Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Four complexes containing the [UO2(oda)2]2− anion (oda is oxy­diacetate) are reported, namely dipyridinium dioxidobis(oxydiacetato)uranate(VI), (C5H6N)2[U(C4H4O5)2O2], (I), bis(2-methyl­pyridinium) dioxidobis(oxydiacetato)uranate(VI), (C8H8N)2[U(C4H4O5)2O2], (II), bis­(3-methyl­pyridinium) di­oxido­bis(oxydiacetato)uranate(VI), (C8H8N)2[U(C4H4O5)2O2], (III), and bis­(4-methyl­pyridinium) dioxidobis(oxydiacetato)uranate(VI), (C8H8N)2[U(C4H4O5)2O2], (IV). The anions are achiral and are located on a mirror plane in (I) and on inversion centres in (II)–(IV). The four complexes are assembled into three-dimensional structures via N—H...O and C—H...O inter­actions. Compounds (III) and (IV) are isomorphous; the [UO2(oda)2]2− anions form a porous matrix which is nearly identical in the two structures, and the cations are located in channels formed in this matrix. Compounds (I) and (II) are very different from (III) and (IV): (I) forms a layered structure, while (II) forms ribbons.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109053839/gg3221sup1.cif
Contains datablocks I, II, III, IV, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109053839/gg3221Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109053839/gg3221IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109053839/gg3221IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109053839/gg3221IVsup5.hkl
Contains datablock IV

CCDC references: 774065; 774066; 774067; 774068

Comment top

We recently published a study of complexes featuring the nine-coordinate chiral [Ln(oda)3]3- anion (where Ln = Pr, Eu, Gd or Dy, and oda = oxodiacetate) (Lennartson & Håkansson, 2009a). In the case of Na5[Er(oda)3](H2O)6(BF4)2, which crystallizes in the Sohncke space group (Flack, 2003) R32, it was possible to crystallize a whole sample as one enantiomerically pure single-crystal. This represents the first example of the preparation of enantiomerically pure bulk quantities of a nine-coordinate complex displaying only achiral ligands. Since all precursors [diglycolic acid, erbium(III) chloride hexahydrate, sodium hydroxide, sodium bicarbonate, sodium hexafluoroborate and water] were achiral, the overall synthesis may be regarded as a case of absolute asymmetric synthesis (Feringa & van Delden, 1999; Mislow, 2003). From the oxodiacetate lanthanide complexes we have examined the corresponding actinide complexes, and four complexes containing the dioxidobis(oxydiacetato)uranate(VI) anion, [UO2(oda)2]2-, are presented in this paper.

Only six crystal structures of uranyl complexes containing the oxodiacetate ligand are listed in the Cambridge Structural Database (CSD, Version 5.30 of May 2009; Allen, 2002). In the absence of coordinating ligands, uranyl oxodiacetate forms a coordination polymer (Bombieri et al., 1974), which undergoes spontaneous resolution (Jacques et al., 1984; Perez-Garcia & Amabilino, 2007) on crystallization. The other structures published are oxodiacetatodi(pyridine oxide)dioxouranium(VI) (Bombieri et al., 1973), di(1,3,5,7-tetraazaadamant-1-ium)di(µ2-hydroxo)di(oxodiacetato)-tetraoxodiuranium(VI) dihydrate (Jiang et al., 2002) and three structures containing the [UO2(oda)2]2- anion (Bombieri et al., 1973; Jiang et al., 2002).

Dipyridinium dioxidobis(oxydiacetato)uranate(VI), (I), bis(2-methylpyridinium) dioxidobis(oxydiacetato)uranate(VI), (II), bis(3-methylpyridinium) dioxidobis(oxydiacetato)uranate(VI), (III), and bis(4-methylpyridinium) dioxidobis(oxydiacetato)uranate(VI), (IV), all form yellow crystals from aqueous solution. None of the crystal structures includes water, neither coordinated to the U atom nor as co-crystallized water.

The uranyl moieties in compounds (I)–(IV) are linear, as expected, and are coordinated by two oxodiacetate ligands, giving rise to complex [UO2(oda)2]2- anions. The anions differ somewhat between the four compounds. In (I), the [UO2(oda)2]2- anion is located on a mirror plane bisecting both oxodiacetate ligands (Fig. 1). The two oxodiacetate ligands are coordinated differently to the central U atom. One is virtually planar, and both atoms O3 and O5 are coordinated to the central U atom. The other ligand deviates considerably from planarity, and since the U1—O8 distance is probably too long to be considered a U—O bond, it is best described as a bidentate ligand. The [UO2(oda)2]2- anions in (II), (III) and (IV) are very similar (Fig. 2–4), with the central U atoms located on crystallographic inversion centres and with the oxodiacetate ligands virtually planar. Both types of coordination mode have been reported previously (Jiang et al., 2002). The[UO2(oda)2]2- anions are achiral, in contrast with the propeller-shaped [Ln(oda)3]3- anions, but this does not exclude the possibility of a chiral crystal structure, since achiral molecules may assemble into chiral supramolecular structures (Matsuura & Koshima, 2005; Lennartson & Håkansson, 2009b). However, compounds (I)–(IV) form centrosymmetric crystals.

The ions in (I) are associated by N—H···O and C—H···O interactions. Classical N—H···O interactions form a short contact between atoms H1 and O7 within the asymmetric unit. Due to symmetry, each [UO2(oda)2]2- anion will interact with two pyridinium cations. The C—H···O interactions involving H5···O4(1 - x, -y, 1 - z), H7···O4(1 - x, -y, 2 - z) and H8···O7(x, y, 1 + z) give rise to layers in the bc plane (Fig. 5). These layers are further associated into a network structure (Fig. 6) by three sets of C—H···O interactions: H2A···O2(-1 + x, y, z), H2A···O6(-1 + x, y, z) and H4A···O1(1 + x, y, z).

Introducing a methyl group in the 2-position on the pyridinium cation, i.e. on going from (I) to (II), dramatically alters the crystal packing. The 2-picolinium cation in (II) binds two [UO2(oda)2]2- anions through N—H···O and C—H···O interactions. Two sets of interactions, H1···O3(-x, -y, -z) and H10···O5, connect the 2-picolinium cation to one anion, and a third interaction, H8···O6(1 - x, 1 - y, -z), introduces connections to a second anion. As seen in Fig. 7, these interactions give rise to infinite ribbons. Sets of ribbons are partly stacked in a similar fashion to the strakes in a ship's hull, giving rise to layers. The layers are stacked into a three-dimensional structure, where ribbons in adjacent layers are orthogonal. There are weak interactions between the layers: atom H5 forms a short contact (2.69 Å) to atom O5; a schematic drawing is presented in Fig. 8.

The crystal structure of the analogous 3-picolinium complex, (III), is different from both (I) and (II). N—H···O and C—H···O interactions in (III) give rise to a three-dimensional network structure (Fig. 9). The [UO2(oda)2]2- anions in (III) form a porous matrix with channels running parallel to the crystallographic a and c axes. These channels are occupied by the 3-picolinium cations. A view along the a axis is presented in Fig. 10.

Compound (IV) is isomorphous with (III). The matrices formed by the anions are close to identical, forming the same type of channels. The orientations of the cations occupying these channels differ between the two structures, and the intermolecular interactions in (IV) are of course different from those in (III), as depicted in Fig. 11.

In the case of the [Ln(oda)3]3- complexes, spontaneous resolution did not occur for Na3[Ln(oda)3](H2O)6, which crystallized in the polar space group Cc. Addition of certain salts led to more complex structures, of which Na3NH4[Ln(oda)3](SCN)(H2O)4 is racemic and Na5[Ln(oda)3](H2O)6(BF4)2 undergoes spontaneous resolution. It appears that the presence of BF4- is essential for spontaneous resolution to occur in this system. Preliminary studies show that recrystallization of (I) from water in the presence of inorganic salts leads to co-crystallization in certain cases, and the formation of a chiral supramolecular structure may be observed at a future date.

Experimental top

Uranyl oxodiacetate was prepared as follows. Diglycolic acid (0.13 g, 1.0 mmol) and sodium bicarbonate (0.17 g, 2.0 mmol) were dissolved in water (5 ml). A solution of uranyl nitrate hexahydrate (0.50 g, 1 mmol) in water (5 ml) was added. The solution was heated to reflux, whereupon a yellow precipitate formed. The mixture was cooled to ambient temperature, filtered, washed with water (3 × 5 ml) and acetone (3 × 5 ml), and dried by suction (yield 0.35 g, 87%).

Dipyridinium dioxidobis(oxydiacetato)uranate(VI), (I), was prepared as follows. Pyridine (0.3 ml) and water (1.0 ml) were added to a mixture of uranyl oxodiacetate (0.35 g, 0.82 mmol) and diglycolic acid (0.11 g, 0.82 mmol). The mixture was heated until a clear solution was obtained. Yellow crystals of (I) formed on cooling to ambient temperature (yield 0.33 g, 54%). Compounds (II)–(IV) were prepared in an analogous manner, substituting pyridine by 2-, 3- and 4-picoline, respectively.

Refinement top

The N-bound H atoms were located in difference Fourier maps and refined, with the N—H distances in (I) and (IV) restrained to 0.90(s.u.?) Å. The C-bound H atoms were included in calculated positions, with C—H = 0.93–0.97 Å, and refined using a riding model, with Uiso(H) = 1.2–1.5Uiso(C).

Computing details top

For all compounds, data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLUTON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (i) x, 1/2 - y, z.]
[Figure 2] Fig. 2. The molecular structure of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (ii) -x, -y, -z.]
[Figure 3] Fig. 3. The molecular structure of (III), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (ii) -x, -y, -z.]
[Figure 4] Fig. 4. The molecular structure of (IV), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (ii) -x, -y, -z.]
[Figure 5] Fig. 5. The N—H···O and C—H···O bonded layer in (I). Hydrogen bonds are shown as dashed lines. All H atoms not involved in these interactions have been omitted for clarity.
[Figure 6] Fig. 6. Diagram showing how the layers in (I) are assembled into a network structure by C—H···O interactions (dashed lines). Three layers are depicted and run horizontally in the figure. All H atoms not involved in these interactions have been omitted for clarity.
[Figure 7] Fig. 7. Diagram showing how the N—H···O and C—H···O interactions in (II) (dashed lines) give rise to ribbons. All H atoms not involved in these interactions have been omitted for clarity.
[Figure 8] Fig. 8. Schematic drawing of the ribbons in the structure of (II). The ribbons form layers which are stacked into a three-dimensional structure; three such layers are depicted.
[Figure 9] Fig. 9. The C—H···O interactions in (III) (dashed lines), involving the cation (top) and the anion (bottom).
[Figure 10] Fig. 10. Diagram showing how the cations in (III) are located in channels running through the unit cell. All H atoms have been omitted.
[Figure 11] Fig. 11. C—H···O interactions in (IV) (dashed lines), involving the cation (top) and the anion (bottom).
(I) dipyridinium dioxidobis(oxydiacetato)uranate(VI) top
Crystal data top
(C5H6N)2[U(C4H4O5)2O2]F(000) = 660
Mr = 694.39Dx = 2.142 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 5883 reflections
a = 6.675 (2) Åθ = 3.0–25.0°
b = 23.025 (5) ŵ = 7.61 mm1
c = 7.500 (2) ÅT = 100 K
β = 110.946 (11)°Prism, yellow
V = 1076.5 (5) Å30.2 × 0.2 × 0.1 mm
Z = 2
Data collection top
Rigaku R-AXIS IIC image-plate
diffractometer
1853 independent reflections
Radiation source: rotating-anode X-ray tube, Rigaku RU-H3R1763 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 105 pixels mm-1θmax = 25.0°, θmin = 3.0°
ϕ scansh = 77
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
k = 2724
Tmin = 0.240, Tmax = 0.470l = 88
5883 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.038H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0169P)2 + 0.7202P]
where P = (Fo2 + 2Fc2)/3
1853 reflections(Δ/σ)max = 0.001
161 parametersΔρmax = 0.81 e Å3
1 restraintΔρmin = 0.96 e Å3
Crystal data top
(C5H6N)2[U(C4H4O5)2O2]V = 1076.5 (5) Å3
Mr = 694.39Z = 2
Monoclinic, P21/mMo Kα radiation
a = 6.675 (2) ŵ = 7.61 mm1
b = 23.025 (5) ÅT = 100 K
c = 7.500 (2) Å0.2 × 0.2 × 0.1 mm
β = 110.946 (11)°
Data collection top
Rigaku R-AXIS IIC image-plate
diffractometer
1853 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
1763 reflections with I > 2σ(I)
Tmin = 0.240, Tmax = 0.470Rint = 0.032
5883 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0161 restraint
wR(F2) = 0.038H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.81 e Å3
1853 reflectionsΔρmin = 0.96 e Å3
161 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2005 (5)0.14723 (12)0.6860 (4)0.0098 (6)
C20.1218 (5)0.19806 (12)0.7705 (4)0.0099 (6)
H2A0.03050.19410.74560.012*
H2B0.19690.19940.90760.012*
C30.6803 (4)0.15744 (12)0.2908 (4)0.0098 (6)
C40.6827 (5)0.19771 (12)0.1312 (4)0.0123 (6)
H4A0.82990.20640.14580.015*
H4B0.61560.17840.00920.015*
C50.7778 (5)0.01458 (13)0.5828 (4)0.0138 (6)
H50.80450.03110.48030.017*
C60.7802 (5)0.04867 (13)0.7335 (4)0.0163 (6)
H60.80810.08830.73430.020*
C70.7402 (5)0.02294 (14)0.8853 (4)0.0172 (7)
H70.74160.04530.98910.021*
C80.6982 (5)0.03611 (14)0.8813 (4)0.0153 (6)
H80.67090.05380.98190.018*
C90.6976 (5)0.06821 (13)0.7265 (4)0.0130 (6)
H90.66970.10790.72150.016*
O10.2058 (5)0.25000.2704 (4)0.0135 (6)
O20.6224 (5)0.25000.7273 (4)0.0122 (6)
O30.2918 (3)0.16052 (9)0.5665 (3)0.0152 (5)
O40.1753 (3)0.09789 (9)0.7362 (3)0.0146 (4)
O50.1617 (5)0.25000.6843 (4)0.0108 (6)
O60.6254 (3)0.17793 (9)0.4239 (3)0.0132 (4)
O70.7398 (4)0.10647 (9)0.2845 (3)0.0153 (5)
O80.5726 (5)0.25000.1329 (4)0.0133 (6)
U10.41668 (2)0.25000.497706 (19)0.00626 (7)
N10.7374 (4)0.04215 (11)0.5828 (3)0.0118 (5)
H10.740 (7)0.0628 (15)0.486 (4)0.030 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0074 (14)0.0112 (14)0.0097 (13)0.0017 (11)0.0018 (11)0.0006 (11)
C20.0117 (14)0.0092 (14)0.0100 (14)0.0018 (12)0.0051 (12)0.0020 (11)
C30.0058 (14)0.0125 (14)0.0098 (13)0.0041 (12)0.0014 (11)0.0029 (11)
C40.0134 (15)0.0105 (15)0.0125 (14)0.0014 (12)0.0040 (12)0.0006 (11)
C50.0079 (14)0.0185 (15)0.0147 (14)0.0027 (12)0.0036 (12)0.0065 (12)
C60.0134 (15)0.0109 (15)0.0213 (16)0.0007 (12)0.0021 (13)0.0007 (12)
C70.0140 (16)0.0206 (16)0.0138 (15)0.0016 (13)0.0013 (13)0.0064 (12)
C80.0129 (15)0.0201 (16)0.0127 (14)0.0010 (12)0.0044 (12)0.0034 (12)
C90.0113 (15)0.0110 (14)0.0160 (15)0.0006 (12)0.0041 (12)0.0007 (12)
O10.0093 (15)0.0182 (15)0.0114 (14)0.0000.0018 (12)0.000
O20.0149 (16)0.0141 (14)0.0065 (13)0.0000.0025 (12)0.000
O30.0192 (12)0.0090 (10)0.0225 (11)0.0026 (9)0.0137 (10)0.0019 (8)
O40.0192 (12)0.0097 (10)0.0163 (10)0.0002 (9)0.0080 (9)0.0025 (8)
O50.0159 (16)0.0067 (13)0.0131 (14)0.0000.0091 (13)0.000
O60.0156 (11)0.0142 (10)0.0131 (10)0.0045 (9)0.0090 (9)0.0006 (8)
O70.0237 (12)0.0110 (10)0.0146 (10)0.0037 (9)0.0109 (10)0.0007 (8)
O80.0120 (15)0.0092 (14)0.0208 (15)0.0000.0085 (13)0.000
U10.00693 (9)0.00612 (9)0.00608 (9)0.0000.00275 (6)0.000
N10.0089 (12)0.0160 (13)0.0099 (12)0.0020 (10)0.0026 (10)0.0025 (10)
Geometric parameters (Å, º) top
C1—O41.227 (4)C7—C81.386 (5)
C1—O31.288 (4)C7—H70.9300
C1—C21.512 (4)C8—C91.375 (4)
C2—O51.429 (3)C8—H80.9300
C2—H2A0.9700C9—N11.340 (4)
C2—H2B0.9700C9—H90.9300
C3—O71.245 (4)O1—U11.781 (3)
C3—O61.271 (4)O2—U11.777 (3)
C3—C41.519 (4)O3—U12.348 (2)
C4—O81.413 (3)O5—C2i1.429 (3)
C4—H4A0.9700O5—U12.561 (3)
C4—H4B0.9700O6—U12.357 (2)
C5—N11.334 (4)O8—C4i1.413 (3)
C5—C61.372 (4)U1—O3i2.348 (2)
C5—H50.9300U1—O6i2.357 (2)
C6—C71.391 (4)N1—H10.875 (19)
C6—H60.9300
O4—C1—O3125.8 (3)C8—C9—H9120.1
O4—C1—C2118.8 (2)C1—O3—U1130.90 (18)
O3—C1—C2115.5 (2)C2—O5—C2i113.6 (3)
O5—C2—C1108.0 (2)C2—O5—U1121.01 (15)
O5—C2—H2A110.1C2i—O5—U1121.01 (15)
C1—C2—H2A110.1C3—O6—U1143.76 (19)
O5—C2—H2B110.1C4—O8—C4i116.9 (3)
C1—C2—H2B110.1O2—U1—O1178.59 (12)
H2A—C2—H2B108.4O2—U1—O389.95 (7)
O7—C3—O6124.4 (3)O1—U1—O389.38 (7)
O7—C3—C4116.9 (2)O2—U1—O3i89.95 (7)
O6—C3—C4118.7 (2)O1—U1—O3i89.38 (7)
O8—C4—C3111.2 (2)O3—U1—O3i122.68 (10)
O8—C4—H4A109.4O2—U1—O684.87 (9)
C3—C4—H4A109.4O1—U1—O696.12 (8)
O8—C4—H4B109.4O3—U1—O673.72 (7)
C3—C4—H4B109.4O3i—U1—O6162.87 (7)
H4A—C4—H4B108.0O2—U1—O6i84.87 (9)
N1—C5—C6120.2 (3)O1—U1—O6i96.12 (8)
N1—C5—H5119.9O3—U1—O6i162.87 (7)
C6—C5—H5119.9O3i—U1—O6i73.72 (7)
C5—C6—C7118.8 (3)O6—U1—O6i89.54 (10)
C5—C6—H6120.6O2—U1—O584.54 (12)
C7—C6—H6120.6O1—U1—O594.06 (11)
C8—C7—C6119.8 (3)O3—U1—O561.48 (5)
C8—C7—H7120.1O3i—U1—O561.48 (5)
C6—C7—H7120.1O6—U1—O5133.84 (5)
C9—C8—C7119.0 (3)O6i—U1—O5133.84 (5)
C9—C8—H8120.5C5—N1—C9122.4 (3)
C7—C8—H8120.5C5—N1—H1118 (3)
N1—C9—C8119.8 (3)C9—N1—H1120 (3)
N1—C9—H9120.1
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O70.87 (3)1.82 (3)2.688 (3)179 (6)
C2—H2A···O2ii0.972.613.446 (5)144
C4—H4A···O1iii0.972.553.482 (5)161
C5—H5···O4iv0.932.283.168 (4)161
C7—H7···O4v0.932.283.195 (4)167
C8—H8···O7vi0.932.473.354 (4)159
Symmetry codes: (ii) x1, y, z; (iii) x+1, y, z; (iv) x+1, y, z+1; (v) x+1, y, z+2; (vi) x, y, z+1.
(II) bis(2-methyl-pyridinium) dioxidobis(oxydiacetato)uranate(VI) top
Crystal data top
(C6H8N)2[U(C4H4O5)2O2]F(000) = 692
Mr = 722.44Dx = 1.971 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7415 reflections
a = 9.183 (2) Åθ = 3.0–25.0°
b = 11.104 (3) ŵ = 6.73 mm1
c = 12.826 (4) ÅT = 295 K
β = 111.490 (7)°Prism, yellow
V = 1217.0 (6) Å30.2 × 0.2 × 0.1 mm
Z = 2
Data collection top
Rigaku R-AXIS IIC image-plate
diffractometer
2106 independent reflections
Radiation source: rotating-anode X-ray tube, Rigaku RU-H3R1694 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 105 pixels mm-1θmax = 25.0°, θmin = 3.0°
ϕ scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
k = 1313
Tmin = 0.304, Tmax = 0.510l = 1415
7415 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H atoms treated by a mixture of independent and constrained refinement
S = 0.92 w = 1/[σ2(Fo2) + (0.0396P)2 + 1.7775P]
where P = (Fo2 + 2Fc2)/3
2106 reflections(Δ/σ)max = 0.001
165 parametersΔρmax = 1.15 e Å3
0 restraintsΔρmin = 1.38 e Å3
Crystal data top
(C6H8N)2[U(C4H4O5)2O2]V = 1217.0 (6) Å3
Mr = 722.44Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.183 (2) ŵ = 6.73 mm1
b = 11.104 (3) ÅT = 295 K
c = 12.826 (4) Å0.2 × 0.2 × 0.1 mm
β = 111.490 (7)°
Data collection top
Rigaku R-AXIS IIC image-plate
diffractometer
2106 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
1694 reflections with I > 2σ(I)
Tmin = 0.304, Tmax = 0.510Rint = 0.027
7415 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.059H atoms treated by a mixture of independent and constrained refinement
S = 0.92Δρmax = 1.15 e Å3
2106 reflectionsΔρmin = 1.38 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2297 (5)0.2415 (4)0.1298 (4)0.0366 (10)
C20.3682 (5)0.1601 (4)0.1499 (4)0.0448 (12)
H2A0.42930.15390.22940.054*
H2B0.43480.19110.11230.054*
C30.4244 (6)0.0439 (5)0.1218 (6)0.0624 (17)
H3A0.50880.01300.10110.075*
H3B0.46720.06920.19960.075*
C40.3444 (5)0.1465 (4)0.0478 (5)0.0472 (12)
C50.1765 (6)0.6455 (5)0.2108 (5)0.0580 (14)
H5A0.20990.64790.29100.087*
H5B0.17670.72550.18270.087*
H5C0.24670.59570.18980.087*
C60.0157 (6)0.5948 (4)0.1628 (4)0.0382 (10)
C70.1197 (6)0.6589 (4)0.1471 (4)0.0458 (12)
H70.11370.74020.16580.055*
C80.2626 (6)0.6036 (5)0.1042 (5)0.0573 (14)
H80.35330.64740.09330.069*
C90.2722 (7)0.4822 (5)0.0770 (6)0.0567 (15)
H90.36840.44300.04960.068*
C100.1364 (6)0.4216 (4)0.0916 (4)0.0460 (11)
H100.14010.34060.07240.055*
N10.0011 (5)0.4779 (3)0.1330 (3)0.0361 (9)
O10.0042 (4)0.0549 (3)0.1298 (3)0.0441 (8)
O20.0958 (3)0.1982 (2)0.0778 (3)0.0417 (7)
O30.2569 (4)0.3464 (3)0.1655 (3)0.0517 (9)
O40.3067 (4)0.0462 (3)0.1057 (3)0.0566 (10)
O50.1986 (3)0.1378 (3)0.0026 (3)0.0540 (9)
O60.4252 (4)0.2318 (3)0.0393 (4)0.0861 (15)
U10.00000.00000.00000.02645 (10)
H10.084 (6)0.441 (5)0.137 (4)0.050 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.036 (2)0.028 (2)0.044 (3)0.0004 (18)0.012 (2)0.0039 (19)
C20.032 (2)0.030 (2)0.065 (3)0.0045 (19)0.009 (2)0.015 (2)
C30.032 (3)0.039 (3)0.098 (5)0.014 (2)0.003 (3)0.021 (3)
C40.032 (2)0.035 (3)0.072 (3)0.004 (2)0.016 (2)0.010 (2)
C50.060 (3)0.042 (3)0.067 (4)0.008 (2)0.018 (3)0.005 (3)
C60.054 (3)0.029 (2)0.032 (2)0.002 (2)0.015 (2)0.0031 (18)
C70.063 (3)0.025 (2)0.050 (3)0.012 (2)0.022 (3)0.001 (2)
C80.051 (3)0.048 (3)0.070 (4)0.021 (3)0.018 (3)0.002 (3)
C90.042 (3)0.047 (3)0.073 (4)0.001 (2)0.011 (3)0.010 (3)
C100.049 (3)0.034 (3)0.053 (3)0.005 (2)0.016 (2)0.007 (2)
N10.043 (2)0.027 (2)0.037 (2)0.0084 (17)0.0141 (18)0.0000 (16)
O10.064 (2)0.0293 (17)0.0412 (18)0.0008 (15)0.0216 (16)0.0011 (15)
O20.0303 (15)0.0281 (15)0.0579 (19)0.0018 (12)0.0059 (14)0.0078 (15)
O30.0395 (18)0.0316 (17)0.075 (2)0.0020 (14)0.0108 (17)0.0193 (17)
O40.0329 (18)0.0277 (16)0.094 (3)0.0072 (15)0.0050 (18)0.0180 (19)
O50.0320 (17)0.0413 (18)0.082 (3)0.0069 (14)0.0129 (17)0.0208 (18)
O60.041 (2)0.049 (2)0.153 (4)0.0139 (18)0.018 (2)0.041 (3)
U10.02845 (13)0.01915 (13)0.02961 (13)0.00378 (8)0.00812 (9)0.00164 (8)
Geometric parameters (Å, º) top
C1—O31.243 (5)C7—C81.368 (7)
C1—O21.260 (5)C7—H70.9300
C1—C21.503 (6)C8—C91.387 (7)
C2—O41.416 (5)C8—H80.9300
C2—H2A0.9700C9—C101.368 (7)
C2—H2B0.9700C9—H90.9300
C3—O41.431 (6)C10—N11.333 (6)
C3—C41.493 (7)C10—H100.9300
C3—H3A0.9700N1—H10.85 (6)
C3—H3B0.9700O1—U11.760 (3)
C4—O61.232 (5)O2—U12.443 (3)
C4—O51.260 (5)O4—U12.690 (3)
C5—C61.487 (7)O5—U12.391 (3)
C5—H5A0.9600U1—O1i1.760 (3)
C5—H5B0.9600U1—O5i2.390 (3)
C5—H5C0.9600U1—O2i2.443 (3)
C6—N11.345 (6)U1—O4i2.690 (3)
C6—C71.382 (6)
O3—C1—O2125.3 (4)C9—C10—H10119.8
O3—C1—C2117.2 (4)C10—N1—C6123.2 (4)
O2—C1—C2117.5 (4)C10—N1—H1120 (4)
O4—C2—C1106.3 (3)C6—N1—H1117 (4)
O4—C2—H2A110.5C1—O2—U1134.1 (3)
C1—C2—H2A110.5C2—O4—C3113.4 (4)
O4—C2—H2B110.5C2—O4—U1124.2 (2)
C1—C2—H2B110.5C3—O4—U1122.4 (3)
H2A—C2—H2B108.7C4—O5—U1135.6 (3)
O4—C3—C4105.8 (4)O1—U1—O1i180.0
O4—C3—H3A110.6O1—U1—O5i87.76 (14)
C4—C3—H3A110.6O1i—U1—O5i92.24 (14)
O4—C3—H3B110.6O1—U1—O592.24 (14)
C4—C3—H3B110.6O1i—U1—O587.76 (14)
H3A—C3—H3B108.7O5i—U1—O5180.0
O6—C4—O5125.1 (5)O1—U1—O2i87.37 (13)
O6—C4—C3118.1 (4)O1i—U1—O2i92.63 (13)
O5—C4—C3116.8 (4)O5i—U1—O2i114.84 (10)
C6—C5—H5A109.5O5—U1—O2i65.16 (10)
C6—C5—H5B109.5O1—U1—O292.63 (13)
H5A—C5—H5B109.5O1i—U1—O287.37 (13)
C6—C5—H5C109.5O5i—U1—O265.16 (10)
H5A—C5—H5C109.5O5—U1—O2114.84 (10)
H5B—C5—H5C109.5O2i—U1—O2180.0
N1—C6—C7117.7 (4)O1—U1—O4i93.82 (14)
N1—C6—C5117.6 (4)O1i—U1—O4i86.18 (14)
C7—C6—C5124.7 (4)O5i—U1—O4i57.73 (10)
C8—C7—C6120.4 (4)O5—U1—O4i122.27 (10)
C8—C7—H7119.8O2i—U1—O4i57.89 (10)
C6—C7—H7119.8O2—U1—O4i122.11 (10)
C7—C8—C9120.0 (5)O1—U1—O486.18 (14)
C7—C8—H8120.0O1i—U1—O493.82 (14)
C9—C8—H8120.0O5i—U1—O4122.27 (10)
C10—C9—C8118.2 (5)O5—U1—O457.73 (10)
C10—C9—H9120.9O2i—U1—O4122.11 (10)
C8—C9—H9120.9O2—U1—O457.89 (10)
N1—C10—C9120.4 (5)O4i—U1—O4180.0
N1—C10—H10119.8
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.90 (6)1.77 (6)2.666 (5)169.5
C7—H7···O1ii0.932.633.409 (6)141
C8—H8···O6iii0.932.323.242 (7)171
C10—H10···O50.932.413.328 (6)170
Symmetry codes: (i) x, y, z; (ii) x, y+1, z; (iii) x+1, y+1, z.
(III) bis(3-methylpyridinium) dioxidobis(oxydiacetato)uranate(VI) top
Crystal data top
(C6H8N)2[U(C4H4O5)2O2]F(000) = 692
Mr = 722.44Dx = 2.059 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7099 reflections
a = 7.415 (2) Åθ = 3.2–25.0°
b = 13.312 (5) ŵ = 7.03 mm1
c = 11.806 (4) ÅT = 295 K
β = 91.224 (15)°Prism, yellow
V = 1165.1 (7) Å30.4 × 0.2 × 0.1 mm
Z = 2
Data collection top
Rigaku R-AXIS IIC image-plate
diffractometer
1885 independent reflections
Radiation source: rotating-anode X-ray tube, Rigaku RU-H3R1544 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.104
Detector resolution: 105 pixels mm-1θmax = 25.0°, θmin = 3.2°
ϕ scansh = 88
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
k = 1515
Tmin = 0.088, Tmax = 0.500l = 1414
7099 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0872P)2]
where P = (Fo2 + 2Fc2)/3
1885 reflections(Δ/σ)max < 0.001
165 parametersΔρmax = 2.20 e Å3
0 restraintsΔρmin = 3.34 e Å3
Crystal data top
(C6H8N)2[U(C4H4O5)2O2]V = 1165.1 (7) Å3
Mr = 722.44Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.415 (2) ŵ = 7.03 mm1
b = 13.312 (5) ÅT = 295 K
c = 11.806 (4) Å0.4 × 0.2 × 0.1 mm
β = 91.224 (15)°
Data collection top
Rigaku R-AXIS IIC image-plate
diffractometer
1885 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
1544 reflections with I > 2σ(I)
Tmin = 0.088, Tmax = 0.500Rint = 0.104
7099 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 2.20 e Å3
1885 reflectionsΔρmin = 3.34 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3040 (7)0.1055 (4)0.1778 (5)0.0350 (13)
C20.4052 (8)0.1423 (5)0.0752 (5)0.0382 (14)
H2A0.52860.11810.07530.046*
H2B0.40720.21520.07410.046*
C30.3940 (7)0.1299 (5)0.1269 (4)0.0357 (13)
H3A0.41410.20180.13160.043*
H3B0.50890.09590.13690.043*
C40.2661 (7)0.0971 (4)0.2150 (4)0.0313 (12)
O10.1292 (6)0.1104 (3)0.0077 (3)0.0449 (10)
O20.1649 (6)0.0525 (5)0.1586 (3)0.0546 (14)
O30.3562 (6)0.1286 (4)0.2724 (3)0.0507 (12)
O40.3135 (6)0.1045 (3)0.0216 (3)0.0474 (11)
O50.1239 (5)0.0552 (4)0.1814 (3)0.0489 (12)
O60.3048 (5)0.1155 (3)0.3162 (3)0.0417 (10)
U10.00000.00000.00000.0259 (2)
C50.1428 (8)0.0746 (5)0.3917 (5)0.0372 (13)
H50.13780.04470.32070.045*
C60.3006 (8)0.0792 (5)0.4459 (5)0.0420 (14)
H60.40490.05270.41250.050*
C70.3058 (8)0.1237 (5)0.5515 (5)0.0402 (14)
H70.41480.12690.58890.048*
C80.1529 (9)0.1636 (5)0.6025 (5)0.0355 (13)
C90.0049 (11)0.1569 (6)0.5431 (7)0.0424 (17)
H90.11150.18270.57410.051*
C100.1552 (11)0.2138 (5)0.7147 (5)0.0583 (19)
H10A0.05210.19290.75920.087*
H10B0.26340.19570.75300.087*
H10C0.15170.28530.70450.087*
N10.0051 (8)0.1127 (4)0.4394 (5)0.0355 (13)
H10.121 (9)0.101 (5)0.410 (6)0.047 (19)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.034 (3)0.032 (3)0.040 (3)0.003 (2)0.006 (3)0.003 (2)
C20.033 (3)0.044 (4)0.039 (3)0.013 (3)0.011 (3)0.001 (3)
C30.031 (3)0.045 (4)0.031 (3)0.007 (2)0.002 (2)0.004 (2)
C40.027 (3)0.031 (3)0.036 (3)0.003 (2)0.004 (2)0.001 (2)
O10.046 (2)0.041 (2)0.048 (3)0.011 (2)0.0026 (19)0.0037 (19)
O20.044 (3)0.088 (4)0.032 (2)0.038 (3)0.0103 (19)0.003 (2)
O30.056 (3)0.064 (3)0.032 (2)0.023 (2)0.013 (2)0.007 (2)
O40.049 (2)0.067 (3)0.027 (2)0.028 (2)0.0057 (18)0.0030 (19)
O50.044 (2)0.069 (4)0.034 (2)0.027 (2)0.0056 (18)0.013 (2)
O60.036 (2)0.059 (3)0.031 (2)0.010 (2)0.0007 (18)0.0061 (19)
U10.0261 (3)0.0278 (3)0.0240 (3)0.00483 (9)0.0025 (2)0.00327 (8)
C50.049 (3)0.034 (3)0.028 (3)0.003 (3)0.003 (3)0.001 (2)
C60.038 (3)0.045 (4)0.043 (4)0.005 (3)0.002 (3)0.001 (3)
C70.037 (3)0.036 (3)0.048 (3)0.001 (3)0.013 (3)0.006 (3)
C80.050 (3)0.025 (3)0.031 (3)0.004 (3)0.003 (2)0.001 (2)
C90.050 (4)0.044 (4)0.033 (4)0.005 (3)0.006 (3)0.005 (4)
C100.087 (5)0.046 (4)0.042 (4)0.001 (4)0.008 (4)0.006 (3)
N10.041 (3)0.033 (3)0.033 (3)0.001 (3)0.005 (2)0.002 (2)
Geometric parameters (Å, º) top
C1—O31.229 (7)U1—O5i2.426 (4)
C1—O21.274 (7)U1—O4i2.716 (4)
C1—C21.494 (8)C5—N11.322 (8)
C2—O41.435 (7)C5—C61.346 (8)
C2—H2A0.9700C5—H50.9300
C2—H2B0.9700C6—C71.382 (8)
C3—O41.408 (6)C6—H60.9300
C3—C41.487 (7)C7—C81.379 (9)
C3—H3A0.9700C7—H70.9300
C3—H3B0.9700C8—C91.380 (10)
C4—O61.247 (6)C8—C101.484 (8)
C4—O51.250 (6)C9—N11.359 (12)
O1—U11.756 (4)C9—H90.9300
O2—U12.364 (4)C10—H10A0.9600
O4—U12.716 (4)C10—H10B0.9600
O5—U12.426 (4)C10—H10C0.9600
U1—O1i1.756 (4)N1—H10.95 (7)
U1—O2i2.364 (4)
O3—C1—O2124.9 (6)O1—U1—O4i87.64 (17)
O3—C1—C2119.5 (5)O1i—U1—O4i92.35 (17)
O2—C1—C2115.6 (5)O2—U1—O4i122.21 (13)
O4—C2—C1107.0 (4)O2i—U1—O4i57.79 (13)
O4—C2—H2A110.3O5i—U1—O4i56.95 (12)
C1—C2—H2A110.3O5—U1—O4i123.05 (12)
O4—C2—H2B110.3O1—U1—O492.36 (17)
C1—C2—H2B110.3O1i—U1—O487.64 (17)
H2A—C2—H2B108.6O2—U1—O457.79 (13)
O4—C3—C4106.4 (4)O2i—U1—O4122.21 (13)
O4—C3—H3A110.5O5i—U1—O4123.05 (12)
C4—C3—H3A110.5O5—U1—O456.95 (12)
O4—C3—H3B110.5O4i—U1—O4180.0
C4—C3—H3B110.5N1—C5—C6120.1 (6)
H3A—C3—H3B108.6N1—C5—H5119.9
O6—C4—O5124.5 (5)C6—C5—H5119.9
O6—C4—C3118.4 (5)C5—C6—C7119.3 (6)
O5—C4—C3117.1 (5)C5—C6—H6120.3
C1—O2—U1137.7 (4)C7—C6—H6120.3
C3—O4—C2114.8 (4)C8—C7—C6121.4 (5)
C3—O4—U1123.5 (3)C8—C7—H7119.3
C2—O4—U1121.6 (3)C6—C7—H7119.3
C4—O5—U1135.7 (3)C7—C8—C9116.8 (6)
O1—U1—O1i180.0C7—C8—C10122.5 (6)
O1—U1—O290.1 (2)C9—C8—C10120.6 (6)
O1i—U1—O289.9 (2)N1—C9—C8120.2 (8)
O1—U1—O2i89.9 (2)N1—C9—H9119.9
O1i—U1—O2i90.1 (2)C8—C9—H9119.9
O2—U1—O2i180.0C8—C10—H10A109.5
O1—U1—O5i90.67 (18)C8—C10—H10B109.5
O1i—U1—O5i89.33 (18)H10A—C10—H10B109.5
O2—U1—O5i65.35 (14)C8—C10—H10C109.5
O2i—U1—O5i114.66 (14)H10A—C10—H10C109.5
O1—U1—O589.33 (18)H10B—C10—H10C109.5
O1i—U1—O590.67 (18)C5—N1—C9122.2 (7)
O2—U1—O5114.65 (14)C5—N1—H1122 (4)
O2i—U1—O565.35 (14)C9—N1—H1115 (4)
O5i—U1—O5180.0
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O60.94 (7)1.79 (7)2.682 (7)157 (6)
C3—H3A···O3ii0.972.573.441 (8)150
C5—H5···O2i0.932.323.233 (8)169
C6—H6···O6iii0.932.553.309 (7)139
C7—H7···O3iv0.932.383.291 (7)165
Symmetry codes: (i) x, y, z; (ii) x, y+1/2, z+1/2; (iii) x1, y, z; (iv) x1, y, z+1.
(IV) bis(4-methylpyridinium) dioxidobis(oxydiacetato)uranate(VI) top
Crystal data top
(C6H8N)2[U(C4H4O5)2O2]F(000) = 692
Mr = 722.24Dx = 2.063 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6992 reflections
a = 7.3439 (13) Åθ = 3.2–25.0°
b = 12.999 (2) ŵ = 7.05 mm1
c = 12.194 (2) ÅT = 295 K
β = 92.438 (9)°Prism, yellow
V = 1163.0 (3) Å30.2 × 0.2 × 0.1 mm
Z = 2
Data collection top
Rigaku R-AXIS IIC image-plate
diffractometer
2002 independent reflections
Radiation source: rotating-anode X-ray tube, Rigaku RU-H3R1752 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Detector resolution: 105 pixels mm-1θmax = 25.0°, θmin = 3.2°
ϕ scansh = 88
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
k = 1515
Tmin = 0.231, Tmax = 0.490l = 1414
6992 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0435P)2 + 1.96P]
where P = (Fo2 + 2Fc2)/3
2002 reflections(Δ/σ)max = 0.010
165 parametersΔρmax = 2.28 e Å3
1 restraintΔρmin = 1.99 e Å3
Crystal data top
(C6H8N)2[U(C4H4O5)2O2]V = 1163.0 (3) Å3
Mr = 722.24Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.3439 (13) ŵ = 7.05 mm1
b = 12.999 (2) ÅT = 295 K
c = 12.194 (2) Å0.2 × 0.2 × 0.1 mm
β = 92.438 (9)°
Data collection top
Rigaku R-AXIS IIC image-plate
diffractometer
2002 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
1752 reflections with I > 2σ(I)
Tmin = 0.231, Tmax = 0.490Rint = 0.061
6992 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0331 restraint
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 2.28 e Å3
2002 reflectionsΔρmin = 1.99 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3021 (7)0.0894 (4)0.1824 (4)0.0293 (11)
C20.4046 (7)0.1337 (4)0.0839 (4)0.0307 (12)
H2A0.52600.10430.07700.037*
H2B0.41570.20770.09140.037*
C30.3855 (8)0.1489 (5)0.1096 (4)0.0364 (13)
H3A0.37480.22330.11110.044*
H3B0.51370.13100.11590.044*
C40.2866 (7)0.1025 (4)0.2020 (4)0.0306 (12)
C50.2897 (9)0.0831 (4)0.4181 (5)0.0434 (14)
H50.39010.06130.38040.052*
C60.3121 (8)0.1205 (4)0.5222 (5)0.0389 (13)
H60.42790.12260.55600.047*
C70.1649 (8)0.1552 (4)0.5775 (4)0.0302 (12)
C80.0063 (7)0.1502 (5)0.5253 (5)0.0350 (14)
H80.10860.17370.56000.042*
C90.0218 (9)0.1093 (5)0.4199 (5)0.0385 (14)
H90.13590.10400.38420.046*
C100.1847 (10)0.1962 (5)0.6926 (5)0.0510 (17)
H10A0.31150.19820.71530.077*
H10B0.13470.26430.69500.077*
H10C0.12070.15210.74110.077*
N10.1233 (8)0.0780 (4)0.3706 (4)0.0395 (12)
O10.1246 (5)0.1151 (3)0.0086 (3)0.0370 (9)
O20.1430 (5)0.0555 (3)0.1645 (3)0.0392 (10)
O30.3736 (5)0.0920 (4)0.2714 (3)0.0482 (11)
O40.3053 (5)0.1093 (3)0.0099 (3)0.0361 (9)
O50.1656 (6)0.0347 (4)0.1743 (3)0.0384 (9)
O60.3260 (6)0.1291 (3)0.2964 (3)0.0423 (10)
U10.00000.00000.00000.01952 (15)
H10.115 (11)0.045 (6)0.306 (4)0.08 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.027 (3)0.038 (3)0.022 (3)0.004 (2)0.004 (2)0.004 (2)
C20.024 (3)0.041 (3)0.027 (3)0.011 (2)0.002 (2)0.005 (2)
C30.039 (3)0.048 (3)0.022 (3)0.018 (3)0.002 (2)0.005 (2)
C40.028 (3)0.037 (3)0.026 (3)0.005 (2)0.003 (2)0.001 (2)
C50.045 (4)0.040 (3)0.047 (4)0.004 (3)0.022 (3)0.008 (3)
C60.032 (3)0.036 (3)0.048 (4)0.003 (2)0.001 (2)0.000 (3)
C70.042 (3)0.025 (3)0.024 (3)0.004 (2)0.004 (2)0.001 (2)
C80.035 (3)0.039 (4)0.031 (3)0.007 (2)0.006 (2)0.001 (3)
C90.040 (3)0.042 (3)0.032 (3)0.001 (3)0.006 (3)0.004 (3)
C100.072 (5)0.055 (4)0.025 (3)0.008 (3)0.005 (3)0.007 (3)
N10.060 (3)0.035 (3)0.023 (2)0.006 (2)0.006 (2)0.001 (2)
O10.042 (2)0.0302 (19)0.038 (2)0.0028 (17)0.0008 (17)0.0004 (17)
O20.030 (2)0.067 (3)0.0205 (18)0.022 (2)0.0006 (15)0.005 (2)
O30.035 (2)0.086 (3)0.024 (2)0.011 (2)0.0086 (17)0.006 (2)
O40.036 (2)0.055 (2)0.0170 (18)0.0227 (18)0.0005 (15)0.0002 (17)
O50.042 (2)0.053 (2)0.019 (2)0.023 (2)0.0056 (16)0.004 (2)
O60.051 (3)0.057 (3)0.019 (2)0.015 (2)0.0022 (17)0.0024 (18)
U10.0204 (2)0.02217 (19)0.0158 (2)0.00304 (8)0.00104 (11)0.00298 (9)
Geometric parameters (Å, º) top
C1—O31.226 (6)C7—C101.503 (7)
C1—O21.276 (6)C8—C91.391 (8)
C1—C21.505 (7)C8—H80.9300
C2—O41.418 (6)C9—N11.310 (8)
C2—H2A0.9700C9—H90.9300
C2—H2B0.9700C10—H10A0.9600
C3—O41.425 (6)C10—H10B0.9600
C3—C41.493 (7)C10—H10C0.9600
C3—H3A0.9700N1—H10.90 (6)
C3—H3B0.9700O1—U11.760 (4)
C4—O61.226 (6)O2—U12.414 (4)
C4—O51.287 (6)O4—U12.653 (3)
C5—N11.332 (8)O5—U12.445 (4)
C5—C61.362 (8)U1—O1i1.760 (4)
C5—H50.9300U1—O2i2.414 (4)
C6—C71.374 (8)U1—O5i2.445 (4)
C6—H60.9300U1—O4i2.653 (3)
C7—C81.386 (8)
O3—C1—O2126.2 (5)H10B—C10—H10C109.5
O3—C1—C2118.6 (5)C9—N1—C5122.3 (5)
O2—C1—C2115.2 (5)C9—N1—H1122 (5)
O4—C2—C1107.5 (4)C5—N1—H1116 (5)
O4—C2—H2A110.2C1—O2—U1132.8 (3)
C1—C2—H2A110.2C2—O4—C3113.5 (4)
O4—C2—H2B110.2C2—O4—U1123.1 (3)
C1—C2—H2B110.2C3—O4—U1123.4 (3)
H2A—C2—H2B108.5C4—O5—U1131.8 (3)
O4—C3—C4107.5 (4)O1—U1—O1i180.0
O4—C3—H3A110.2O1—U1—O2i92.34 (17)
C4—C3—H3A110.2O1i—U1—O2i87.66 (17)
O4—C3—H3B110.2O1—U1—O287.66 (17)
C4—C3—H3B110.2O1i—U1—O292.34 (17)
H3A—C3—H3B108.5O2i—U1—O2180.0
O6—C4—O5124.9 (5)O1—U1—O588.15 (18)
O6—C4—C3119.5 (5)O1i—U1—O591.85 (18)
O5—C4—C3115.6 (4)O2i—U1—O563.31 (12)
N1—C5—C6119.7 (5)O2—U1—O5116.69 (12)
N1—C5—H5120.2O1—U1—O5i91.85 (18)
C6—C5—H5120.2O1i—U1—O5i88.15 (18)
C5—C6—C7120.5 (5)O2i—U1—O5i116.69 (12)
C5—C6—H6119.7O2—U1—O5i63.30 (12)
C7—C6—H6119.7O5—U1—O5i180.0
C6—C7—C8118.4 (5)O1—U1—O491.02 (15)
C6—C7—C10121.9 (5)O1i—U1—O488.98 (15)
C8—C7—C10119.7 (5)O2i—U1—O4121.28 (11)
C7—C8—C9118.6 (6)O2—U1—O458.72 (11)
C7—C8—H8120.7O5—U1—O458.24 (12)
C9—C8—H8120.7O5i—U1—O4121.76 (12)
N1—C9—C8120.4 (5)O1—U1—O4i88.98 (15)
N1—C9—H9119.8O1i—U1—O4i91.02 (15)
C8—C9—H9119.8O2i—U1—O4i58.72 (11)
C7—C10—H10A109.5O2—U1—O4i121.28 (11)
C7—C10—H10B109.5O5—U1—O4i121.76 (12)
H10A—C10—H10B109.5O5i—U1—O4i58.24 (12)
C7—C10—H10C109.5O4—U1—O4i180.0
H10A—C10—H10C109.5
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O50.90 (6)1.97 (6)2.835 (6)165 (7)
C2—H2B···O6ii0.972.593.451 (6)147
C5—H5···O3iii0.932.273.115 (6)152
C6—H6···O6iv0.932.503.387 (7)160
C8—H8···O6v0.932.493.279 (7)143
C9—H9···O3i0.932.183.099 (7)169
Symmetry codes: (i) x, y, z; (ii) x, y+1/2, z1/2; (iii) x+1, y, z; (iv) x+1, y, z+1; (v) x, y, z+1.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formula(C5H6N)2[U(C4H4O5)2O2](C6H8N)2[U(C4H4O5)2O2](C6H8N)2[U(C4H4O5)2O2](C6H8N)2[U(C4H4O5)2O2]
Mr694.39722.44722.44722.24
Crystal system, space groupMonoclinic, P21/mMonoclinic, P21/cMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)100295295295
a, b, c (Å)6.675 (2), 23.025 (5), 7.500 (2)9.183 (2), 11.104 (3), 12.826 (4)7.415 (2), 13.312 (5), 11.806 (4)7.3439 (13), 12.999 (2), 12.194 (2)
β (°) 110.946 (11) 111.490 (7) 91.224 (15) 92.438 (9)
V3)1076.5 (5)1217.0 (6)1165.1 (7)1163.0 (3)
Z2222
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)7.616.737.037.05
Crystal size (mm)0.2 × 0.2 × 0.10.2 × 0.2 × 0.10.4 × 0.2 × 0.10.2 × 0.2 × 0.1
Data collection
DiffractometerRigaku R-AXIS IIC image-plate
diffractometer
Rigaku R-AXIS IIC image-plate
diffractometer
Rigaku R-AXIS IIC image-plate
diffractometer
Rigaku R-AXIS IIC image-plate
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2000)
Multi-scan
(CrystalClear; Rigaku, 2000)
Multi-scan
(CrystalClear; Rigaku, 2000)
Multi-scan
(CrystalClear; Rigaku, 2000)
Tmin, Tmax0.240, 0.4700.304, 0.5100.088, 0.5000.231, 0.490
No. of measured, independent and
observed [I > 2σ(I)] reflections
5883, 1853, 1763 7415, 2106, 1694 7099, 1885, 1544 6992, 2002, 1752
Rint0.0320.0270.1040.061
(sin θ/λ)max1)0.5940.5950.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.038, 1.06 0.022, 0.059, 0.92 0.050, 0.130, 1.03 0.033, 0.086, 1.14
No. of reflections1853210618852002
No. of parameters161165165165
No. of restraints1001
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.81, 0.961.15, 1.382.20, 3.342.28, 1.99

Computer programs: CrystalClear (Rigaku, 2000), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLUTON (Spek, 2009).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O70.87 (3)1.82 (3)2.688 (3)179 (6)
C2—H2A···O2i0.972.613.446 (5)144
C4—H4A···O1ii0.972.553.482 (5)161
C5—H5···O4iii0.932.283.168 (4)161
C7—H7···O4iv0.932.283.195 (4)167
C8—H8···O7v0.932.473.354 (4)159
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x+1, y, z+2; (v) x, y, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.90 (6)1.77 (6)2.666 (5)169.5
C7—H7···O1ii0.932.633.409 (6)141.2
C8—H8···O6iii0.932.323.242 (7)170.8
C10—H10···O50.932.413.328 (6)169.6
Symmetry codes: (i) x, y, z; (ii) x, y+1, z; (iii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O60.94 (7)1.79 (7)2.682 (7)157 (6)
C3—H3A···O3i0.972.573.441 (8)150.0
C5—H5···O2ii0.932.323.233 (8)168.7
C6—H6···O6iii0.932.553.309 (7)138.6
C7—H7···O3iv0.932.383.291 (7)164.9
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y, z; (iii) x1, y, z; (iv) x1, y, z+1.
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O50.90 (6)1.97 (6)2.835 (6)165 (7)
C2—H2B···O6i0.972.593.451 (6)147.1
C5—H5···O3ii0.932.273.115 (6)151.6
C6—H6···O6iii0.932.503.387 (7)160.2
C8—H8···O6iv0.932.493.279 (7)143.1
C9—H9···O3v0.932.183.099 (7)168.9
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x, y, z+1; (v) x, y, z.
Selected geometric parameters (Å, °) for (I) to (IV) top
Compound(I)(II)(III)(IV)
U1—O11.781 (3)1.760 (3)1.756 (4)1.760 (4)
U1—O21.777 (3)2.443 (3)2.364 (4)2.414 (4)
U1—O42.348 (2)2.690 (3)2.716 (4)2.653 (3)
U1—O52.561 (3)2.391 (3)2.426 (4)2.445 (4)
U1—O62.357 (2)
O1—U1—O2178.59 (12)92.63 (13)90.1 (2)87.66 (17)
O1—U1—O389.38 (7)
O1—U1—O594.06 (11)92.24 (14)89.33 (18)88.15 (18)
O1—U1—O696.12 (8)
O2—U1—O457.89 (10)57.79 (13)58.72 (11)
O2—U1—O5114.84 (10)114.65 (14)116.69 (12)
O3—U1—O561.48 (5)
O3—U1—O673.72 (7)
O4—U1—O557.73 (10)56.95 (12)58.24 (12)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds