structure parameter0.02 (10)0.14 (13)

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds