Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In each of the two pyran­oid sugars, ethyl 2-deoxy-4,5,6,8-tetra-O-acetyl-α-D-gluco-3,7-pyran­oso-3-octulosonate, C18H26O12, and ethyl 2-deoxy-4,5,6,8-tetra-O-benzyl-α-D-galacto-3,7-pyranoso-3-octulosonate, C38H42O8, the anomeric configuration is α. The acetoxy­methyl substituent on the hexo­pyran­ose ring of the former compound and the ethoxy­carbonyl­methyl substituents in both sugars all have the gauchetrans conformation, while the benzyl­oxy­methyl substituent of the galacto­pyran­ose sugar has the transgauche conformation. In each structure, the anomeric hydroxy group forms an intramolecular hydrogen bond with the carbonyl O atom of the ethoxy­carbonyl­methyl substituent.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101014974/gg1083sup1.cif
Contains datablocks global, II, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101014974/gg1083Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101014974/gg1083IIsup3.hkl
Contains datablock II

CCDC references: 179267; 179268

Comment top

C-Glycosides are now widely used as chiral templates for the synthesis of complex target molecules (Martin et al., 1991; Jiang et al., 1996), many of which have been found to show interesting and useful biological activities (Pougny et al., 1981; Martin et al., 1991; Watson et al., 1994; Bichard et al., 1995). One group of C-glycosides that have not been widely studied for their enzyme inhibition activities is that where the compounds contain an exocyclic double bond at the anomeric centre. We are presently interested in studying the synthesis and structure of this class of derivatives and now report the low-temperature crystal structures of ethyl 2-deoxy-4,5,6,8-tetra-O-acetyl-α-D-gluco-3,7-pyranoso-3-octulosonate, (I), and ethyl 2-deoxy-4,5,6,8-tetra-O-benzyl-α-D-galacto-3,7-pyranoso-3-octulosonate, (II), which are precursors used in the synthesis of their exocyclic alkenylic analogues. \sch

Figs. 1 and 2 depict the correct absolute configurations of compounds (I) and (II), which were assigned to agree with the known chirality of the precursor sugars, D-glucose and D-galactose, respectively. Both sugars are α-anomers and the pyranose ring in each compound has a slightly distorted 4C1 chair conformation. The ring puckering parameters (Cremer & Pople, 1975) are Q = 0.570 (2) Å, q2 = 0.062 (2) Å, q3 = 0.567 (3) Å, ϕ2 = 68.5 (18)° and θ = 6.4 (2)° for compound (I), and Q = 0.590 (3) Å, q2 = 0.054 (2) Å, q3 = 0.588 (3) Å, ϕ2 = 157 (3)° and θ = 5.2 (2)° for compound (II). The bond lengths and angles exhibit normal values and generally agree with the corresponding parameters found for other α-pyranose sugars (Berman et al., 1967).

The conformation of the C5 acetoxymethyl group in (I) is gauche-trans [O5—C5—C6—O6 72.1 (2)° and C4—C5—C6—O6 - 168.41 (17)°]. In contrast, the corresponding benzyloxymethyl group in (II) has a trans-gauche conformation [O5—C5—C6—O6 - 170.90 (19)° and C4—C5—C6—O6 - 50.0 (3)°]. In D-glucopyranose, a trans-gauche conformation would be forbidden because of the resultant unfavourable steric interaction between O4 and O6, but most galactopyranoses have either the gauche-trans or trans-gauche conformation (Longchambon et al., 1975; Kanters et al. 1988), with a slight preference for the gauche-trans form (Kanters et al., 1978). The gauche-gauche conformation is not usually observed for galactopyranoses, because this results in an unfavourable 1,3-peri interaction between the synaxial atoms O4 and O6.

The conformation of the C1 ethoxycarbonylmethyl substituent in each sugar is also gauche-trans [O5—C1—C9—C10 - 66.7 (2)° and C2—C1—C9—C10 177.68 (18)° for (I), and O5—C1—C14—C15 - 62.5 (3)° and C2—C1—C14—C15 178.6 (2)° for (II)]. In each sugar, the anomeric C1 hydroxy group forms an intramolecular hydrogen bond with the ethoxycarbonyl O atom (Tables 1 and 2), thereby closing a six-membered loop with a graph-set motif of S(6) (Bernstein et al., 1995).

Related literature top

For related literature, see: Berman et al. (1967); Bernstein et al. (1995); Bichard et al. (1995); Cremer & Pople (1975); Flack (1983); Flack & Bernardinelli (2000); Jiang et al. (1996); Kanters et al. (1978, 1988); Longchambon et al. (1975); Martin et al. (1991); Pougny et al. (1981); Shriner (1942); Spek (2001); Watson et al. (1994).

Experimental top

Compounds (I) and (II) were synthesized from the corresponding 2,3,4,6-tetra-O-benzyl glucono- or galactono- lactone using the Reformatsky reaction (Shriner, 1942). The activated zinc used in the reaction was prepared by washing zinc dust successively with 5% HCl, distilled water, acetone, absolute ethanol and anhydrous ether, and then dried at 373 K under vacuum. The Reformatsky reaction produced the benzylated analogue of compound (I) and pure compound (II), respectively. Compound (I) was then obtained by converting its benzylated analogue to the acetylated derivative as follows. A solution of ethyl 2-deoxy-4,5,6,8-tetra-O-benzyl-α-D-gluco-3,7-pyranoso-3-octulosonate (0.5 g, 0.8 mmol) in ethanol (5 ml) was hydrogenated [10% palladium-on-charcoal (80 mg) under hydrogen (50 psi)] for ca 12 h, after which thin layer chromatography (hexane/ethyl acetate, 3:1) showed that all starting material had been consumed. The solution was filtered, concentrated and acetylated with acetic anhydride (0.8 ml) in pyridine (1 ml). The reaction mixture was worked up in the usual manner and purified by flash column chromatography to give compound (I) (0.22 g, 64.2%; m.p. 383–385 K). Spectroscopic analysis: [α]D +40.5° (c 4.38, CHCl3); 1H NMR (CDCl3, δ, p.p.m.): 5.52 (t, 1H, J3,4 = 9.5 Hz, H3), 5.09 (t, 1H, J4,5 = 9.7 Hz, H4), 4.90 (d, 1H, J2,3 = 9.7 Hz, H2), 4.22–4.31 (m, 1H, H5), 4.21 (q, 2H, J12,13 = 7.1 Hz, H12a,b), 2.58, 2.64 (2 × s, 2H, H9a,b), 1.98, 2.01, 2.05, 2.09 (4 × s, 12H, 4 × CH3CO), 1.27 (t, 3H, H13a,b,c); 13C NMR (CDCl3, δ, p.p.m.): 171.98, 170.01, 169.92, 169.52, 169.55 (CO), 96.12 (C1), 72.54 (C2), 70.92 (C3), 68.52, 68.01 (C4,5), 61.82, 61.50 (C1, C6), 61.50 (C9), 39.62 (C12), 20.53, 20.59 (CH3CO), 13.88 (C13). Analysis calculated for C18H26O12: C 49.79, H 9.66%; found: C 49.52, H 9.61%. Compound (II) was obtained in 85.5% yield (m.p. 389–392 K). Spectroscopic analysis: [α]D -5.81 (c 10.69, CHCl3); 1H NMR (CDCl3, δ, p.p.m.): 7.20–7.40 (m, 20H, Ar—H), 5.00, 4.95, 4.65, 4.61, 4.48, 4.42 (6 × d, 6H, J = 11.4–11.8 Hz, 3 × PhCH2), 4.77 (s, 2H, H7a,b), 4.04–21 (m, 5H, H3, 4, 5, 17a,b), 3.81 (d, 1H, J2,3 = 9.8 Hz, H2), 3.74 (dd, 1H, J5,6a = 7.8 Hz, J6a,6 b = 9.3 Hz, H6a), 3.48 (dd, 1H, J6a,6 b = 9.3 Hz, H6b), 2.37, 2.83 (2 × s, 2H, H14a,b), 1.27 (t, 3H, H18a,b,c); 13C NMR (CDCl3, δ, p.p.m.): 172.44 (CO), 127.46, 127.58, 127.72, 128.02, 128.12, 128.28, 128.32, 128.47, 138.04, 138.38, 138.77 (Ar—C), 97.20 (C1), 80.34 (C3), 78.34 (C2), 74.77 (C4), 72.52, 73.29, 74.60, 75.15 (PhCH2), 70.08 (C5), 68.59 (C6, C17), 40.56 (C14), 13.91 (C18). Analysis calculated for C38H42O8: C 72.86, H 6.71%; found: C 72.03, H 6.80%. Suitable crystals of each compound were obtained by slow evaporation of their solutions in ethanol.

Refinement top

Examination of the structure of (I) with PLATON (Spek, 2001) revealed that the unit-cell parameters can be transformed metrically to an orthorhombic C lattice, but that the overall structure itself is not consistent with the higher symmetry. For (I), the anisotropic displacement ellipsoids for O16 and, to a lesser extent, O18 are significantly elongated. In addition, the maximum peak of residual electron density of 0.49 e Å-3 is 1.0 Å from O16 and the next highest peak is only 0.25 e Å-3. This suggests that these two atoms may be disordered, particularly O16. Indeed, the position of O16 could be divided into two almost equally occupied sites that are approximately 0.5 Å apart, and the refinement of this model reduced RF to 0.035 and the maximum peak of residual electron density to 0.25 e Å-3. Nevertheless, the anisotropic displacement ellipsoid for one of the disordered positions became even more elongated than that of O16 in the ordered model, even when light restraints were applied, and more severe restraints upset the realism of the geometric parameters. Therefore, it was considered to be more appropriate to use the ordered model in the final refinement. For each compound, the methyl H atoms were constrained to an ideal geometry (C—H = 0.98 Å) with Uiso(H) = 1.5Ueq(C), but were allowed to rotate freely about the C—C bonds. The positions of the hydroxy H atoms were refined freely, along with individual isotropic displacement parameters. All other H atoms were placed in geometrically idealized positions (C—H = 0.95–1.00 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C). The absolute configuration could not be determined because of the absence of significant anomalous scatterers in the compound. The enantiomer used in each model was based on the known chirality of the precursor sugars, D-glucose and D-galactose, from which (I) and (II), respectively, were synthesized. Due to the absence of any significant anomalous scatterers, attempts to confirm the absolute structure by refinement of the Flack parameter (Flack, 1983) led to inconclusive values (Flack & Bernardinelli, 2000) for this parameter [-0.7 (7) for (I) and -0.3 (11) for (II)]. Therefore, Friedel equivalents [3030 for (I) and 560 for (II)] were merged before the final refinements.

Computing details top

For both compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1991); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2001).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary size.
[Figure 2] Fig. 2. A view of the molecule of (II) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary size.
(I) ethyl 2-deoxy-4,5,6,8-tetra-O-acetyl-α-D-gluco-3,7-pyranoso-3-octulosonate top
Crystal data top
C18H26O12F(000) = 460
Mr = 434.39Dx = 1.328 Mg m3
Monoclinic, P21Melting point = 383–385 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 9.3164 (15) ÅCell parameters from 25 reflections
b = 13.038 (2) Åθ = 19.0–20.0°
c = 9.3130 (15) ŵ = 0.11 mm1
β = 106.224 (12)°T = 173 K
V = 1086.2 (3) Å3Prism, colourless
Z = 20.46 × 0.33 × 0.24 mm
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.024
Radiation source: Rigaku rotating anode generatorθmax = 30.0°, θmin = 2.7°
Graphite monochromatorh = 013
ω/2θ scansk = 1818
6676 measured reflectionsl = 1312
3285 independent reflections3 standard reflections every 150 reflections
2717 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.1486P]
where P = (Fo2 + 2Fc2)/3
3285 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.49 e Å3
1 restraintΔρmin = 0.36 e Å3
Crystal data top
C18H26O12V = 1086.2 (3) Å3
Mr = 434.39Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.3164 (15) ŵ = 0.11 mm1
b = 13.038 (2) ÅT = 173 K
c = 9.3130 (15) Å0.46 × 0.33 × 0.24 mm
β = 106.224 (12)°
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.024
6676 measured reflections3 standard reflections every 150 reflections
3285 independent reflections intensity decay: none
2717 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0381 restraint
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.49 e Å3
3285 reflectionsΔρmin = 0.36 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.18308 (19)0.75187 (12)0.24341 (18)0.0297 (3)
H10.224 (5)0.758 (4)0.180 (4)0.065 (11)*
O20.27787 (17)0.77533 (12)0.55010 (16)0.0273 (3)
O30.00010 (18)0.77229 (12)0.60306 (16)0.0281 (3)
O40.24324 (17)0.74930 (12)0.31831 (16)0.0275 (3)
O50.03963 (17)0.90181 (11)0.21439 (16)0.0262 (3)
O60.2115 (2)0.91846 (13)0.04618 (17)0.0337 (4)
O70.2811 (3)1.08360 (14)0.0632 (2)0.0452 (5)
O100.3332 (3)0.85864 (14)0.0689 (2)0.0458 (5)
O110.3118 (2)1.02873 (13)0.09877 (18)0.0336 (4)
O140.3901 (2)0.91622 (14)0.6718 (2)0.0380 (4)
O160.0621 (5)0.6059 (2)0.5835 (3)0.0885 (11)
O180.3527 (2)0.82734 (19)0.4755 (3)0.0601 (7)
C10.1707 (2)0.84948 (15)0.3001 (2)0.0242 (4)
C20.1550 (2)0.83512 (15)0.4592 (2)0.0234 (4)
H20.15020.90330.50680.028*
C30.0154 (2)0.77330 (16)0.4528 (2)0.0238 (4)
H30.02700.70170.41930.029*
C40.1224 (2)0.82304 (16)0.3478 (2)0.0240 (4)
H40.15020.88680.39340.029*
C50.0971 (2)0.84656 (16)0.1952 (2)0.0262 (4)
H50.09440.78130.13960.031*
C60.2212 (3)0.91510 (19)0.1055 (2)0.0322 (4)
H610.31960.88760.10770.039*
H620.21030.98500.14870.039*
C70.2465 (3)1.00845 (17)0.1200 (2)0.0278 (4)
C80.2390 (3)0.99913 (19)0.2782 (2)0.0329 (5)
H810.33690.97820.34260.049*
H820.16410.94760.28340.049*
H830.21121.06550.31200.049*
C90.2998 (2)0.92219 (17)0.2996 (2)0.0286 (4)
H910.27990.99070.33590.034*
H920.39370.89570.36800.034*
C100.3169 (3)0.93159 (19)0.1436 (3)0.0313 (4)
C120.3143 (3)1.0458 (2)0.0562 (3)0.0363 (5)
H1210.38540.99740.08170.044*
H1220.34871.11650.06700.044*
C130.1610 (3)1.0303 (2)0.1613 (3)0.0425 (6)
H1310.13080.95860.15690.064*
H1320.16261.04690.26350.064*
H1330.08971.07520.13200.064*
C140.3826 (2)0.82485 (19)0.6598 (2)0.0291 (4)
C150.4827 (3)0.7496 (2)0.7621 (3)0.0452 (6)
H1510.58020.78140.80740.068*
H1520.49600.68890.70500.068*
H1530.43750.72910.84100.068*
C160.0337 (3)0.6819 (2)0.6579 (3)0.0434 (6)
C170.0361 (4)0.6925 (3)0.8168 (3)0.0499 (7)
H1710.08190.63140.84660.075*
H1720.09440.75330.82700.075*
H1730.06640.69980.88110.075*
C180.3478 (2)0.75728 (19)0.3931 (3)0.0320 (5)
C190.4523 (3)0.6686 (2)0.3618 (3)0.0395 (5)
H1910.52530.67590.41910.059*
H1920.39580.60490.39090.059*
H1930.50450.66650.25480.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0385 (8)0.0241 (7)0.0289 (7)0.0018 (6)0.0133 (7)0.0028 (6)
O20.0271 (7)0.0253 (7)0.0275 (7)0.0015 (6)0.0042 (6)0.0019 (6)
O30.0337 (8)0.0288 (8)0.0231 (7)0.0019 (6)0.0100 (6)0.0047 (6)
O40.0277 (7)0.0264 (7)0.0287 (7)0.0019 (6)0.0082 (6)0.0038 (6)
O50.0307 (8)0.0229 (7)0.0244 (6)0.0005 (6)0.0067 (6)0.0040 (5)
O60.0454 (9)0.0291 (8)0.0237 (7)0.0073 (7)0.0049 (6)0.0039 (6)
O70.0691 (14)0.0318 (9)0.0347 (9)0.0120 (9)0.0143 (9)0.0040 (7)
O100.0708 (13)0.0354 (9)0.0421 (9)0.0052 (9)0.0335 (10)0.0009 (8)
O110.0451 (10)0.0311 (8)0.0291 (8)0.0071 (7)0.0176 (7)0.0000 (6)
O140.0384 (9)0.0347 (9)0.0371 (8)0.0038 (7)0.0043 (7)0.0066 (7)
O160.178 (3)0.0447 (13)0.0454 (12)0.0422 (17)0.0352 (17)0.0026 (10)
O180.0420 (11)0.0660 (14)0.0817 (15)0.0202 (10)0.0330 (11)0.0465 (13)
C10.0294 (10)0.0214 (9)0.0229 (8)0.0004 (7)0.0091 (7)0.0011 (7)
C20.0269 (9)0.0225 (9)0.0204 (8)0.0010 (8)0.0060 (7)0.0018 (7)
C30.0274 (9)0.0250 (9)0.0190 (8)0.0003 (7)0.0067 (7)0.0012 (7)
C40.0256 (9)0.0217 (8)0.0240 (9)0.0001 (7)0.0058 (7)0.0000 (7)
C50.0305 (10)0.0243 (9)0.0225 (9)0.0015 (8)0.0052 (7)0.0004 (7)
C60.0349 (11)0.0354 (11)0.0249 (9)0.0088 (10)0.0062 (8)0.0048 (9)
C70.0256 (10)0.0283 (10)0.0259 (9)0.0003 (8)0.0013 (8)0.0042 (8)
C80.0365 (12)0.0324 (11)0.0272 (10)0.0004 (9)0.0045 (9)0.0031 (9)
C90.0331 (10)0.0279 (10)0.0278 (9)0.0057 (9)0.0137 (8)0.0000 (8)
C100.0328 (11)0.0340 (11)0.0313 (10)0.0009 (9)0.0159 (9)0.0006 (9)
C120.0439 (13)0.0394 (12)0.0297 (11)0.0073 (11)0.0169 (10)0.0046 (9)
C130.0480 (15)0.0428 (14)0.0371 (12)0.0021 (12)0.0126 (11)0.0053 (11)
C140.0276 (10)0.0351 (11)0.0245 (9)0.0012 (9)0.0071 (8)0.0001 (8)
C150.0401 (13)0.0480 (15)0.0396 (12)0.0053 (12)0.0021 (11)0.0064 (12)
C160.0573 (16)0.0396 (13)0.0325 (12)0.0143 (12)0.0115 (11)0.0093 (10)
C170.0624 (19)0.0578 (18)0.0319 (12)0.0058 (15)0.0173 (12)0.0142 (12)
C180.0244 (10)0.0359 (12)0.0346 (10)0.0018 (9)0.0065 (8)0.0079 (9)
C190.0302 (11)0.0410 (13)0.0497 (14)0.0089 (10)0.0151 (10)0.0116 (11)
Geometric parameters (Å, º) top
O1—C11.395 (2)C5—H51.0000
O1—H10.79 (4)C6—H610.9900
O2—C141.362 (3)C6—H620.9900
O2—C21.447 (2)C7—C81.500 (3)
O3—C161.356 (3)C8—H810.9800
O3—C31.446 (2)C8—H820.9800
O4—C181.351 (3)C8—H830.9800
O4—C41.447 (3)C9—C101.511 (3)
O5—C51.431 (3)C9—H910.9900
O5—C11.431 (3)C9—H920.9900
O6—C71.353 (3)C12—C131.502 (4)
O6—C61.441 (3)C12—H1210.9900
O7—C71.199 (3)C12—H1220.9900
O10—C101.213 (3)C13—H1310.9800
O11—C101.330 (3)C13—H1320.9800
O11—C121.467 (3)C13—H1330.9800
O14—C141.197 (3)C14—C151.498 (3)
O16—C161.195 (4)C15—H1510.9800
O18—C181.202 (3)C15—H1520.9800
C1—C91.532 (3)C15—H1530.9800
C1—C21.541 (3)C16—C171.493 (4)
C2—C31.517 (3)C17—H1710.9800
C2—H21.0000C17—H1720.9800
C3—C41.524 (3)C17—H1730.9800
C3—H31.0000C18—C191.487 (3)
C4—C51.535 (3)C19—H1910.9800
C4—H41.0000C19—H1920.9800
C5—C61.514 (3)C19—H1930.9800
C1—O1—H1108 (3)H81—C8—H83109.5
C14—O2—C2117.86 (17)H82—C8—H83109.5
C16—O3—C3117.91 (18)C10—C9—C1110.28 (18)
C18—O4—C4119.07 (17)C10—C9—H91109.6
C5—O5—C1114.89 (15)C1—C9—H91109.6
C7—O6—C6116.88 (18)C10—C9—H92109.6
C10—O11—C12116.36 (18)C1—C9—H92109.6
O1—C1—O5111.83 (16)H91—C9—H92108.1
O1—C1—C9114.57 (17)O10—C10—O11124.5 (2)
O5—C1—C9104.56 (16)O10—C10—C9123.5 (2)
O1—C1—C2107.04 (15)O11—C10—C9112.02 (19)
O5—C1—C2107.38 (15)O11—C12—C13110.30 (19)
C9—C1—C2111.30 (16)O11—C12—H121109.6
O2—C2—C3105.44 (16)C13—C12—H121109.6
O2—C2—C1110.86 (15)O11—C12—H122109.6
C3—C2—C1109.72 (15)C13—C12—H122109.6
O2—C2—H2110.2H121—C12—H122108.1
C3—C2—H2110.2C12—C13—H131109.5
C1—C2—H2110.2C12—C13—H132109.5
O3—C3—C2106.43 (15)H131—C13—H132109.5
O3—C3—C4109.31 (16)C12—C13—H133109.5
C2—C3—C4111.01 (16)H131—C13—H133109.5
O3—C3—H3110.0H132—C13—H133109.5
C2—C3—H3110.0O14—C14—O2123.5 (2)
C4—C3—H3110.0O14—C14—C15125.7 (2)
O4—C4—C3108.07 (16)O2—C14—C15110.8 (2)
O4—C4—C5105.65 (15)C14—C15—H151109.5
C3—C4—C5111.06 (16)C14—C15—H152109.5
O4—C4—H4110.6H151—C15—H152109.5
C3—C4—H4110.6C14—C15—H153109.5
C5—C4—H4110.6H151—C15—H153109.5
O5—C5—C6106.71 (18)H152—C15—H153109.5
O5—C5—C4110.29 (16)O16—C16—O3122.7 (2)
C6—C5—C4109.73 (17)O16—C16—C17126.1 (3)
O5—C5—H5110.0O3—C16—C17111.2 (2)
C6—C5—H5110.0C16—C17—H171109.5
C4—C5—H5110.0C16—C17—H172109.5
O6—C6—C5108.16 (18)H171—C17—H172109.5
O6—C6—H61110.1C16—C17—H173109.5
C5—C6—H61110.1H171—C17—H173109.5
O6—C6—H62110.1H172—C17—H173109.5
C5—C6—H62110.1O18—C18—O4123.3 (2)
H61—C6—H62108.4O18—C18—C19125.2 (2)
O7—C7—O6122.8 (2)O4—C18—C19111.5 (2)
O7—C7—C8126.2 (2)C18—C19—H191109.5
O6—C7—C8110.98 (19)C18—C19—H192109.5
C7—C8—H81109.5H191—C19—H192109.5
C7—C8—H82109.5C18—C19—H193109.5
H81—C8—H82109.5H191—C19—H193109.5
C7—C8—H83109.5H192—C19—H193109.5
C5—O5—C1—O153.7 (2)C1—O5—C5—C459.7 (2)
C5—O5—C1—C9178.25 (15)O4—C4—C5—O5167.87 (15)
C5—O5—C1—C263.4 (2)C3—C4—C5—O550.9 (2)
C14—O2—C2—C3133.23 (18)O4—C4—C5—C674.8 (2)
C14—O2—C2—C1108.10 (19)C3—C4—C5—C6168.22 (18)
O1—C1—C2—O255.2 (2)C7—O6—C6—C5144.5 (2)
O5—C1—C2—O2175.40 (15)O5—C5—C6—O672.1 (2)
C9—C1—C2—O270.7 (2)C4—C5—C6—O6168.41 (17)
O1—C1—C2—C360.9 (2)C6—O6—C7—O71.6 (3)
O5—C1—C2—C359.34 (19)C6—O6—C7—C8177.1 (2)
C9—C1—C2—C3173.22 (17)O1—C1—C9—C1056.1 (2)
C16—O3—C3—C2135.1 (2)O5—C1—C9—C1066.7 (2)
C16—O3—C3—C4104.9 (2)C2—C1—C9—C10177.68 (18)
O2—C2—C3—O366.42 (18)C12—O11—C10—O105.1 (4)
C1—C2—C3—O3174.14 (15)C12—O11—C10—C9174.87 (19)
O2—C2—C3—C4174.72 (15)C1—C9—C10—O1054.8 (3)
C1—C2—C3—C455.3 (2)C1—C9—C10—O11125.2 (2)
C18—O4—C4—C3100.4 (2)C10—O11—C12—C1380.8 (3)
C18—O4—C4—C5140.62 (19)C2—O2—C14—O1410.6 (3)
O3—C3—C4—O476.62 (19)C2—O2—C14—C15168.34 (19)
C2—C3—C4—O4166.28 (15)C3—O3—C16—O165.9 (5)
O3—C3—C4—C5167.94 (16)C3—O3—C16—C17176.4 (2)
C2—C3—C4—C550.8 (2)C4—O4—C18—O185.8 (4)
C1—O5—C5—C6178.81 (16)C4—O4—C18—C19173.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O100.79 (4)2.11 (4)2.794 (3)146 (4)
(II) ethyl 2-deoxy-4,5,6,8-tetra-O-benzyl-α-D-galacto-3,7-pyranoso-3-octulosonate top
Crystal data top
C38H42O8Dx = 1.237 Mg m3
Mr = 626.72Melting point = 389–392 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 14.977 (2) Åθ = 11.0–17.5°
b = 19.832 (7) ŵ = 0.09 mm1
c = 11.326 (2) ÅT = 173 K
V = 3364.0 (14) Å3Prism, colourless
Z = 40.50 × 0.33 × 0.30 mm
F(000) = 1336
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.020
Radiation source: Rigaku rotating anode generatorθmax = 27.5°, θmin = 2.7°
Graphite monochromatorh = 019
ω/2θ scansk = 125
4998 measured reflectionsl = 114
4302 independent reflections3 standard reflections every 150 reflections
3230 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0379P)2 + 0.5383P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4302 reflectionsΔρmax = 0.21 e Å3
421 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0024 (5)
Crystal data top
C38H42O8V = 3364.0 (14) Å3
Mr = 626.72Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 14.977 (2) ŵ = 0.09 mm1
b = 19.832 (7) ÅT = 173 K
c = 11.326 (2) Å0.50 × 0.33 × 0.30 mm
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.020
4998 measured reflections3 standard reflections every 150 reflections
4302 independent reflections intensity decay: none
3230 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.21 e Å3
4302 reflectionsΔρmin = 0.22 e Å3
421 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.11666 (13)0.88411 (10)0.17495 (18)0.0311 (4)
H10.128 (2)0.9179 (16)0.204 (3)0.042 (10)*
O20.18985 (12)0.78947 (9)0.02511 (16)0.0284 (4)
O30.07256 (12)0.68303 (9)0.09457 (16)0.0286 (4)
O40.13430 (12)0.68082 (9)0.33400 (17)0.0304 (4)
O50.16670 (11)0.82437 (9)0.34059 (16)0.0275 (4)
O60.00418 (13)0.74225 (11)0.52414 (16)0.0380 (5)
O150.23209 (14)0.97999 (9)0.2649 (2)0.0418 (5)
O160.34622 (13)0.93177 (9)0.36090 (17)0.0344 (5)
C10.18097 (17)0.83825 (13)0.2180 (2)0.0262 (5)
C20.17310 (16)0.77284 (12)0.1457 (2)0.0245 (5)
H20.21910.73990.17350.029*
C30.08033 (17)0.74291 (13)0.1641 (2)0.0262 (5)
H30.03420.77630.13810.031*
C40.06895 (17)0.72879 (13)0.2959 (2)0.0276 (6)
H40.00780.71040.31080.033*
C50.08127 (18)0.79388 (13)0.3659 (2)0.0274 (6)
H50.03250.82620.34500.033*
C60.08105 (19)0.78191 (14)0.4989 (2)0.0317 (6)
H610.13590.75780.52320.038*
H620.07830.82540.54170.038*
C70.0008 (2)0.72263 (15)0.6454 (2)0.0390 (7)
H710.05890.70730.67160.047*
H720.04240.68410.65280.047*
C80.03198 (18)0.77880 (14)0.7259 (2)0.0309 (6)
C90.0174 (2)0.79671 (14)0.8242 (3)0.0367 (7)
H90.07110.77320.84140.044*
C100.0103 (2)0.84867 (15)0.8985 (3)0.0404 (7)
H100.02400.86010.96610.048*
C110.0878 (2)0.88333 (15)0.8732 (3)0.0439 (8)
H110.10680.91910.92290.053*
C120.1378 (2)0.86580 (17)0.7751 (3)0.0480 (8)
H120.19120.88970.75760.058*
C130.1104 (2)0.81370 (16)0.7025 (3)0.0399 (7)
H130.14560.80170.63600.048*
C140.27535 (18)0.86729 (13)0.2119 (2)0.0307 (6)
H1410.31820.83420.24460.037*
H1420.29150.87570.12840.037*
C150.28148 (18)0.93245 (13)0.2808 (3)0.0320 (6)
C170.3588 (2)0.99449 (14)0.4270 (3)0.0413 (7)
H1710.30411.00610.47150.050*
H1720.37331.03210.37290.050*
C180.4353 (2)0.98141 (16)0.5103 (3)0.0430 (7)
H1810.41810.94650.56730.064*
H1820.45021.02310.55260.064*
H1830.48740.96610.46540.064*
C190.24533 (19)0.74144 (13)0.0324 (2)0.0346 (7)
H1910.21440.69740.03600.042*
H1920.30130.73550.01290.042*
C200.26677 (17)0.76529 (13)0.1562 (2)0.0289 (6)
C210.30681 (19)0.72078 (14)0.2350 (3)0.0366 (7)
H210.31850.67570.21110.044*
C220.32974 (19)0.74127 (15)0.3473 (3)0.0399 (7)
H220.35740.71040.40000.048*
C230.3125 (2)0.80706 (15)0.3841 (3)0.0404 (7)
H230.32790.82120.46160.048*
C240.27282 (19)0.85136 (15)0.3062 (3)0.0380 (7)
H240.26070.89630.33060.046*
C250.25028 (18)0.83111 (14)0.1927 (2)0.0327 (6)
H250.22350.86230.13970.039*
C260.01932 (18)0.66693 (14)0.0706 (3)0.0342 (6)
H2610.04660.70320.02250.041*
H2620.05280.66350.14570.041*
C270.02433 (17)0.60121 (13)0.0053 (2)0.0302 (6)
C280.0721 (2)0.54710 (15)0.0507 (3)0.0431 (7)
H280.10160.55160.12450.052*
C290.0772 (2)0.48660 (16)0.0103 (3)0.0554 (9)
H290.11030.45000.02180.067*
C300.0341 (2)0.47938 (17)0.1182 (3)0.0518 (9)
H300.03700.43780.15980.062*
C310.0126 (2)0.53280 (16)0.1641 (3)0.0464 (8)
H310.04200.52820.23800.056*
C320.0174 (2)0.59370 (15)0.1033 (3)0.0397 (7)
H320.04950.63040.13640.048*
C330.0989 (2)0.61537 (15)0.3519 (4)0.0569 (10)
H3310.08300.59490.27500.068*
H3320.04420.61810.40070.068*
C340.1680 (2)0.57251 (14)0.4135 (3)0.0378 (7)
C350.2121 (3)0.59589 (18)0.5103 (3)0.0686 (12)
H350.19830.63940.54030.082*
C360.2770 (4)0.5570 (2)0.5657 (4)0.0873 (16)
H360.30880.57460.63150.105*
C370.2951 (3)0.49315 (18)0.5250 (4)0.0641 (11)
H370.33790.46580.56430.077*
C380.2522 (3)0.46964 (16)0.4300 (4)0.0566 (9)
H380.26550.42590.40080.068*
C390.1882 (3)0.50885 (16)0.3736 (3)0.0530 (9)
H390.15790.49140.30650.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0312 (10)0.0298 (10)0.0323 (11)0.0038 (8)0.0019 (9)0.0011 (9)
O20.0306 (9)0.0310 (9)0.0236 (9)0.0039 (8)0.0036 (8)0.0006 (8)
O30.0239 (9)0.0332 (9)0.0287 (9)0.0010 (8)0.0005 (8)0.0052 (9)
O40.0311 (9)0.0276 (9)0.0325 (10)0.0007 (8)0.0005 (9)0.0059 (9)
O50.0266 (9)0.0308 (9)0.0250 (9)0.0024 (8)0.0020 (8)0.0011 (8)
O60.0384 (11)0.0504 (12)0.0253 (10)0.0139 (10)0.0052 (9)0.0017 (10)
O150.0406 (11)0.0291 (10)0.0559 (14)0.0044 (9)0.0075 (11)0.0020 (10)
O160.0364 (10)0.0270 (9)0.0398 (11)0.0001 (8)0.0043 (9)0.0034 (9)
C10.0258 (13)0.0281 (13)0.0247 (12)0.0022 (11)0.0006 (11)0.0031 (11)
C20.0246 (12)0.0277 (12)0.0212 (12)0.0004 (10)0.0017 (11)0.0027 (11)
C30.0262 (12)0.0269 (12)0.0254 (12)0.0022 (11)0.0013 (11)0.0002 (11)
C40.0234 (12)0.0322 (13)0.0271 (13)0.0010 (11)0.0002 (11)0.0020 (12)
C50.0272 (13)0.0308 (13)0.0243 (13)0.0006 (11)0.0033 (11)0.0013 (11)
C60.0349 (14)0.0348 (14)0.0253 (13)0.0074 (13)0.0015 (12)0.0013 (12)
C70.0477 (17)0.0392 (15)0.0301 (15)0.0071 (14)0.0087 (14)0.0029 (14)
C80.0323 (13)0.0350 (14)0.0255 (13)0.0042 (12)0.0032 (12)0.0083 (13)
C90.0326 (14)0.0398 (15)0.0377 (16)0.0003 (12)0.0044 (13)0.0080 (14)
C100.0489 (18)0.0394 (16)0.0328 (15)0.0083 (14)0.0092 (15)0.0012 (14)
C110.0522 (19)0.0400 (16)0.0395 (17)0.0001 (15)0.0091 (16)0.0008 (15)
C120.0353 (16)0.056 (2)0.052 (2)0.0078 (15)0.0009 (16)0.0061 (18)
C130.0403 (16)0.0488 (17)0.0306 (15)0.0002 (14)0.0071 (13)0.0030 (14)
C140.0288 (13)0.0315 (13)0.0320 (14)0.0009 (11)0.0025 (12)0.0016 (12)
C150.0289 (13)0.0283 (13)0.0388 (15)0.0039 (11)0.0047 (13)0.0043 (13)
C170.0437 (17)0.0315 (15)0.0486 (18)0.0024 (13)0.0041 (16)0.0084 (14)
C180.0467 (17)0.0397 (16)0.0425 (18)0.0010 (14)0.0023 (16)0.0090 (15)
C190.0379 (15)0.0300 (14)0.0358 (15)0.0070 (12)0.0106 (13)0.0005 (13)
C200.0235 (12)0.0333 (13)0.0300 (14)0.0036 (11)0.0041 (12)0.0005 (12)
C210.0367 (15)0.0338 (14)0.0393 (16)0.0013 (13)0.0087 (14)0.0050 (14)
C220.0399 (16)0.0474 (17)0.0324 (15)0.0050 (14)0.0105 (14)0.0110 (15)
C230.0389 (17)0.0530 (18)0.0293 (15)0.0066 (14)0.0060 (13)0.0036 (14)
C240.0362 (15)0.0393 (15)0.0386 (17)0.0016 (13)0.0036 (14)0.0079 (14)
C250.0307 (14)0.0344 (14)0.0329 (15)0.0005 (12)0.0041 (12)0.0045 (13)
C260.0272 (13)0.0345 (15)0.0409 (16)0.0010 (12)0.0017 (13)0.0036 (13)
C270.0238 (12)0.0319 (13)0.0350 (15)0.0008 (11)0.0059 (12)0.0010 (12)
C280.0435 (17)0.0420 (16)0.0437 (18)0.0054 (15)0.0085 (16)0.0035 (15)
C290.061 (2)0.0369 (17)0.069 (2)0.0117 (17)0.012 (2)0.0084 (18)
C300.058 (2)0.0432 (18)0.054 (2)0.0017 (17)0.0040 (18)0.0149 (17)
C310.0555 (19)0.0556 (19)0.0281 (15)0.0019 (17)0.0024 (16)0.0100 (15)
C320.0456 (17)0.0397 (16)0.0337 (16)0.0018 (14)0.0012 (14)0.0023 (14)
C330.053 (2)0.0376 (17)0.080 (3)0.0132 (15)0.018 (2)0.0167 (19)
C340.0404 (16)0.0314 (14)0.0415 (17)0.0063 (13)0.0045 (15)0.0075 (14)
C350.107 (3)0.0437 (18)0.055 (2)0.033 (2)0.024 (2)0.0107 (18)
C360.135 (4)0.061 (2)0.066 (3)0.036 (3)0.048 (3)0.014 (2)
C370.076 (3)0.047 (2)0.070 (3)0.0233 (19)0.019 (2)0.006 (2)
C380.066 (2)0.0356 (16)0.068 (2)0.0091 (17)0.011 (2)0.0027 (18)
C390.068 (2)0.0364 (16)0.055 (2)0.0025 (17)0.0033 (19)0.0032 (16)
Geometric parameters (Å, º) top
O1—C11.412 (3)C17—H1720.9900
O1—H10.77 (3)C18—H1810.9800
O2—C191.422 (3)C18—H1820.9800
O2—C21.428 (3)C18—H1830.9800
O3—C31.430 (3)C19—C201.514 (4)
O3—C261.438 (3)C19—H1910.9900
O4—C331.417 (3)C19—H1920.9900
O4—C41.431 (3)C20—C251.391 (4)
O5—C11.431 (3)C20—C211.391 (4)
O5—C51.444 (3)C21—C221.379 (4)
O6—C61.423 (3)C21—H210.9500
O6—C71.430 (3)C22—C231.394 (4)
O15—C151.212 (3)C22—H220.9500
O16—C151.328 (3)C23—C241.379 (4)
O16—C171.464 (3)C23—H230.9500
C1—C141.528 (4)C24—C251.389 (4)
C1—C21.539 (3)C24—H240.9500
C2—C31.525 (3)C25—H250.9500
C2—H21.0000C26—C271.501 (4)
C3—C41.529 (4)C26—H2610.9900
C3—H31.0000C26—H2620.9900
C4—C51.526 (4)C27—C321.387 (4)
C4—H41.0000C27—C281.388 (4)
C5—C61.525 (4)C28—C291.386 (4)
C5—H51.0000C28—H280.9500
C6—H610.9900C29—C301.390 (5)
C6—H620.9900C29—H290.9500
C7—C81.513 (4)C30—C311.372 (5)
C7—H710.9900C30—H300.9500
C7—H720.9900C31—C321.393 (4)
C8—C91.383 (4)C31—H310.9500
C8—C131.389 (4)C32—H320.9500
C9—C101.393 (4)C33—C341.510 (4)
C9—H90.9500C33—H3310.9900
C10—C111.379 (4)C33—H3320.9900
C10—H100.9500C34—C351.361 (5)
C11—C121.384 (4)C34—C391.375 (4)
C11—H110.9500C35—C361.391 (5)
C12—C131.383 (4)C35—H350.9500
C12—H120.9500C36—C371.375 (5)
C13—H130.9500C36—H360.9500
C14—C151.513 (4)C37—C381.338 (5)
C14—H1410.9900C37—H370.9500
C14—H1420.9900C38—C391.390 (5)
C17—C181.506 (4)C38—H380.9500
C17—H1710.9900C39—H390.9500
C1—O1—H1105 (2)C18—C17—H172110.6
C19—O2—C2112.7 (2)H171—C17—H172108.7
C3—O3—C26111.48 (19)C17—C18—H181109.5
C33—O4—C4113.3 (2)C17—C18—H182109.5
C1—O5—C5113.90 (19)H181—C18—H182109.5
C6—O6—C7112.7 (2)C17—C18—H183109.5
C15—O16—C17115.8 (2)H181—C18—H183109.5
O1—C1—O5110.9 (2)H182—C18—H183109.5
O1—C1—C14111.9 (2)O2—C19—C20109.8 (2)
O5—C1—C14104.8 (2)O2—C19—H191109.7
O1—C1—C2107.9 (2)C20—C19—H191109.7
O5—C1—C2110.0 (2)O2—C19—H192109.7
C14—C1—C2111.4 (2)C20—C19—H192109.7
O2—C2—C3112.4 (2)H191—C19—H192108.2
O2—C2—C1107.52 (19)C25—C20—C21118.8 (3)
C3—C2—C1109.0 (2)C25—C20—C19122.0 (2)
O2—C2—H2109.3C21—C20—C19119.2 (2)
C3—C2—H2109.3C22—C21—C20120.8 (3)
C1—C2—H2109.3C22—C21—H21119.6
O3—C3—C2108.8 (2)C20—C21—H21119.6
O3—C3—C4112.1 (2)C21—C22—C23120.4 (3)
C2—C3—C4107.8 (2)C21—C22—H22119.8
O3—C3—H3109.4C23—C22—H22119.8
C2—C3—H3109.4C24—C23—C22119.0 (3)
C4—C3—H3109.4C24—C23—H23120.5
O4—C4—C5108.9 (2)C22—C23—H23120.5
O4—C4—C3109.9 (2)C23—C24—C25120.8 (3)
C5—C4—C3109.8 (2)C23—C24—H24119.6
O4—C4—H4109.4C25—C24—H24119.6
C5—C4—H4109.4C24—C25—C20120.2 (3)
C3—C4—H4109.4C24—C25—H25119.9
O5—C5—C6105.2 (2)C20—C25—H25119.9
O5—C5—C4111.0 (2)O3—C26—C27109.5 (2)
C6—C5—C4112.4 (2)O3—C26—H261109.8
O5—C5—H5109.4C27—C26—H261109.8
C6—C5—H5109.4O3—C26—H262109.8
C4—C5—H5109.4C27—C26—H262109.8
O6—C6—C5106.6 (2)H261—C26—H262108.2
O6—C6—H61110.4C32—C27—C28118.5 (3)
C5—C6—H61110.4C32—C27—C26120.5 (3)
O6—C6—H62110.4C28—C27—C26121.0 (3)
C5—C6—H62110.4C29—C28—C27120.9 (3)
H61—C6—H62108.6C29—C28—H28119.5
O6—C7—C8113.2 (2)C27—C28—H28119.5
O6—C7—H71108.9C28—C29—C30120.0 (3)
C8—C7—H71108.9C28—C29—H29120.0
O6—C7—H72108.9C30—C29—H29120.0
C8—C7—H72108.9C31—C30—C29119.4 (3)
H71—C7—H72107.7C31—C30—H30120.3
C9—C8—C13118.5 (3)C29—C30—H30120.3
C9—C8—C7120.6 (3)C30—C31—C32120.5 (3)
C13—C8—C7120.9 (3)C30—C31—H31119.7
C8—C9—C10121.1 (3)C32—C31—H31119.7
C8—C9—H9119.4C27—C32—C31120.6 (3)
C10—C9—H9119.4C27—C32—H32119.7
C11—C10—C9119.6 (3)C31—C32—H32119.7
C11—C10—H10120.2O4—C33—C34109.0 (3)
C9—C10—H10120.2O4—C33—H331109.9
C10—C11—C12119.8 (3)C34—C33—H331109.9
C10—C11—H11120.1O4—C33—H332109.9
C12—C11—H11120.1C34—C33—H332109.9
C13—C12—C11120.3 (3)H331—C33—H332108.3
C13—C12—H12119.8C35—C34—C39118.1 (3)
C11—C12—H12119.8C35—C34—C33120.8 (3)
C12—C13—C8120.6 (3)C39—C34—C33121.0 (3)
C12—C13—H13119.7C34—C35—C36121.0 (3)
C8—C13—H13119.7C34—C35—H35119.5
C15—C14—C1110.8 (2)C36—C35—H35119.5
C15—C14—H141109.5C37—C36—C35119.8 (4)
C1—C14—H141109.5C37—C36—H36120.1
C15—C14—H142109.5C35—C36—H36120.1
C1—C14—H142109.5C38—C37—C36119.8 (4)
H141—C14—H142108.1C38—C37—H37120.1
O15—C15—O16123.7 (3)C36—C37—H37120.1
O15—C15—C14123.4 (3)C37—C38—C39120.4 (3)
O16—C15—C14112.8 (2)C37—C38—H38119.8
O16—C17—C18105.8 (2)C39—C38—H38119.8
O16—C17—H171110.6C34—C39—C38120.9 (3)
C18—C17—H171110.6C34—C39—H39119.5
O16—C17—H172110.6C38—C39—H39119.5
C5—O5—C1—O161.2 (3)C7—C8—C13—C12178.8 (3)
C5—O5—C1—C14177.89 (19)O1—C1—C14—C1557.8 (3)
C5—O5—C1—C258.1 (3)O5—C1—C14—C1562.5 (3)
C19—O2—C2—C3102.7 (2)C2—C1—C14—C15178.6 (2)
C19—O2—C2—C1137.4 (2)C17—O16—C15—O153.3 (4)
O1—C1—C2—O260.1 (2)C17—O16—C15—C14177.1 (2)
O5—C1—C2—O2178.73 (19)C1—C14—C15—O1553.9 (4)
C14—C1—C2—O263.0 (3)C1—C14—C15—O16125.7 (2)
O1—C1—C2—C361.9 (3)C15—O16—C17—C18179.6 (2)
O5—C1—C2—C359.2 (3)C2—O2—C19—C20175.1 (2)
C14—C1—C2—C3174.9 (2)O2—C19—C20—C2513.4 (4)
C26—O3—C3—C2157.5 (2)O2—C19—C20—C21168.7 (2)
C26—O3—C3—C483.3 (3)C25—C20—C21—C220.1 (4)
O2—C2—C3—O359.6 (3)C19—C20—C21—C22178.1 (3)
C1—C2—C3—O3178.64 (19)C20—C21—C22—C230.4 (4)
O2—C2—C3—C4178.6 (2)C21—C22—C23—C240.4 (4)
C1—C2—C3—C459.5 (3)C22—C23—C24—C250.1 (4)
C33—O4—C4—C5135.3 (3)C23—C24—C25—C200.6 (4)
C33—O4—C4—C3104.4 (3)C21—C20—C25—C240.6 (4)
O3—C3—C4—O458.2 (3)C19—C20—C25—C24178.5 (3)
C2—C3—C4—O461.5 (3)C3—O3—C26—C27175.9 (2)
O3—C3—C4—C5177.9 (2)O3—C26—C27—C3259.7 (3)
C2—C3—C4—C558.2 (3)O3—C26—C27—C28121.5 (3)
C1—O5—C5—C6178.6 (2)C32—C27—C28—C290.7 (5)
C1—O5—C5—C456.8 (3)C26—C27—C28—C29179.5 (3)
O4—C4—C5—O564.2 (3)C27—C28—C29—C300.2 (5)
C3—C4—C5—O556.1 (3)C28—C29—C30—C310.7 (5)
O4—C4—C5—C653.3 (3)C29—C30—C31—C320.3 (5)
C3—C4—C5—C6173.6 (2)C28—C27—C32—C311.1 (4)
C7—O6—C6—C5175.4 (2)C26—C27—C32—C31179.9 (3)
O5—C5—C6—O6170.90 (19)C30—C31—C32—C270.6 (5)
C4—C5—C6—O650.0 (3)C4—O4—C33—C34169.3 (3)
C6—O6—C7—C877.1 (3)O4—C33—C34—C3547.8 (5)
O6—C7—C8—C9126.9 (3)O4—C33—C34—C39132.2 (3)
O6—C7—C8—C1352.8 (4)C39—C34—C35—C361.3 (6)
C13—C8—C9—C100.2 (4)C33—C34—C35—C36178.7 (4)
C7—C8—C9—C10179.5 (3)C34—C35—C36—C372.2 (7)
C8—C9—C10—C110.6 (4)C35—C36—C37—C382.2 (7)
C9—C10—C11—C120.6 (4)C36—C37—C38—C391.3 (7)
C10—C11—C12—C130.0 (5)C35—C34—C39—C380.4 (5)
C11—C12—C13—C80.8 (5)C33—C34—C39—C38179.6 (3)
C9—C8—C13—C120.9 (4)C37—C38—C39—C340.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O150.77 (3)2.10 (3)2.765 (3)145 (3)

Experimental details

(I)(II)
Crystal data
Chemical formulaC18H26O12C38H42O8
Mr434.39626.72
Crystal system, space groupMonoclinic, P21Orthorhombic, P212121
Temperature (K)173173
a, b, c (Å)9.3164 (15), 13.038 (2), 9.3130 (15)14.977 (2), 19.832 (7), 11.326 (2)
α, β, γ (°)90, 106.224 (12), 9090, 90, 90
V3)1086.2 (3)3364.0 (14)
Z24
Radiation typeMo KαMo Kα
µ (mm1)0.110.09
Crystal size (mm)0.46 × 0.33 × 0.240.50 × 0.33 × 0.30
Data collection
DiffractometerRigaku AFC-5R
diffractometer
Rigaku AFC-5R
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6676, 3285, 2717 4998, 4302, 3230
Rint0.0240.020
(sin θ/λ)max1)0.7030.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.106, 1.03 0.042, 0.103, 1.03
No. of reflections32854302
No. of parameters280421
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.360.21, 0.22

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1991), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97 and PLATON (Spek, 2001).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O100.79 (4)2.11 (4)2.794 (3)146 (4)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O150.77 (3)2.10 (3)2.765 (3)145 (3)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds