Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, [Zr(C16H13P)Cl2], the geometry at the metal atom is distorted tetra­hedral; the Cl—Zr—Cl angle is 101.490 (16)° and the cyclo­penta­dienyl (Cp) centroids subtend an angle of 122.63 (3)° at the Zr atom. The P atom lies 0.474 (3) and 0.496 (3) Å out of the planes of the Cp rings. The C—P—C angle of 91.42 (7)° reflects the pincer effect of the two Cp rings. Three C—H...Cl, one C—H...P, one C—H...π and one Cl...P inter­action link the mol­ecules to form thick layers parallel to the bc plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110004531/gd3332sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110004531/gd3332Isup2.hkl
Contains datablock I

CCDC reference: 774073

Comment top

Phosphorus-bridged ansa-metallocenes have attracted considerable interest as precursors for olefin polymerization catalysts. Anderson & Lin (1987, 1988) reported the synthesis of the title ansa-compound [PhP(η5-C5H4)2]ZrCl2, (I). We are interested in novel donor-functionalized cycloheptatrienyl–cyclopentadienyl zirconium sandwich compounds, using zirconocenes as starting materials (Büschel et al., 2009; Tamm, 2008; Tamm et al., 2010). During these studies, we accidentally obtained single crystals of (I) that were suitable for X-ray diffraction studies. The molecular structure of (I) in the solid state is shown in Fig. 1.

The two Cl ligands and the centroids of the two cyclopentadienyl (Cp) ligands in (I) adopt a distorted tetrahedral arrangement about the Zr atom, arising from the presence of a PhP moiety as the bridging unit between the two carbocyclic fragments. The angle α subtended by the Cp centroids at the metal atom is 122.63 (3)°. The angle β between the Cp ring normals is 116.3 (1)°, resulting in a value of 3.2° for the tilt angle γ [γ = (α-β)/2; the angles α, β and γ, which describe the bending of the ansa-zirconocene compound in more detail, are defined graphically in the second scheme, taken from Shin et al. (1999)]. As the tilt angle increases, the metal atom is displaced further towards the ansa bridge. The Cl1—Zr—Cl2 angle is 101.49 (2)°, and the Zr—Cl bond lengths are 2.4224 (4) and 2.4316 (4) Å. The deviation from a symmetric η5-coordination towards an η3-coordination mode, associated with the tilting, is indicated by a range of 0.111 Å for the individual Zr—CCp bond lengths [2.454 (1)–2.565 (1) Å]. Distortion involving the P atom is also observed; it lies 0.474 (3) Å out of the plane of the ring C1–C5 and 0.496 (3) Å out of the plane of the ring C6–C10. The C6—P1—C1 angle, at 91.42 (7)°, is considerably narrowed by the pincer effect of the two Cp rings [C11—P1—C6 = 106.40 (8) and C11—P1—C1 = 100.40 (8)°].

Table 3 collates related data for the compounds [PhP(C5Me4)2]ZrCl2, (II) (Shin et al., 1999), and [MeP(C5H4)2]ZrCl2, (III) (Häp et al., 1999). The closely related compound [MeP(C5Me4)2]ZrCl2 (Shin et al., 1999) must be omitted from a detailed comparison because it suffers from disorder. Inspection of the Supplementary Material reveals that the reported space group is C2/c, with the Zr and P atoms lying on a twofold axis, and the methyl C atom is therefore disordered over two sites; the CCp—P—CCp angle seems improbably large at 107.8°. For comparison with systems lacking the bridging atom, the compound Cp2ZrCl2, (IV), may be used, but the structure suffers somewhat from high U values (Corey et al., 1995) of the Cp rings. Some more recent redeterminations at lower temperature can be found in the Cambridge Structural Database (Version?; Allen, 2002), but suffer from various imperfections such as a lack of s.u. values. The complex Cp*2ZrCl2, (V) (Böhme & Rittmeister, 1998), is also adduced.

Table 3 indicates that the β angles are almost identical for all three compounds (I)–(III), so that the relative disposition of the Cp rings is also closely similar. Indeed, all three bending angles are very similar in (I) and (III). However, the α angle is significantly smaller in (I) than in (II), necessarily leading to a more pronounced tilting. The γ angle is largest for (II), also reflected in a larger deviation of (II) from a symmetric η5-coordination towards an η3-coordination mode [the range of Zr—CCp for (II) is 0.173 Å]. The Cl1—Zr—Cl2 angle in (I) [101.49 (2)°] is appreciably larger than that in (III), perhaps reflecting the differing spatial demands of methyl and phenyl groups at P, but the Zr—Cl bond lengths of both compounds are similar.

The unbridged complexes (IV) and (V), as expected, display larger values of α and (especially) β, somewhat lower Cl—Zr—Cl bond angles and a smaller range of Zr—CCp bond lengths, corresponding to more symmetric coordination of the Cp rings.

As would be expected, there are no unusually short intermolecular contacts in (I). Four weak hydrogen bonds are given in Table 1, of which we regard the H3···P1 interaction as borderline. There is also a C—H···π contact to the centroid of the phenyl ring, and finally a short Cl1···P1iii contact of 3.506 (1) Å (symmetry code as in Table 1). The molecules are connected by all these interactions to form thick layers parallel to the bc plane at x 1/4 and 3/4. However, the general view of such a layer is too complex to be useful. We therefore present two separate packing diagrams. Fig. 2 shows that the three H···Cl contacts link the molecules to form double chains parallel to the b axis, whereas the other three contacts (Fig. 3) form chains parallel to the c axis.

Experimental top

The ansa-zirconocene, (I), first synthesized by Anderson & Lin (1987, 1988), was obtained as a by-product during the attempted synthesis of a P-functionalized zirconocene. In a Schlenk flask were placed (LiC5H4)2PPh (303 mg, 1.2 mmol) and ZrCl4 (565 mg, 2.4 mmol; 2 equivalents). Toluene (60 ml) was added and the mixture was cooled to 213 K, followed by the addition of tetrahydrofuran (1 ml). After warming to room temperature overnight, the yellow suspension was filtered through a plug of Celite. The solvent was removed in vacuo until approximately 3 ml remained. A yellow solid precipitated and was filtered off. The filtrate was cooled to 248 K. After 2 d, yellow crystals of (I) suitable for X-ray diffraction analysis were obtained.

Refinement top

H atoms were introduced at calculated positions and refined using a riding model, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecule of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Packing diagrams for (I). (a) The three C—H···Cl contacts (thin dashed lines) connect the molecules to form double chains parallel to the b axis. The origin is at the bottom right, the c axis out of paper, the a axis vertical and the c axis from right to left. (b) The three contacts C—H···P, C—H···π and Cl1···P (thin dashed lines) connect the molecules to form chains parallel to the c axis. The origin is at the bottom left, the b axis out of paper and the c axis from left to right. For the sake of clarity, H atoms not involved in the motifs shown have been omitted. Symmetry codes as in Table 1.
[bis(η5-cyclopentadienyl)phenylphosphine]dichloridozirconium(IV) top
Crystal data top
[ZrCl2(C16H13P)]F(000) = 1584
Mr = 398.35Dx = 1.742 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 27.2712 (6) ÅCell parameters from 12715 reflections
b = 7.3272 (2) Åθ = 2.8–32.4°
c = 15.4592 (3) ŵ = 1.17 mm1
β = 100.389 (2)°T = 100 K
V = 3038.44 (12) Å3Prism, colourless
Z = 80.16 × 0.10 × 0.07 mm
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
4641 independent reflections
Radiation source: Enhance (Mo) X-ray Source3627 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 16.1057 pixels mm-1θmax = 30.5°, θmin = 2.8°
ω scansh = 3838
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1010
Tmin = 0.970, Tmax = 1.000l = 2221
31688 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.053H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.0277P)2]
where P = (Fo2 + 2Fc2)/3
4641 reflections(Δ/σ)max = 0.002
181 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[ZrCl2(C16H13P)]V = 3038.44 (12) Å3
Mr = 398.35Z = 8
Monoclinic, C2/cMo Kα radiation
a = 27.2712 (6) ŵ = 1.17 mm1
b = 7.3272 (2) ÅT = 100 K
c = 15.4592 (3) Å0.16 × 0.10 × 0.07 mm
β = 100.389 (2)°
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
4641 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
3627 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 1.000Rint = 0.050
31688 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.053H-atom parameters constrained
S = 0.91Δρmax = 0.50 e Å3
4641 reflectionsΔρmin = 0.31 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

25.8611 (0.0075) x + 1.3403 (0.0062) y + 1.3004 (0.0135) z = 12.3858 (0.0059)

* 0.0096 (0.0010) C1 * −0.0135 (0.0010) C2 * 0.0123 (0.0010) C3 * −0.0061 (0.0011) C4 * −0.0023 (0.0011) C5 − 2.1966 (0.0007) Zr1 − 0.4739 (0.0027) P1

Rms deviation of fitted atoms = 0.0097

− 19.0976 (0.0170) x + 2.0586 (0.0060) y + 11.9310 (0.0086) z = 3.5400 (0.0106)

Angle to previous plane (with approximate e.s.d.) = 63.74 (0.06)

* 0.0081 (0.0010) C6 * −0.0115 (0.0011) C7 * 0.0106 (0.0011) C8 * −0.0055 (0.0011) C9 * −0.0017 (0.0010) C10 − 2.1894 (0.0008) Zr1 − 0.4960 (0.0027) P1

Rms deviation of fitted atoms = 0.0083

Distance CONT

3.5063 (0.0006) Cl1 - P1_$3

Operators for generating equivalent atoms:

$3 x, −y + 1, z − 1/2

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zr10.343302 (6)0.40253 (2)0.593256 (11)0.01089 (4)
Cl10.311868 (16)0.52983 (6)0.44932 (3)0.01723 (9)
Cl20.331694 (17)0.07750 (6)0.56503 (3)0.02140 (10)
P10.394476 (16)0.49951 (6)0.80037 (3)0.01261 (9)
C10.41940 (6)0.4781 (2)0.69852 (11)0.0138 (3)
C20.41536 (6)0.6073 (2)0.62811 (11)0.0150 (3)
H20.40760.73320.63150.018*
C30.42492 (6)0.5150 (2)0.55278 (12)0.0173 (4)
H30.42590.56920.49730.021*
C40.43270 (6)0.3310 (3)0.57351 (12)0.0182 (4)
H40.43900.23770.53430.022*
C50.42957 (6)0.3074 (2)0.66300 (11)0.0166 (4)
H50.43360.19520.69420.020*
C60.33057 (6)0.5059 (2)0.73923 (11)0.0130 (3)
C70.30706 (6)0.6376 (2)0.67723 (11)0.0147 (3)
H70.31800.75950.67160.018*
C80.26475 (7)0.5552 (2)0.62557 (12)0.0189 (4)
H80.24170.61320.58050.023*
C90.26274 (6)0.3730 (2)0.65244 (12)0.0194 (4)
H90.23850.28530.62790.023*
C100.30280 (6)0.3429 (2)0.72208 (11)0.0157 (3)
H100.31000.23090.75270.019*
C110.41145 (6)0.7339 (2)0.83000 (11)0.0131 (3)
C120.46219 (6)0.7738 (2)0.84183 (12)0.0168 (4)
H120.48470.68500.82710.020*
C130.48011 (7)0.9409 (2)0.87474 (13)0.0202 (4)
H130.51470.96690.88240.024*
C140.44741 (7)1.0706 (2)0.89662 (13)0.0196 (4)
H140.45961.18580.91900.023*
C150.39714 (7)1.0323 (2)0.88585 (12)0.0183 (4)
H150.37481.12110.90130.022*
C160.37891 (6)0.8640 (2)0.85247 (11)0.0152 (3)
H160.34430.83820.84510.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zr10.01094 (7)0.01250 (8)0.00932 (8)0.00147 (6)0.00203 (5)0.00046 (6)
Cl10.0177 (2)0.0213 (2)0.0122 (2)0.00031 (16)0.00143 (16)0.00273 (16)
Cl20.0277 (2)0.0145 (2)0.0231 (2)0.00373 (17)0.00733 (18)0.00210 (17)
P10.0142 (2)0.0132 (2)0.0102 (2)0.00007 (16)0.00129 (16)0.00038 (16)
C10.0088 (7)0.0192 (8)0.0127 (8)0.0015 (6)0.0004 (6)0.0023 (7)
C20.0120 (7)0.0181 (8)0.0149 (8)0.0035 (7)0.0024 (6)0.0011 (7)
C30.0121 (8)0.0279 (10)0.0128 (8)0.0049 (7)0.0044 (7)0.0003 (7)
C40.0134 (8)0.0257 (9)0.0158 (9)0.0033 (7)0.0031 (7)0.0055 (8)
C50.0119 (8)0.0202 (9)0.0168 (9)0.0040 (7)0.0002 (7)0.0025 (7)
C60.0125 (8)0.0163 (8)0.0111 (8)0.0017 (6)0.0046 (6)0.0028 (6)
C70.0151 (8)0.0147 (8)0.0149 (8)0.0018 (6)0.0040 (7)0.0022 (6)
C80.0129 (8)0.0270 (10)0.0166 (9)0.0045 (7)0.0018 (7)0.0031 (7)
C90.0134 (8)0.0267 (10)0.0197 (9)0.0061 (7)0.0073 (7)0.0077 (7)
C100.0182 (8)0.0172 (8)0.0137 (8)0.0042 (7)0.0083 (7)0.0004 (7)
C110.0164 (8)0.0145 (8)0.0080 (8)0.0011 (6)0.0016 (6)0.0001 (6)
C120.0143 (8)0.0177 (8)0.0183 (9)0.0016 (7)0.0027 (7)0.0037 (7)
C130.0151 (8)0.0216 (9)0.0237 (10)0.0042 (7)0.0027 (7)0.0023 (7)
C140.0223 (9)0.0136 (8)0.0222 (10)0.0017 (7)0.0025 (8)0.0012 (7)
C150.0213 (9)0.0139 (8)0.0207 (10)0.0027 (7)0.0063 (7)0.0007 (7)
C160.0140 (8)0.0169 (8)0.0151 (9)0.0003 (6)0.0034 (7)0.0005 (7)
Geometric parameters (Å, º) top
Zr1—Cl12.4224 (4)C7—C81.415 (2)
Zr1—Cl22.4316 (4)C8—C91.402 (3)
Zr1—C22.4538 (16)C9—C101.406 (3)
Zr1—C12.4585 (17)C11—C161.388 (2)
Zr1—C62.4635 (16)C11—C121.393 (2)
Zr1—C72.4681 (16)C12—C131.381 (2)
Zr1—C102.4842 (16)C13—C141.386 (2)
Zr1—C52.5037 (16)C14—C151.380 (3)
Zr1—C92.5368 (17)C15—C161.393 (2)
Zr1—C82.5448 (17)C2—H20.9500
Zr1—C32.5550 (16)C3—H30.9500
Zr1—C42.5653 (17)C4—H40.9500
P1—C111.8161 (17)C5—H50.9500
P1—C61.8273 (17)C7—H70.9500
P1—C11.8308 (18)C8—H80.9500
C1—C51.413 (2)C9—H90.9500
C1—C21.432 (2)C10—H100.9500
C2—C31.411 (2)C12—H120.9500
C3—C41.393 (3)C13—H130.9500
C4—C51.412 (2)C14—H140.9500
C6—C101.414 (2)C15—H150.9500
C6—C71.428 (2)C16—H160.9500
Cl1—Zr1—Cl2101.490 (16)P1—C1—Zr1100.87 (7)
Cl1—Zr1—C295.91 (4)C3—C2—C1108.08 (15)
Cl2—Zr1—C2135.36 (4)C3—C2—Zr177.62 (10)
Cl1—Zr1—C1129.64 (4)C1—C2—Zr173.23 (9)
Cl2—Zr1—C1113.98 (4)C4—C3—C2108.48 (16)
C2—Zr1—C133.89 (6)C4—C3—Zr174.61 (10)
Cl1—Zr1—C6129.65 (4)C2—C3—Zr169.73 (9)
Cl2—Zr1—C6115.48 (4)C3—C4—C5108.07 (16)
C2—Zr1—C681.40 (5)C3—C4—Zr173.80 (10)
C1—Zr1—C664.28 (5)C5—C4—Zr171.44 (9)
Cl1—Zr1—C796.06 (4)C4—C5—C1108.85 (16)
Cl2—Zr1—C7136.59 (4)C4—C5—Zr176.24 (10)
C2—Zr1—C780.71 (6)C1—C5—Zr171.70 (9)
C1—Zr1—C782.24 (6)C10—C6—C7106.54 (15)
C6—Zr1—C733.67 (6)C10—C6—P1120.28 (13)
Cl1—Zr1—C10132.01 (4)C7—C6—P1129.44 (13)
Cl2—Zr1—C1084.79 (4)C10—C6—Zr174.20 (9)
C2—Zr1—C10112.70 (6)C7—C6—Zr173.34 (9)
C1—Zr1—C1087.33 (6)P1—C6—Zr1100.79 (7)
C6—Zr1—C1033.20 (5)C8—C7—C6108.20 (15)
C7—Zr1—C1054.76 (6)C8—C7—Zr176.62 (10)
Cl1—Zr1—C5130.70 (4)C6—C7—Zr172.99 (9)
Cl2—Zr1—C583.48 (4)C9—C8—C7108.08 (16)
C2—Zr1—C554.73 (6)C9—C8—Zr173.67 (10)
C1—Zr1—C533.08 (5)C7—C8—Zr170.65 (10)
C6—Zr1—C588.16 (6)C8—C9—C10108.07 (16)
C7—Zr1—C5113.71 (6)C8—C9—Zr174.30 (10)
C10—Zr1—C597.18 (6)C10—C9—Zr171.69 (9)
Cl1—Zr1—C9100.26 (5)C9—C10—C6109.07 (16)
Cl2—Zr1—C983.58 (4)C9—C10—Zr175.81 (10)
C2—Zr1—C9133.17 (6)C6—C10—Zr172.60 (9)
C1—Zr1—C9117.58 (6)C16—C11—C12119.20 (15)
C6—Zr1—C954.66 (6)C16—C11—P1124.52 (13)
C7—Zr1—C954.18 (6)C12—C11—P1115.67 (12)
C10—Zr1—C932.50 (6)C13—C12—C11120.75 (16)
C5—Zr1—C9128.95 (6)C12—C13—C14119.81 (17)
Cl1—Zr1—C880.80 (4)C15—C14—C13120.01 (16)
Cl2—Zr1—C8112.26 (4)C14—C15—C16120.34 (16)
C2—Zr1—C8110.93 (6)C11—C16—C15119.90 (16)
C1—Zr1—C8114.27 (6)C3—C2—H2126.0
C6—Zr1—C854.71 (6)C1—C2—H2126.0
C7—Zr1—C832.74 (6)Zr1—C2—H2115.3
C10—Zr1—C853.72 (6)C4—C3—H3125.8
C5—Zr1—C8142.82 (6)C2—C3—H3125.8
C9—Zr1—C832.03 (6)Zr1—C3—H3121.6
Cl1—Zr1—C380.23 (4)C3—C4—H4126.0
Cl2—Zr1—C3111.29 (4)C5—C4—H4126.0
C2—Zr1—C332.65 (5)Zr1—C4—H4120.6
C1—Zr1—C354.60 (6)C4—C5—H5125.6
C6—Zr1—C3113.46 (6)C1—C5—H5125.6
C7—Zr1—C3110.66 (6)Zr1—C5—H5118.3
C10—Zr1—C3141.83 (6)C8—C7—H7125.9
C5—Zr1—C353.33 (6)C6—C7—H7125.9
C9—Zr1—C3164.84 (6)Zr1—C7—H7116.5
C8—Zr1—C3135.04 (6)C9—C8—H8126.0
Cl1—Zr1—C498.97 (4)C7—C8—H8126.0
Cl2—Zr1—C482.78 (4)Zr1—C8—H8121.4
C2—Zr1—C453.87 (6)C8—C9—H9126.0
C1—Zr1—C454.39 (6)C10—C9—H9126.0
C6—Zr1—C4117.76 (6)Zr1—C9—H9119.9
C7—Zr1—C4133.19 (6)C9—C10—H10125.5
C10—Zr1—C4128.98 (6)C6—C10—H10125.5
C5—Zr1—C432.32 (6)Zr1—C10—H10118.0
C9—Zr1—C4158.28 (6)C13—C12—H12119.6
C8—Zr1—C4164.78 (6)C11—C12—H12119.6
C3—Zr1—C431.58 (6)C12—C13—H13120.1
C11—P1—C6106.40 (8)C14—C13—H13120.1
C11—P1—C1100.40 (8)C15—C14—H14120.0
C6—P1—C191.42 (7)C13—C14—H14120.0
C5—C1—C2106.46 (15)C14—C15—H15119.8
C5—C1—P1122.63 (13)C16—C15—H15119.8
C2—C1—P1127.41 (13)C11—C16—H16120.1
C5—C1—Zr175.22 (10)C15—C16—H16120.1
C2—C1—Zr172.88 (9)
C11—P1—C1—C5160.05 (14)Cl1—Zr1—C6—C10108.73 (10)
C6—P1—C1—C592.99 (15)Cl2—Zr1—C6—C1024.23 (11)
C11—P1—C1—C243.98 (16)C2—Zr1—C6—C10160.70 (11)
C6—P1—C1—C262.98 (16)C1—Zr1—C6—C10129.91 (12)
C11—P1—C1—Zr1120.64 (7)C7—Zr1—C6—C10113.17 (14)
C6—P1—C1—Zr113.69 (8)C5—Zr1—C6—C10106.11 (11)
Cl1—Zr1—C1—C5106.25 (10)C9—Zr1—C6—C1036.44 (10)
Cl2—Zr1—C1—C524.42 (11)C8—Zr1—C6—C1075.97 (11)
C2—Zr1—C1—C5112.83 (14)C3—Zr1—C6—C10154.41 (10)
C6—Zr1—C1—C5132.38 (11)C4—Zr1—C6—C10119.59 (11)
C7—Zr1—C1—C5162.30 (11)Cl1—Zr1—C6—C74.44 (11)
C10—Zr1—C1—C5107.51 (11)Cl2—Zr1—C6—C7137.40 (9)
C9—Zr1—C1—C5119.83 (10)C2—Zr1—C6—C786.13 (10)
C8—Zr1—C1—C5155.38 (10)C1—Zr1—C6—C7116.92 (11)
C3—Zr1—C1—C575.44 (11)C10—Zr1—C6—C7113.17 (14)
C4—Zr1—C1—C536.39 (10)C5—Zr1—C6—C7140.71 (10)
Cl1—Zr1—C1—C26.58 (12)C9—Zr1—C6—C776.74 (11)
Cl2—Zr1—C1—C2137.25 (9)C8—Zr1—C6—C737.21 (9)
C6—Zr1—C1—C2114.80 (11)C3—Zr1—C6—C792.42 (10)
C7—Zr1—C1—C284.87 (10)C4—Zr1—C6—C7127.23 (10)
C10—Zr1—C1—C2139.66 (10)Cl1—Zr1—C6—P1132.61 (5)
C5—Zr1—C1—C2112.83 (14)Cl2—Zr1—C6—P194.43 (6)
C9—Zr1—C1—C2127.34 (10)C2—Zr1—C6—P142.04 (7)
C8—Zr1—C1—C291.80 (10)C1—Zr1—C6—P111.25 (6)
C3—Zr1—C1—C237.38 (9)C7—Zr1—C6—P1128.17 (13)
C4—Zr1—C1—C276.44 (11)C10—Zr1—C6—P1118.66 (13)
Cl1—Zr1—C1—P1132.61 (5)C5—Zr1—C6—P112.54 (7)
Cl2—Zr1—C1—P196.72 (7)C9—Zr1—C6—P1155.10 (10)
C2—Zr1—C1—P1126.03 (13)C8—Zr1—C6—P1165.38 (10)
C6—Zr1—C1—P111.23 (6)C3—Zr1—C6—P135.75 (9)
C7—Zr1—C1—P141.16 (7)C4—Zr1—C6—P10.94 (9)
C10—Zr1—C1—P113.63 (7)C10—C6—C7—C81.85 (19)
C5—Zr1—C1—P1121.14 (13)P1—C6—C7—C8159.58 (14)
C9—Zr1—C1—P11.32 (10)Zr1—C6—C7—C869.19 (12)
C8—Zr1—C1—P134.23 (9)C10—C6—C7—Zr167.34 (11)
C3—Zr1—C1—P1163.41 (10)P1—C6—C7—Zr190.39 (14)
C4—Zr1—C1—P1157.53 (10)Cl1—Zr1—C7—C862.46 (10)
C5—C1—C2—C32.18 (18)Cl2—Zr1—C7—C851.35 (13)
P1—C1—C2—C3161.23 (13)C2—Zr1—C7—C8157.48 (11)
Zr1—C1—C2—C370.50 (12)C1—Zr1—C7—C8168.27 (11)
C5—C1—C2—Zr168.32 (11)C6—Zr1—C7—C8114.11 (15)
P1—C1—C2—Zr190.73 (13)C10—Zr1—C7—C876.06 (11)
Cl1—Zr1—C2—C361.46 (10)C5—Zr1—C7—C8157.83 (10)
Cl2—Zr1—C2—C351.48 (12)C9—Zr1—C7—C835.84 (10)
C1—Zr1—C2—C3113.45 (14)C3—Zr1—C7—C8144.28 (10)
C6—Zr1—C2—C3169.26 (11)C4—Zr1—C7—C8170.79 (10)
C7—Zr1—C2—C3156.66 (11)Cl1—Zr1—C7—C6176.56 (9)
C10—Zr1—C2—C3157.94 (10)Cl2—Zr1—C7—C662.76 (11)
C5—Zr1—C2—C375.41 (11)C2—Zr1—C7—C688.41 (10)
C9—Zr1—C2—C3171.50 (10)C1—Zr1—C7—C654.17 (10)
C8—Zr1—C2—C3143.85 (10)C10—Zr1—C7—C638.05 (9)
C4—Zr1—C2—C335.34 (10)C5—Zr1—C7—C643.73 (11)
Cl1—Zr1—C2—C1174.91 (9)C9—Zr1—C7—C678.27 (11)
Cl2—Zr1—C2—C161.97 (11)C8—Zr1—C7—C6114.11 (15)
C6—Zr1—C2—C155.81 (10)C3—Zr1—C7—C6101.62 (10)
C7—Zr1—C2—C189.89 (10)C4—Zr1—C7—C675.10 (12)
C10—Zr1—C2—C144.49 (11)C6—C7—C8—C92.1 (2)
C5—Zr1—C2—C138.04 (9)Zr1—C7—C8—C964.64 (12)
C9—Zr1—C2—C175.05 (12)C6—C7—C8—Zr166.75 (11)
C8—Zr1—C2—C1102.71 (10)Cl1—Zr1—C8—C9126.81 (11)
C3—Zr1—C2—C1113.45 (14)Cl2—Zr1—C8—C928.08 (11)
C4—Zr1—C2—C178.11 (11)C2—Zr1—C8—C9140.34 (10)
C1—C2—C3—C42.46 (19)C1—Zr1—C8—C9103.71 (11)
Zr1—C2—C3—C465.06 (12)C6—Zr1—C8—C978.16 (11)
C1—C2—C3—Zr167.52 (11)C7—Zr1—C8—C9116.47 (16)
Cl1—Zr1—C3—C4125.59 (10)C10—Zr1—C8—C936.94 (10)
Cl2—Zr1—C3—C426.97 (11)C5—Zr1—C8—C981.60 (14)
C2—Zr1—C3—C4116.87 (15)C3—Zr1—C8—C9167.11 (10)
C1—Zr1—C3—C478.00 (11)C4—Zr1—C8—C9142.9 (2)
C6—Zr1—C3—C4105.28 (11)Cl1—Zr1—C8—C7116.72 (10)
C7—Zr1—C3—C4141.58 (10)Cl2—Zr1—C8—C7144.55 (9)
C10—Zr1—C3—C482.78 (13)C2—Zr1—C8—C723.87 (12)
C5—Zr1—C3—C436.80 (10)C1—Zr1—C8—C712.76 (12)
C9—Zr1—C3—C4141.2 (2)C6—Zr1—C8—C738.31 (10)
C8—Zr1—C3—C4168.12 (10)C10—Zr1—C8—C779.53 (11)
Cl1—Zr1—C3—C2117.54 (10)C5—Zr1—C8—C734.87 (15)
Cl2—Zr1—C3—C2143.84 (9)C9—Zr1—C8—C7116.47 (16)
C1—Zr1—C3—C238.87 (10)C3—Zr1—C8—C750.64 (14)
C6—Zr1—C3—C211.59 (12)C4—Zr1—C8—C726.4 (3)
C7—Zr1—C3—C224.70 (12)C7—C8—C9—C101.5 (2)
C10—Zr1—C3—C234.09 (15)Zr1—C8—C9—C1064.22 (12)
C5—Zr1—C3—C280.07 (11)C7—C8—C9—Zr162.68 (12)
C9—Zr1—C3—C224.3 (3)Cl1—Zr1—C9—C853.44 (11)
C8—Zr1—C3—C251.24 (14)Cl2—Zr1—C9—C8154.00 (11)
C4—Zr1—C3—C2116.87 (15)C2—Zr1—C9—C854.82 (14)
C2—C3—C4—C51.76 (19)C1—Zr1—C9—C892.25 (11)
Zr1—C3—C4—C563.68 (12)C6—Zr1—C9—C878.37 (11)
C2—C3—C4—Zr161.91 (12)C7—Zr1—C9—C836.66 (10)
Cl1—Zr1—C4—C354.23 (10)C10—Zr1—C9—C8115.62 (15)
Cl2—Zr1—C4—C3154.79 (10)C5—Zr1—C9—C8129.76 (11)
C2—Zr1—C4—C336.57 (10)C3—Zr1—C9—C837.1 (3)
C1—Zr1—C4—C378.72 (11)C4—Zr1—C9—C8154.64 (15)
C6—Zr1—C4—C390.16 (11)Cl1—Zr1—C9—C10169.06 (10)
C7—Zr1—C4—C352.91 (13)Cl2—Zr1—C9—C1090.38 (10)
C10—Zr1—C4—C3127.93 (11)C2—Zr1—C9—C1060.80 (13)
C5—Zr1—C4—C3116.00 (16)C1—Zr1—C9—C1023.37 (12)
C9—Zr1—C4—C3153.73 (14)C6—Zr1—C9—C1037.25 (10)
C8—Zr1—C4—C333.7 (3)C7—Zr1—C9—C1078.96 (11)
Cl1—Zr1—C4—C5170.23 (10)C5—Zr1—C9—C1014.14 (13)
Cl2—Zr1—C4—C589.21 (10)C8—Zr1—C9—C10115.62 (15)
C2—Zr1—C4—C579.43 (11)C3—Zr1—C9—C1078.5 (3)
C1—Zr1—C4—C537.28 (10)C4—Zr1—C9—C1039.0 (2)
C6—Zr1—C4—C525.83 (13)C8—C9—C10—C60.4 (2)
C7—Zr1—C4—C563.09 (13)Zr1—C9—C10—C665.56 (12)
C10—Zr1—C4—C511.94 (14)C8—C9—C10—Zr165.93 (12)
C9—Zr1—C4—C537.7 (2)C7—C6—C10—C90.91 (19)
C8—Zr1—C4—C582.3 (3)P1—C6—C10—C9161.10 (12)
C3—Zr1—C4—C5116.00 (16)Zr1—C6—C10—C967.66 (12)
C3—C4—C5—C10.39 (19)C7—C6—C10—Zr166.74 (11)
Zr1—C4—C5—C164.84 (12)P1—C6—C10—Zr193.44 (11)
C3—C4—C5—Zr165.22 (12)Cl1—Zr1—C10—C914.56 (13)
C2—C1—C5—C41.11 (19)Cl2—Zr1—C10—C986.22 (10)
P1—C1—C5—C4161.40 (13)C2—Zr1—C10—C9136.37 (10)
Zr1—C1—C5—C467.81 (12)C1—Zr1—C10—C9159.40 (11)
C2—C1—C5—Zr166.70 (11)C6—Zr1—C10—C9115.62 (15)
P1—C1—C5—Zr193.59 (12)C7—Zr1—C10—C977.01 (11)
Cl1—Zr1—C5—C412.78 (13)C5—Zr1—C10—C9168.96 (10)
Cl2—Zr1—C5—C486.79 (10)C8—Zr1—C10—C936.39 (10)
C2—Zr1—C5—C476.54 (11)C3—Zr1—C10—C9155.50 (10)
C1—Zr1—C5—C4115.56 (15)C4—Zr1—C10—C9162.56 (10)
C6—Zr1—C5—C4157.31 (11)Cl1—Zr1—C10—C6101.06 (10)
C7—Zr1—C5—C4134.76 (11)Cl2—Zr1—C10—C6158.16 (10)
C10—Zr1—C5—C4170.67 (11)C2—Zr1—C10—C620.75 (12)
C9—Zr1—C5—C4163.07 (10)C1—Zr1—C10—C643.78 (10)
C8—Zr1—C5—C4154.50 (11)C7—Zr1—C10—C638.60 (10)
C3—Zr1—C5—C435.94 (10)C5—Zr1—C10—C675.42 (11)
Cl1—Zr1—C5—C1102.78 (10)C9—Zr1—C10—C6115.62 (15)
Cl2—Zr1—C5—C1157.66 (10)C8—Zr1—C10—C679.23 (11)
C2—Zr1—C5—C139.01 (10)C3—Zr1—C10—C639.88 (15)
C6—Zr1—C5—C141.75 (10)C4—Zr1—C10—C681.82 (12)
C7—Zr1—C5—C119.21 (12)C6—P1—C11—C1635.78 (17)
C10—Zr1—C5—C173.77 (11)C1—P1—C11—C16130.38 (15)
C9—Zr1—C5—C181.37 (12)C6—P1—C11—C12153.25 (13)
C8—Zr1—C5—C138.94 (15)C1—P1—C11—C1258.65 (15)
C3—Zr1—C5—C179.62 (11)C16—C11—C12—C130.6 (3)
C4—Zr1—C5—C1115.56 (15)P1—C11—C12—C13172.07 (14)
C11—P1—C6—C10167.17 (13)C11—C12—C13—C140.2 (3)
C1—P1—C6—C1091.55 (14)C12—C13—C14—C150.3 (3)
C11—P1—C6—C737.71 (17)C13—C14—C15—C160.4 (3)
C1—P1—C6—C763.57 (16)C12—C11—C16—C150.4 (3)
C11—P1—C6—Zr1114.93 (7)P1—C11—C16—C15171.11 (14)
C1—P1—C6—Zr113.66 (8)C14—C15—C16—C110.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···Cl1i0.952.843.7649 (18)165
C8—H8···Cl1ii0.952.993.7520 (18)138
C3—H3···P1iii0.953.053.8416 (18)142
C7—H7···Cl2iv0.952.923.7775 (18)151
C4—H4···Cgiii0.952.803.656150
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y+3/2, z+1; (iii) x, y+1, z1/2; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formula[ZrCl2(C16H13P)]
Mr398.35
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)27.2712 (6), 7.3272 (2), 15.4592 (3)
β (°) 100.389 (2)
V3)3038.44 (12)
Z8
Radiation typeMo Kα
µ (mm1)1.17
Crystal size (mm)0.16 × 0.10 × 0.07
Data collection
DiffractometerOxford Diffraction Xcalibur E
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.970, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
31688, 4641, 3627
Rint0.050
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.053, 0.91
No. of reflections4641
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.31

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1994).

Selected geometric parameters (Å, º) top
Zr1—Cl12.4224 (4)P1—C61.8273 (17)
Zr1—Cl22.4316 (4)P1—C11.8308 (18)
P1—C111.8161 (17)
Cl1—Zr1—Cl2101.490 (16)C11—P1—C1100.40 (8)
C11—P1—C6106.40 (8)C6—P1—C191.42 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···Cl1i0.952.843.7649 (18)165
C8—H8···Cl1ii0.952.993.7520 (18)138
C3—H3···P1iii0.953.053.8416 (18)142
C7—H7···Cl2iv0.952.923.7775 (18)151
C4—H4···Cgiii0.952.803.656150
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y+3/2, z+1; (iii) x, y+1, z1/2; (iv) x, y+1, z.
Selected dimensions (Å, °) of (I) and related structures top
CompoundαCl—Zr—ClZr—ClβγZr—CgZr—CDeviation of P from the Cp planeCCp—P—CCp
(I)122.63 (7)101.490 (16)2.4224 (4), 2.4316 (4)116.3 (1)3.22.2011 (8), 2.1919 (8)2.454 (1)–2.565 (1), range 0.1110.474 (3), 0.496 (3)91.42 (7)
(II)125.999.66 (8)2.421 (2), 2.443 (2)116.54.72.227, 2.2232.435–2.608, range 0.1730.528, 0.46693.6
(III)122.2197.72 (3)2.4374 (8), 2.4213 (7)116.33.02.1981, 2.19572.465–2.551, range 0.0860.406,0.41789.8
(IV)126.395.42.462130.92.2622.512–2.579, range 0.067
(V)129.6, 129.597.0 (1), 97.1 (1)2.444 (1)–2.450 (1)126.7, 126.52.200–2.2082.458–2.521, range 0.063
For references and definitions of angles, see text. Values not given explicitly in the original references were extracted or calculated from deposited material; s.u. values are thus not universally available.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds