Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106043265/gg3051sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270106043265/gg3051Isup2.hkl |
CCDC reference: 634870
To a solution of Cu(ClO4)2·6H2O (370 mg, 1.0 mmol) in 15 ml of methanol was added a solution containing sodium dicyanamide (100 mg, 1.12 mmol) in 10 ml of methanol. The mixture was stirred for 2 h at 323 K to form a green solution. Slow diffusion of diethyl ether into the filtrate gave rise to purple crystals of (I) (yield 48%). Analysis, found: C 20.23, H 4.38, N 14.15%; calculated for C20H52C14Cu2N12O28: C 20.40, H 4.45, N 14.27%. IR (KBr, ν, cm−1): 3008 (w), 2942 (w), 2920 (w), 1633 (m), 1558 (m), 1465 (m), 1427 (m).
The methyl H atoms were included in the refinement in the riding model approximation [C—H = 0.98 Å, with Uiso(H) = 1.5Ueq(C)]; the groups were rotated to fit the electron density. The N– and O-bound H atoms were located in difference Fourier maps and were refined with distance restraints [N—H = O—H = 0.85 (1) Å]; their displacement parameters were freely refined.
Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.
[Cu(C4H9N3O2)2(CH4O)2][Cu(ClO4)2(C4H9N3O2)2](ClO4)2·2CH4O | Z = 1 |
Mr = 1177.64 | F(000) = 606 |
Triclinic, P1 | Dx = 1.734 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.444 (2) Å | Cell parameters from 4658 reflections |
b = 10.067 (2) Å | θ = 3.1–25.3° |
c = 15.330 (3) Å | µ = 1.28 mm−1 |
α = 85.06 (3)° | T = 153 K |
β = 89.91 (3)° | Block, purple |
γ = 80.20 (3)° | 0.32 × 0.30 × 0.26 mm |
V = 1127.7 (5) Å3 |
Rigaku Mercury diffractometer | 4082 independent reflections |
Radiation source: fine-focus sealed tube | 3857 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.017 |
ω scans | θmax = 25.3°, θmin = 3.1° |
Absorption correction: multi-scan (Jacobson, 1998) | h = −8→8 |
Tmin = 0.684, Tmax = 0.731 | k = −10→12 |
10868 measured reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.076 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0482P)2 + 0.6301P] where P = (Fo2 + 2Fc2)/3 |
4082 reflections | (Δ/σ)max = 0.001 |
339 parameters | Δρmax = 0.72 e Å−3 |
8 restraints | Δρmin = −0.37 e Å−3 |
[Cu(C4H9N3O2)2(CH4O)2][Cu(ClO4)2(C4H9N3O2)2](ClO4)2·2CH4O | γ = 80.20 (3)° |
Mr = 1177.64 | V = 1127.7 (5) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.444 (2) Å | Mo Kα radiation |
b = 10.067 (2) Å | µ = 1.28 mm−1 |
c = 15.330 (3) Å | T = 153 K |
α = 85.06 (3)° | 0.32 × 0.30 × 0.26 mm |
β = 89.91 (3)° |
Rigaku Mercury diffractometer | 4082 independent reflections |
Absorption correction: multi-scan (Jacobson, 1998) | 3857 reflections with I > 2σ(I) |
Tmin = 0.684, Tmax = 0.731 | Rint = 0.017 |
10868 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 8 restraints |
wR(F2) = 0.076 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | Δρmax = 0.72 e Å−3 |
4082 reflections | Δρmin = −0.37 e Å−3 |
339 parameters |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.5000 | 0.5000 | 0.5000 | 0.01507 (10) | |
Cu2 | 0.0000 | 0.5000 | 1.0000 | 0.01631 (10) | |
Cl1 | 0.18124 (6) | 1.04408 (4) | 0.83609 (3) | 0.01955 (12) | |
Cl2 | 0.14635 (6) | 0.52414 (5) | 0.32136 (3) | 0.01933 (12) | |
O1 | 0.7581 (2) | 0.8397 (1) | 0.5062 (1) | 0.0224 (3) | |
O2 | 0.2572 (2) | 0.8186 (1) | 0.6446 (1) | 0.0267 (3) | |
O3 | 0.3757 (2) | 0.7624 (1) | 1.0162 (1) | 0.0212 (3) | |
O4 | 0.4330 (2) | 0.4668 (1) | 0.8236 (1) | 0.0221 (3) | |
O5 | 0.1613 (2) | 1.1485 (2) | 0.8957 (1) | 0.0321 (4) | |
O6 | 0.3712 (2) | 1.0089 (2) | 0.8156 (1) | 0.0407 (4) | |
O7 | 0.0787 (3) | 1.0912 (2) | 0.7580 (1) | 0.0460 (4) | |
O8 | 0.1167 (2) | 0.9285 (2) | 0.8764 (1) | 0.0389 (4) | |
O9 | 0.2577 (2) | 0.5968 (1) | 0.3693 (1) | 0.0241 (3) | |
O10 | −0.0193 (2) | 0.5153 (2) | 0.3695 (1) | 0.0358 (4) | |
O11 | 0.2410 (2) | 0.3899 (2) | 0.3112 (1) | 0.0315 (4) | |
O12 | 0.1025 (2) | 0.5933 (2) | 0.2365 (1) | 0.0431 (4) | |
O13 | 0.5092 (2) | 1.0392 (2) | 0.6440 (1) | 0.0278 (3) | |
O14 | −0.2687 (2) | 0.6330 (1) | 0.8890 (1) | 0.0233 (3) | |
N1 | 0.4975 (2) | 0.8058 (2) | 0.5618 (1) | 0.0204 (3) | |
N2 | 0.3445 (2) | 0.6211 (2) | 0.5745 (1) | 0.0179 (3) | |
N3 | 0.6511 (2) | 0.6426 (2) | 0.4763 (1) | 0.0177 (3) | |
N4 | 0.1191 (2) | 0.6565 (2) | 1.0166 (1) | 0.0182 (3) | |
N5 | 0.1679 (2) | 0.4566 (2) | 0.9038 (1) | 0.0191 (3) | |
N6 | 0.3733 (2) | 0.5994 (2) | 0.9302 (1) | 0.0193 (3) | |
C1 | 0.9120 (3) | 0.8108 (2) | 0.4500 (2) | 0.0308 (5) | |
C2 | 0.6389 (3) | 0.7547 (2) | 0.5111 (1) | 0.0174 (4) | |
C3 | 0.3627 (3) | 0.7392 (2) | 0.5932 (1) | 0.0181 (4) | |
C4 | 0.1113 (3) | 0.7657 (2) | 0.6899 (1) | 0.0282 (5) | |
C5 | 0.2908 (3) | 0.8584 (2) | 1.0751 (1) | 0.0258 (4) | |
C6 | 0.2768 (2) | 0.6740 (2) | 0.9906 (1) | 0.0164 (4) | |
C7 | 0.3145 (2) | 0.5022 (2) | 0.8863 (1) | 0.0168 (4) | |
C8 | 0.3994 (3) | 0.3589 (2) | 0.7725 (1) | 0.0251 (4) | |
C9 | 0.6860 (3) | 1.0633 (2) | 0.6661 (2) | 0.0357 (5) | |
C10 | −0.2537 (3) | 0.7728 (2) | 0.8764 (2) | 0.0359 (5) | |
H13 | 0.451 (4) | 1.033 (3) | 0.690 (1) | 0.050 (8)* | |
H14 | −0.250 (4) | 0.601 (3) | 0.841 (1) | 0.057 (9)* | |
H1 | 0.507 (3) | 0.8812 (13) | 0.580 (1) | 0.018 (5)* | |
H2 | 0.254 (2) | 0.593 (2) | 0.598 (1) | 0.024 (6)* | |
H3 | 0.747 (2) | 0.625 (2) | 0.447 (1) | 0.020 (6)* | |
H4 | 0.070 (3) | 0.710 (2) | 1.053 (1) | 0.023 (6)* | |
H5 | 0.150 (3) | 0.398 (2) | 0.870 (1) | 0.028 (6)* | |
H6 | 0.475 (2) | 0.620 (2) | 0.919 (1) | 0.022 (6)* | |
H1A | 0.9857 | 0.8826 | 0.4507 | 0.046* | |
H1B | 0.8691 | 0.8061 | 0.3902 | 0.046* | |
H1C | 0.9862 | 0.7239 | 0.4710 | 0.046* | |
H4A | 0.0487 | 0.8330 | 0.7271 | 0.042* | |
H4B | 0.1615 | 0.6829 | 0.7263 | 0.042* | |
H4C | 0.0246 | 0.7452 | 0.6471 | 0.042* | |
H5A | 0.3786 | 0.9146 | 1.0915 | 0.039* | |
H5B | 0.2516 | 0.8095 | 1.1279 | 0.039* | |
H5C | 0.1847 | 0.9161 | 1.0460 | 0.039* | |
H8A | 0.4927 | 0.3447 | 0.7276 | 0.038* | |
H8B | 0.2788 | 0.3835 | 0.7445 | 0.038* | |
H8C | 0.4040 | 0.2755 | 0.8111 | 0.038* | |
H9A | 0.6893 | 1.1604 | 0.6565 | 0.053* | |
H9b | 0.7768 | 1.0137 | 0.6291 | 0.053* | |
H9c | 0.7136 | 1.0325 | 0.7277 | 0.053* | |
H10a | −0.2807 | 0.8149 | 0.9313 | 0.054* | |
H10B | −0.3406 | 0.8181 | 0.8308 | 0.054* | |
H10C | −0.1296 | 0.7814 | 0.8584 | 0.054* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01667 (17) | 0.01458 (17) | 0.01526 (17) | −0.00464 (12) | 0.00425 (12) | −0.00484 (12) |
Cu2 | 0.01504 (17) | 0.01686 (17) | 0.01950 (18) | −0.00718 (12) | 0.00692 (12) | −0.00686 (12) |
Cl1 | 0.0215 (2) | 0.0186 (2) | 0.0198 (2) | −0.00558 (18) | 0.00294 (18) | −0.00484 (17) |
Cl2 | 0.0160 (2) | 0.0250 (2) | 0.0185 (2) | −0.00595 (18) | 0.00243 (17) | −0.00583 (18) |
O1 | 0.0218 (7) | 0.0219 (7) | 0.0267 (7) | −0.0101 (6) | 0.0089 (6) | −0.0086 (6) |
O2 | 0.0243 (7) | 0.0226 (7) | 0.0373 (8) | −0.0094 (6) | 0.0159 (6) | −0.0157 (6) |
O3 | 0.0179 (7) | 0.0225 (7) | 0.0263 (7) | −0.0091 (5) | 0.0027 (5) | −0.0087 (6) |
O4 | 0.0195 (7) | 0.0250 (7) | 0.0251 (7) | −0.0094 (6) | 0.0111 (6) | −0.0100 (6) |
O5 | 0.0358 (9) | 0.0296 (8) | 0.0359 (9) | −0.0117 (7) | 0.0120 (7) | −0.0191 (7) |
O6 | 0.0248 (8) | 0.0505 (10) | 0.0500 (10) | −0.0063 (7) | 0.0108 (7) | −0.0227 (8) |
O7 | 0.0581 (12) | 0.0448 (10) | 0.0311 (9) | 0.0005 (9) | −0.0151 (8) | 0.0011 (8) |
O8 | 0.0567 (11) | 0.0296 (8) | 0.0358 (9) | −0.0236 (8) | 0.0053 (8) | −0.0016 (7) |
O9 | 0.0247 (7) | 0.0275 (8) | 0.0229 (7) | −0.0109 (6) | −0.0012 (6) | −0.0043 (6) |
O10 | 0.0260 (8) | 0.0358 (9) | 0.0529 (10) | −0.0163 (7) | 0.0222 (7) | −0.0234 (8) |
O11 | 0.0266 (8) | 0.0291 (8) | 0.0405 (9) | −0.0028 (6) | 0.0063 (7) | −0.0168 (7) |
O12 | 0.0482 (10) | 0.0557 (11) | 0.0254 (8) | −0.0138 (8) | −0.0146 (7) | 0.0070 (7) |
O13 | 0.0282 (8) | 0.0288 (8) | 0.0298 (8) | −0.0114 (6) | 0.0071 (7) | −0.0087 (6) |
O14 | 0.0224 (7) | 0.0261 (7) | 0.0244 (8) | −0.0085 (6) | 0.0066 (6) | −0.0098 (6) |
N1 | 0.0214 (8) | 0.0156 (8) | 0.0265 (9) | −0.0066 (6) | 0.0065 (7) | −0.0080 (7) |
N2 | 0.0160 (8) | 0.0202 (8) | 0.0196 (8) | −0.0069 (6) | 0.0042 (6) | −0.0054 (6) |
N3 | 0.0165 (8) | 0.0198 (8) | 0.0182 (8) | −0.0050 (6) | 0.0058 (6) | −0.0049 (6) |
N4 | 0.0176 (8) | 0.0172 (8) | 0.0217 (8) | −0.0059 (6) | 0.0062 (6) | −0.0068 (6) |
N5 | 0.0180 (8) | 0.0209 (8) | 0.0217 (8) | −0.0087 (7) | 0.0059 (6) | −0.0095 (7) |
N6 | 0.0135 (8) | 0.0212 (8) | 0.0255 (9) | −0.0079 (6) | 0.0053 (6) | −0.0060 (7) |
C1 | 0.0293 (11) | 0.0324 (11) | 0.0360 (12) | −0.0159 (9) | 0.0176 (9) | −0.0126 (9) |
C2 | 0.0187 (9) | 0.0177 (9) | 0.0167 (9) | −0.0055 (7) | 0.0016 (7) | −0.0011 (7) |
C3 | 0.0169 (9) | 0.0189 (9) | 0.0189 (9) | −0.0028 (7) | 0.0019 (7) | −0.0050 (7) |
C4 | 0.0262 (11) | 0.0299 (11) | 0.0323 (11) | −0.0096 (9) | 0.0150 (9) | −0.0146 (9) |
C5 | 0.0265 (11) | 0.0258 (10) | 0.0285 (11) | −0.0095 (8) | 0.0020 (8) | −0.0123 (8) |
C6 | 0.0186 (9) | 0.0137 (8) | 0.0172 (9) | −0.0040 (7) | −0.0006 (7) | −0.0007 (7) |
C7 | 0.0166 (9) | 0.0168 (9) | 0.0162 (9) | −0.0013 (7) | 0.0019 (7) | −0.0012 (7) |
C8 | 0.0242 (10) | 0.0280 (11) | 0.0261 (11) | −0.0079 (8) | 0.0103 (8) | −0.0119 (8) |
C9 | 0.0307 (12) | 0.0339 (12) | 0.0469 (14) | −0.0120 (10) | 0.0079 (10) | −0.0164 (10) |
C10 | 0.0339 (12) | 0.0286 (12) | 0.0467 (14) | −0.0132 (10) | 0.0000 (10) | 0.0039 (10) |
Cu1—N2 | 1.971 (2) | N3—C2 | 1.279 (2) |
Cu1—N2i | 1.971 (2) | N4—C6 | 1.275 (2) |
Cu1—N3 | 1.979 (2) | N5—C7 | 1.274 (2) |
Cu1—N3i | 1.979 (2) | N6—C7 | 1.364 (2) |
Cu1—O9 | 2.701 (2) | N6—C6 | 1.367 (2) |
Cu2—N4 | 1.969 (2) | O13—H13 | 0.83 (1) |
Cu2—N4ii | 1.969 (2) | O14—H14 | 0.83 (1) |
Cu2—N5 | 1.961 (2) | N1—H1 | 0.84 (1) |
Cu2—N5ii | 1.961 (2) | N2—H2 | 0.84 (1) |
Cu2—O14 | 2.719 (2) | N3—H3 | 0.84 (1) |
Cl1—O7 | 1.423 (2) | N4—H4 | 0.84 (1) |
Cl1—O8 | 1.426 (2) | N5—H5 | 0.84 (1) |
Cl1—O6 | 1.439 (2) | N6—H6 | 0.84 (1) |
Cl1—O5 | 1.441 (2) | C1—H1A | 0.98 |
Cl2—O12 | 1.432 (2) | C1—H1B | 0.98 |
Cl2—O11 | 1.435 (2) | C1—H1C | 0.98 |
Cl2—O9 | 1.436 (1) | C4—H4A | 0.98 |
Cl2—O10 | 1.448 (2) | C4—H4B | 0.98 |
O1—C2 | 1.331 (2) | C4—H4C | 0.98 |
O1—C1 | 1.437 (2) | C5—H5A | 0.98 |
O2—C3 | 1.330 (2) | C5—H5B | 0.98 |
O2—C4 | 1.441 (2) | C5—H5C | 0.98 |
O3—C6 | 1.332 (2) | C8—H8A | 0.98 |
O3—C5 | 1.446 (2) | C8—H8B | 0.98 |
O4—C7 | 1.335 (2) | C8—H8C | 0.98 |
O4—C8 | 1.446 (2) | C9—H9A | 0.98 |
O13—C9 | 1.425 (3) | C9—H9B | 0.98 |
O14—C10 | 1.427 (3) | C9—H9C | 0.98 |
N1—C3 | 1.364 (2) | C10—H10A | 0.98 |
N1—C2 | 1.364 (3) | C10—H10B | 0.98 |
N2—C3 | 1.276 (2) | C10—H10C | 0.98 |
N2—Cu1—N2i | 180 | N5—C7—N6 | 123.8 (2) |
N2—Cu1—N3 | 88.70 (7) | O4—C7—N6 | 108.9 (2) |
N2—Cu1—N3i | 91.30 (7) | C9—O13—H13 | 108 (2) |
N2i—Cu1—N3i | 88.70 (7) | C10—O14—H14 | 107 (2) |
N2i—Cu1—N3 | 91.30 (7) | Cu2—O14—H14 | 107 (2) |
N3—Cu1—N3i | 180 | C3—N1—H1 | 120 (2) |
N2—Cu1—O9 | 86.69 (6) | C2—N1—H1 | 114 (2) |
N2i—Cu1—O9 | 93.31 (6) | C3—N2—H2 | 114 (2) |
N3i—Cu1—O9 | 85.32 (6) | Cu1—N2—H2 | 118 (2) |
N3—Cu1—O9 | 94.68 (6) | C2—N3—H3 | 112 (2) |
N4—Cu2—N4ii | 180 | Cu1—N3—H3 | 119 (2) |
N4—Cu2—N5 | 88.51 (7) | C6—N4—H4 | 116 (2) |
N4—Cu2—N5ii | 91.49 (7) | Cu2—N4—H4 | 116 (2) |
N4ii—Cu2—N5 | 91.49 (7) | C7—N5—H5 | 112 (2) |
N4ii—Cu2—N5ii | 88.51 (7) | Cu2—N5—H5 | 120 (2) |
N5—Cu2—N5ii | 180 | C7—N6—H6 | 119 (2) |
N5—Cu2—O14 | 92.66 (6) | C6—N6—H6 | 114 (2) |
N5ii—Cu2—O14 | 87.34 (6) | O1—C1—H1A | 109.5 |
N4ii—Cu2—O14 | 83.17 (6) | O1—C1—H1B | 109.5 |
N4—Cu2—O14 | 96.83 (6) | H1A—C1—H1B | 109.5 |
O7—Cl1—O8 | 109.2 (1) | O1—C1—H1C | 109.5 |
O7—Cl1—O6 | 109.7 (1) | H1A—C1—H1C | 109.5 |
O8—Cl1—O6 | 109.9 (1) | H1B—C1—H1C | 109.5 |
O7—Cl1—O5 | 110.1 (1) | O2—C4—H4A | 109.5 |
O8—Cl1—O5 | 109.3 (1) | O2—C4—H4B | 109.5 |
O6—Cl1—O5 | 108.6 (1) | H4A—C4—H4B | 109.5 |
O12—Cl2—O11 | 109.0 (1) | O2—C4—H4C | 109.5 |
O12—Cl2—O9 | 109.9 (1) | H4A—C4—H4C | 109.5 |
O11—Cl2—O9 | 110.4 (1) | H4B—C4—H4C | 109.5 |
O12—Cl2—O10 | 109.8 (1) | O3—C5—H5A | 109.5 |
O11—Cl2—O10 | 109.0 (1) | O3—C5—H5B | 109.5 |
O9—Cl2—O10 | 108.9 (1) | H5A—C5—H5B | 109.5 |
C2—O1—C1 | 117.8 (2) | O3—C5—H5C | 109.5 |
C3—O2—C4 | 118.2 (2) | H5A—C5—H5C | 109.5 |
C6—O3—C5 | 117.1 (2) | H5B—C5—H5C | 109.5 |
C7—O4—C8 | 117.3 (1) | O4—C8—H8A | 109.5 |
Cl2—O9—Cu1 | 128.4 (1) | O4—C8—H8B | 109.5 |
C10—O14—Cu2 | 109.7 (1) | H8A—C8—H8B | 109.5 |
C3—N1—C2 | 125.9 (2) | O4—C8—H8C | 109.5 |
C3—N2—Cu1 | 128.4 (1) | H8A—C8—H8C | 109.5 |
C2—N3—Cu1 | 127.8 (1) | H8B—C8—H8C | 109.5 |
C7—N5—Cu2 | 127.6 (1) | O13—C9—H9A | 109.5 |
C6—N4—Cu2 | 126.9 (1) | O13—C9—H9B | 109.5 |
C7—N6—C6 | 126.2 (2) | H9A—C9—H9B | 109.5 |
N3—C2—O1 | 127.5 (2) | O13—C9—H9C | 109.5 |
N3—C2—N1 | 124.2 (2) | H9A—C9—H9C | 109.5 |
O1—C2—N1 | 108.4 (2) | H9B—C9—H9C | 109.5 |
N2—C3—O2 | 127.4 (2) | O14—C10—H10A | 109.5 |
N2—C3—N1 | 124.3 (2) | O14—C10—H10B | 109.5 |
O2—C3—N1 | 108.3 (2) | H10A—C10—H10B | 109.5 |
N4—C6—O3 | 127.8 (2) | O14—C10—H10C | 109.5 |
N4—C6—N6 | 123.5 (2) | H10A—C10—H10C | 109.5 |
O3—C6—N6 | 108.8 (2) | H10B—C10—H10C | 109.5 |
N5—C7—O4 | 127.2 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O13 | 0.84 (1) | 1.95 (1) | 2.774 (2) | 168 (2) |
N2—H2···O10iii | 0.84 (1) | 2.25 (1) | 3.067 (2) | 165 (2) |
N3—H3···O10iv | 0.84 (1) | 2.29 (1) | 3.102 (2) | 163 (2) |
N4—H4···O5v | 0.84 (1) | 2.23 (1) | 3.011 (2) | 154 (2) |
N5—H5···O5vi | 0.84 (1) | 2.50 (2) | 3.123 (2) | 132 (2) |
N5—H5···O12iii | 0.84 (1) | 2.48 (2) | 3.078 (2) | 129 (2) |
N6—H6···O14iv | 0.84 (1) | 1.98 (1) | 2.808 (2) | 169 (2) |
O13—H13···O6 | 0.83 (1) | 2.02 (1) | 2.833 (2) | 166 (3) |
O14—H14···O11iii | 0.83 (1) | 2.33 (2) | 3.101 (2) | 155 (3) |
O14—H14···O12iii | 0.83 (1) | 2.47 (2) | 3.196 (3) | 146 (3) |
Symmetry codes: (iii) −x, −y+1, −z+1; (iv) x+1, y, z; (v) −x, −y+2, −z+2; (vi) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C4H9N3O2)2(CH4O)2][Cu(ClO4)2(C4H9N3O2)2](ClO4)2·2CH4O |
Mr | 1177.64 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 153 |
a, b, c (Å) | 7.444 (2), 10.067 (2), 15.330 (3) |
α, β, γ (°) | 85.06 (3), 89.91 (3), 80.20 (3) |
V (Å3) | 1127.7 (5) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.28 |
Crystal size (mm) | 0.32 × 0.30 × 0.26 |
Data collection | |
Diffractometer | Rigaku Mercury diffractometer |
Absorption correction | Multi-scan (Jacobson, 1998) |
Tmin, Tmax | 0.684, 0.731 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10868, 4082, 3857 |
Rint | 0.017 |
(sin θ/λ)max (Å−1) | 0.601 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.076, 1.01 |
No. of reflections | 4082 |
No. of parameters | 339 |
No. of restraints | 8 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.72, −0.37 |
Computer programs: CrystalClear (Rigaku/MSC, 2001), CrystalClear, CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.
Cu1—N2 | 1.971 (2) | Cu2—N4 | 1.969 (2) |
Cu1—N3 | 1.979 (2) | Cu2—N5 | 1.961 (2) |
Cu1—O9 | 2.701 (2) | Cu2—O14 | 2.719 (2) |
N2—Cu1—N3 | 88.70 (7) | N4—Cu2—N5 | 88.51 (7) |
N2—Cu1—O9 | 86.69 (6) | N5—Cu2—O14 | 92.66 (6) |
N3—Cu1—O9 | 94.68 (6) | N4—Cu2—O14 | 96.83 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O13 | 0.84 (1) | 1.95 (1) | 2.774 (2) | 168 (2) |
N2—H2···O10i | 0.84 (1) | 2.25 (1) | 3.067 (2) | 165 (2) |
N3—H3···O10ii | 0.84 (1) | 2.29 (1) | 3.102 (2) | 163 (2) |
N4—H4···O5iii | 0.84 (1) | 2.23 (1) | 3.011 (2) | 154 (2) |
N5—H5···O5iv | 0.84 (1) | 2.50 (2) | 3.123 (2) | 132 (2) |
N5—H5···O12i | 0.84 (1) | 2.48 (2) | 3.078 (2) | 129 (2) |
N6—H6···O14ii | 0.84 (1) | 1.98 (1) | 2.808 (2) | 169 (2) |
O13—H13···O6 | 0.83 (1) | 2.02 (1) | 2.833 (2) | 166 (3) |
O14—H14···O11i | 0.83 (1) | 2.33 (2) | 3.101 (2) | 155 (3) |
O14—H14···O12i | 0.83 (1) | 2.47 (2) | 3.196 (3) | 146 (3) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x+1, y, z; (iii) −x, −y+2, −z+2; (iv) x, y−1, z. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register
Copper(II) complexes of the bis(methoxycarbimido)amine ligand HN[C(NH)OCH3]2, (L), though relatively uncommon, are interesting because (L) is usually formed in situ from reactions of CuII salts with sodium dicyanamide (dca) in methanol or mixed solvents (Kozisek et al., 1990; Boca et al., 1996; Bishop et al., 2000; Atkinson et al., 2002; Tong et al., 2003). The formation of (L) involves a nucleophilic addition of the methanol molecule on the dca anion. This reaction is promoted by a coordinative activation of the C β-site of the nonlinear dca anion. Under activation, it is susceptible to bending of the linear pseudohalide (sp-hybridized C) via N-coordination, which alters the Cβ site to sp2-hybridized, with an unsaturated valency and susceptibility to a nucleophilic attack. Ligand (L) when coordinated to CuII exists in its anionic and/or neutral form. For example, the neutral complex [Cu{N[C(NH)OCH3]2}2], (II), contains two anionic N[C(NH)OCH3]2− species (Kozisek et al., 1990; Boca et al., 1996; Tong et al., 2003), whereas in [Cu{HN[C(NH)OCH3]2}2(C2H5N3O2)2]Br2·2C2H5N3O2·2CH3OH·0.8CH3CN (C2H5N3O2 is biuret), (III), the central CuII atom is coordinated by two neutral HN[C(NH)OCH3]2 ligands to form [Cu{HN[C(NH)OCH3]2}2]2+ dications (Bishop et al., 2000). However, a monocationic complex, [Cu{HN[C(NH)OCH3]2}{N[C(NH)OCH3]2}](PF6), has also been isolated by heating (II) with excess NH4PF6 in a CH3OH and CH3CN mixture (Atkinson et al., 2002). This consists of a neutral HN[C(NH)OCH3]2 ligand (L) and an anionic N[C(NH)OCH3]2− ligand bonded to CuII. Recently, we have reacted Cu(ClO4)2 with Na(dca) in methanol and isolated a dicationic complex with methanol solvent molecules, [Cu{HN[C(NH)OCH3]2}2](ClO4)2·2CH3OH, (I); we report here the crystal structure of (I).
The asymmetric unit of (I) consists of two halves of the [Cu{HN[C(NH)OCH3]2}2]2+ species, two ClO4− anions and two methanol molecules. The existence of two distinct CuII systems in the asymmetric unit is uncommon and only two examples (Curtis & Puschmann, 2004; Suksangpanya et al. 2003) were found on the Cambridge Structural Database (Allen, 2002). In (I), the CuII complexes lie with the Cu centre on different inversion centers and with each CuII atom coordinated by four N atoms in a basic square-planar geometry, forming two six-membered metallorings (Figs. 1 and 2). The (H)N═C bonds are typical double bonds [the average bond length is 1.276 (2) Å], while the average bond length for the (H)N—C bonds is 1.365 (2) Å, indicating a weak delocalized π-bonding system. The average Cu—N bond length of 1.970 (2) Å (Table 1) is slightly longer than in (II) [1.948 (1) Å] but close to the corresponding length in (III) [1.965 (3) Å].
In one complex, two ClO4 ions weakly bind to Cu forming a distorted octahedral [Cu{HN[C(NH)OCH3]2}2(ClO4)2] species. The Cu—O bond length [2.701 (2) Å] is longer than in [Cu(L')(ClO4)2]·H2O [2.543 (3) Å] and [Cu(HL)(ClO4)2](ClO4)·H2O [2.590 (4) Å; L' is 3-(4,6-diamino-1,3,5-triazin-2-yl)-1,3,5,8,12-pentaazacyclotetradecane; Comba et al., 2002]. In the other complex, two methanol molecules are coordinated to atom Cu2 to form the [Cu{(HN[C(NH)OCH3]2}2(CH3OH)2]2+ octahedral species. The Cu2—O distance [2.719 (2) Å] is much longer than those found in [CuL2(CH3OH)2](NO3)2 [2.298 (4) Å; L is 1-(2-pyridyl)benzotriazole; Richardson & Steel, 2003] and [CuL2(CH3OH)2](SiF6)2 [2.481 (5) Å; L is 2,2'-dipyridylamine; Casellas et al., 2005].
The crystal structure of (I) is stabilized by extensive N—H···O, O—H···N and O—H···O hydrogen-bonding interactions (Table 2). The O atoms of the coordinated ClO4 anions in the [Cu{HN[C(NH)OCH3]2}2(ClO4)2] species interact with the imide groups of neighbouring species to afford intermolecular N—H···O hydrogen bonding interactions, thereby forming one-dimensional chains along the a-axis direction. The [Cu{HN[C(NH)OCH3]2}2(CH3OH)2]2+ complexes are also linked via intermolecular interactions between O atoms of the coordinated CH3OH molecules and amine groups to form another one-dimensional chain. Between the two chains are sandwiched free ClO4− anions and CH3OH molecules. In addition, the O atoms from the free ClO4− ions and methanol solvent molecules interact with the imide and amine groups of the adjacent species of the two chains to afford a two-dimensional network along the (012) plane (Fig. 3). Furthermore, the O atoms of the coordinated ClO4 anions interact with the coordinated methanol molecules of adjacent layers to afford hydrogen bonds [O14···O11i and O14···O12i; symmetry code: (i) −x, −y + 1, −z + 1], affording a three-dimensional structure.