Buy article online - an online subscription or single-article purchase is required to access this article.
The title compounds, C
12H
20N
6O
2, (I), and C
5H
9N
3O
2, (II), display the characteristic features of 1,2,4-triazole derivatives. Compound (I) lies about an inversion centre which is at the mid-point of the central C—C bond. Compound (II) also contains a planar 1,2,4-triazole ring but differs from (I) in that it has a hydroxy group attached to the ring. Molecules of (I) are held together in the crystal structure by intermolecular N—H
O contacts and by weak π–π stacking interactions between the 1,2,4-triazole moieties. Compound (II) contains intermolecular O—H
O and N—H
O hydrogen bonds.
Supporting information
CCDC references: 275523; 275524
For the synthesis of (I), ethylpropiyonatethoxycarbonylhydrazon (0.02 mol) was treated with a solution of 1,4-diaminobutane (0.01 mol) in water (50 ml), and the mixture was refluxed for 6 h. After cooling, the precipitate formed was recrystallized from ethanol–acetone (1:5) (yield 58%; m.p. 550–551 K). IR: 3155, 3053 (NH), 1675 (C═O), 1563 (C═N); 1H NMR: 1.63 (m, 2CH2), 1.85 (s, 2CH3), 2.54 (q, 2CH2), 3.70 (t, 2NCH2), 11.35 (s, 2NH). 13C NMR: 13.04 (2CH3), 18.67 (2CH2), 22.86 (2CH2), 38.98 (2NCH2), 149.51 (2 C3-triazol), 152.47 (2 C5-triazol). For the synthesis of (II), hydroxyamic acid n-propylethoxycarbonylhydrazid (0.01 mol) was dissolved in methanol (50 ml) and treated with 2 N NaOH (50 ml) with constant shaking·The mixture was refluxed for 2 h and cooled. After acidification with dilute HCl, the mixture was evaporated and the residue was dried. The solid residue was extracted with absolute ethanol. The extracts were collected and evaporated. Recrystallization of the crude product from acetone gave pure compound (II) (yield 72%; m.p. 406–407 K). IR 3310 (OH), 3150 (NH), 1735 (C═O), 1652 (C═N); 1H NMR: 0.85 (t, CH3), 1.56 (sext, CH2), 2.42 (t, CH2), 10.90 (s, OH); 11.35 (s, NH). 13C NMR: 13.35 (CH3), 18.71 (CH2), 25.98 (CH2), 145.65 (C3-triazol), 151.60 (C5-triazol).
H atoms were located geometrically and treated using a riding model, fixing the C—H distances to 0.97 (CH2 H atoms) and 0.96 Å (CH3 H atoms).
For both compounds, data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).
(I) 1,4-Bis(3-ethyl-5-oxo-4,5-dihydro-1
H-1,2,4-triazol-4-yl)butane
top
Crystal data top
C12H20N6O2 | F(000) = 600 |
Mr = 280.34 | Dx = 1.327 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 8578 reflections |
a = 8.326 (5) Å | θ = 1.5–27.1° |
b = 13.588 (5) Å | µ = 0.10 mm−1 |
c = 12.401 (5) Å | T = 293 K |
V = 1403.0 (11) Å3 | Plate, colourless |
Z = 4 | 0.80 × 0.54 × 0.22 mm |
Data collection top
Stoe IPDS-II diffractometer | 1379 independent reflections |
Radiation source: fine-focus sealed tube | 832 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.073 |
Detector resolution: 6.67 pixels mm-1 | θmax = 26.0°, θmin = 3.0° |
ω scans | h = −10→9 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | k = −16→16 |
Tmin = 0.951, Tmax = 0.992 | l = −15→15 |
11694 measured reflections | |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.072 | w = 1/[σ2(Fo2) + (0.0366P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.80 | (Δ/σ)max < 0.001 |
1379 reflections | Δρmax = 0.16 e Å−3 |
92 parameters | Δρmin = −0.14 e Å−3 |
0 restraints | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0078 (9) |
Crystal data top
C12H20N6O2 | V = 1403.0 (11) Å3 |
Mr = 280.34 | Z = 4 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 8.326 (5) Å | µ = 0.10 mm−1 |
b = 13.588 (5) Å | T = 293 K |
c = 12.401 (5) Å | 0.80 × 0.54 × 0.22 mm |
Data collection top
Stoe IPDS-II diffractometer | 1379 independent reflections |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | 832 reflections with I > 2σ(I) |
Tmin = 0.951, Tmax = 0.992 | Rint = 0.073 |
11694 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.072 | H-atom parameters constrained |
S = 0.80 | Δρmax = 0.16 e Å−3 |
1379 reflections | Δρmin = −0.14 e Å−3 |
92 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
C1 | −0.0259 (2) | 0.34133 (14) | −0.20400 (15) | 0.0610 (5) | |
H1A | 0.0071 | 0.3272 | −0.2765 | 0.091* | |
H1B | −0.0763 | 0.4048 | −0.2017 | 0.091* | |
H1C | −0.1006 | 0.2921 | −0.1802 | 0.091* | |
C2 | 0.1195 (2) | 0.34121 (15) | −0.13081 (13) | 0.0533 (5) | |
H2A | 0.1712 | 0.2774 | −0.1351 | 0.064* | |
H2B | 0.1955 | 0.3900 | −0.1566 | 0.064* | |
C3 | 0.08065 (17) | 0.36255 (11) | −0.01620 (12) | 0.0367 (4) | |
C5 | 0.11917 (16) | 0.39328 (12) | 0.15743 (12) | 0.0358 (4) | |
C6 | 0.36861 (16) | 0.39091 (12) | 0.04444 (12) | 0.0378 (4) | |
H6A | 0.4048 | 0.3447 | −0.0100 | 0.045* | |
H6B | 0.4247 | 0.3759 | 0.1110 | 0.045* | |
C7 | 0.41065 (16) | 0.49417 (12) | 0.00939 (13) | 0.0404 (4) | |
H7A | 0.3763 | 0.5403 | 0.0644 | 0.049* | |
H7B | 0.3534 | 0.5096 | −0.0566 | 0.049* | |
N1 | −0.03704 (13) | 0.38486 (10) | 0.13268 (10) | 0.0415 (3) | |
H1 | −0.1132 | 0.3909 | 0.1790 | 0.050* | |
N2 | −0.06240 (14) | 0.36536 (10) | 0.02443 (10) | 0.0423 (4) | |
N4 | 0.19611 (13) | 0.37842 (9) | 0.06105 (9) | 0.0337 (3) | |
O1 | 0.18120 (12) | 0.40998 (8) | 0.24644 (8) | 0.0507 (3) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
C1 | 0.0802 (13) | 0.0610 (11) | 0.0418 (10) | −0.0018 (10) | −0.0164 (9) | −0.0049 (9) |
C2 | 0.0521 (10) | 0.0675 (12) | 0.0401 (10) | −0.0019 (9) | 0.0005 (8) | −0.0108 (9) |
C3 | 0.0341 (8) | 0.0391 (9) | 0.0370 (9) | −0.0029 (7) | −0.0022 (7) | −0.0001 (7) |
C5 | 0.0309 (7) | 0.0416 (9) | 0.0349 (8) | −0.0013 (7) | 0.0017 (7) | 0.0051 (7) |
C6 | 0.0276 (7) | 0.0474 (10) | 0.0383 (8) | 0.0011 (7) | 0.0030 (6) | 0.0049 (7) |
C7 | 0.0303 (8) | 0.0454 (9) | 0.0455 (9) | −0.0004 (7) | 0.0024 (7) | 0.0054 (7) |
N1 | 0.0302 (7) | 0.0611 (9) | 0.0332 (7) | −0.0020 (6) | 0.0038 (5) | 0.0012 (7) |
N2 | 0.0343 (7) | 0.0527 (9) | 0.0399 (8) | −0.0049 (6) | −0.0027 (6) | −0.0032 (6) |
N4 | 0.0266 (6) | 0.0419 (7) | 0.0326 (7) | −0.0031 (5) | 0.0013 (5) | 0.0021 (6) |
O1 | 0.0397 (6) | 0.0802 (9) | 0.0322 (6) | 0.0013 (6) | −0.0050 (5) | 0.0006 (6) |
Geometric parameters (Å, º) top
C1—C2 | 1.513 (2) | C5—N4 | 1.3710 (19) |
C1—H1A | 0.9600 | C6—N4 | 1.4608 (19) |
C1—H1B | 0.9600 | C6—C7 | 1.510 (2) |
C1—H1C | 0.9600 | C6—H6A | 0.9700 |
C2—C3 | 1.486 (2) | C6—H6B | 0.9700 |
C2—H2A | 0.9700 | C7—C7i | 1.514 (3) |
C2—H2B | 0.9700 | C7—H7A | 0.9700 |
C3—N2 | 1.2938 (19) | C7—H7B | 0.9700 |
C3—N4 | 1.3742 (18) | N1—N2 | 1.3846 (18) |
C5—O1 | 1.2396 (18) | N1—H1 | 0.8600 |
C5—N1 | 1.341 (2) | | |
| | | |
C2—C1—H1A | 109.5 | N4—C6—H6A | 109.2 |
C2—C1—H1B | 109.5 | C7—C6—H6A | 109.2 |
H1A—C1—H1B | 109.5 | N4—C6—H6B | 109.2 |
C2—C1—H1C | 109.5 | C7—C6—H6B | 109.2 |
H1A—C1—H1C | 109.5 | H6A—C6—H6B | 107.9 |
H1B—C1—H1C | 109.5 | C6—C7—C7i | 111.67 (16) |
C3—C2—C1 | 113.52 (14) | C6—C7—H7A | 109.3 |
C3—C2—H2A | 108.9 | C7i—C7—H7A | 109.3 |
C1—C2—H2A | 108.9 | C6—C7—H7B | 109.3 |
C3—C2—H2B | 108.9 | C7i—C7—H7B | 109.3 |
C1—C2—H2B | 108.9 | H7A—C7—H7B | 107.9 |
H2A—C2—H2B | 107.7 | C5—N1—N2 | 112.71 (12) |
N2—C3—N4 | 111.59 (13) | C5—N1—H1 | 123.6 |
N2—C3—C2 | 125.36 (14) | N2—N1—H1 | 123.6 |
N4—C3—C2 | 123.01 (13) | C3—N2—N1 | 104.05 (11) |
O1—C5—N1 | 128.56 (13) | C5—N4—C3 | 107.70 (12) |
O1—C5—N4 | 127.48 (13) | C5—N4—C6 | 124.42 (12) |
N1—C5—N4 | 103.95 (12) | C3—N4—C6 | 127.43 (12) |
N4—C6—C7 | 112.11 (13) | | |
| | | |
C1—C2—C3—N2 | 11.0 (2) | N1—C5—N4—C3 | 0.39 (16) |
C1—C2—C3—N4 | −171.44 (15) | O1—C5—N4—C6 | −7.3 (2) |
N4—C6—C7—C7i | −179.05 (16) | N1—C5—N4—C6 | 173.08 (14) |
O1—C5—N1—N2 | −179.67 (16) | N2—C3—N4—C5 | −0.62 (18) |
N4—C5—N1—N2 | −0.06 (17) | C2—C3—N4—C5 | −178.47 (15) |
N4—C3—N2—N1 | 0.55 (18) | N2—C3—N4—C6 | −173.03 (14) |
C2—C3—N2—N1 | 178.34 (15) | C2—C3—N4—C6 | 9.1 (2) |
C5—N1—N2—C3 | −0.30 (18) | C7—C6—N4—C5 | −90.72 (17) |
O1—C5—N4—C3 | 180.00 (16) | C7—C6—N4—C3 | 80.50 (19) |
Symmetry code: (i) −x+1, −y+1, −z. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1ii | 0.86 | 1.96 | 2.805 (2) | 166 (1) |
Symmetry code: (ii) x−1/2, y, −z+1/2. |
(II) 4-hydroxy-3-n-propyl-4,5-dihydro-1
H-1,2,4-triazol-5-one
top
Crystal data top
C5H9N3O2 | F(000) = 608 |
Mr = 143.15 | Dx = 1.383 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 5155 reflections |
a = 27.010 (3) Å | θ = 1.5–26.7° |
b = 4.2067 (3) Å | µ = 0.11 mm−1 |
c = 12.1089 (14) Å | T = 293 K |
β = 91.715 (9)° | Prism, colourless |
V = 1375.2 (2) Å3 | 0.50 × 0.35 × 0.22 mm |
Z = 8 | |
Data collection top
Stoe IPDS-II diffractometer | 1347 independent reflections |
Radiation source: fine-focus sealed tube | 1207 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.041 |
Detector resolution: 6.67 pixels mm-1 | θmax = 26.0°, θmin = 1.5° |
ω scans | h = −32→32 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | k = −4→5 |
Tmin = 0.946, Tmax = 0.972 | l = −14→14 |
5874 measured reflections | |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.098 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.13 | w = 1/[σ2(Fo2) + (0.0541P)2 + 0.2687P] where P = (Fo2 + 2Fc2)/3 |
1347 reflections | (Δ/σ)max < 0.001 |
95 parameters | Δρmax = 0.16 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
Crystal data top
C5H9N3O2 | V = 1375.2 (2) Å3 |
Mr = 143.15 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 27.010 (3) Å | µ = 0.11 mm−1 |
b = 4.2067 (3) Å | T = 293 K |
c = 12.1089 (14) Å | 0.50 × 0.35 × 0.22 mm |
β = 91.715 (9)° | |
Data collection top
Stoe IPDS-II diffractometer | 1347 independent reflections |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | 1207 reflections with I > 2σ(I) |
Tmin = 0.946, Tmax = 0.972 | Rint = 0.041 |
5874 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.098 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.13 | Δρmax = 0.16 e Å−3 |
1347 reflections | Δρmin = −0.24 e Å−3 |
95 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
H1 | −0.0420 (6) | −0.043 (4) | 0.8054 (14) | 0.072 (5)* | |
C1 | −0.20467 (6) | 0.1342 (5) | 0.88243 (15) | 0.0754 (5) | |
H1A | −0.2007 | 0.1931 | 0.9588 | 0.113* | |
H1B | −0.2122 | −0.0884 | 0.8771 | 0.113* | |
H1C | −0.2312 | 0.2548 | 0.8487 | 0.113* | |
C2 | −0.15735 (5) | 0.2019 (4) | 0.82384 (12) | 0.0546 (4) | |
H2A | −0.1304 | 0.0872 | 0.8607 | 0.065* | |
H2B | −0.1500 | 0.4271 | 0.8296 | 0.065* | |
C3 | −0.11474 (4) | 0.1977 (3) | 0.64273 (9) | 0.0397 (3) | |
C4 | −0.15970 (4) | 0.1083 (3) | 0.70247 (11) | 0.0473 (3) | |
H4A | −0.1644 | −0.1198 | 0.6969 | 0.057* | |
H4B | −0.1882 | 0.2097 | 0.6670 | 0.057* | |
C5 | −0.03456 (4) | 0.2233 (3) | 0.60332 (9) | 0.0377 (3) | |
N1 | −0.06250 (4) | 0.4103 (3) | 0.53765 (8) | 0.0435 (3) | |
H2 | −0.0508 | 0.5250 | 0.4857 | 0.052* | |
N2 | −0.11232 (4) | 0.4000 (3) | 0.56215 (8) | 0.0452 (3) | |
N4 | −0.06835 (3) | 0.0842 (2) | 0.66942 (7) | 0.0372 (3) | |
O1 | −0.05747 (3) | −0.1542 (2) | 0.74336 (7) | 0.0431 (3) | |
O2 | 0.01132 (3) | 0.1830 (2) | 0.60593 (7) | 0.0449 (3) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
C1 | 0.0611 (9) | 0.0942 (13) | 0.0723 (10) | 0.0027 (9) | 0.0246 (8) | 0.0037 (9) |
C2 | 0.0507 (7) | 0.0631 (8) | 0.0505 (7) | −0.0017 (6) | 0.0097 (6) | −0.0012 (6) |
C3 | 0.0385 (6) | 0.0427 (6) | 0.0376 (6) | 0.0024 (5) | −0.0018 (4) | −0.0043 (5) |
C4 | 0.0382 (6) | 0.0519 (7) | 0.0516 (7) | −0.0012 (5) | 0.0005 (5) | −0.0004 (6) |
C5 | 0.0409 (6) | 0.0414 (6) | 0.0306 (5) | 0.0024 (5) | 0.0010 (4) | −0.0036 (4) |
N1 | 0.0431 (5) | 0.0516 (6) | 0.0360 (5) | 0.0055 (4) | 0.0046 (4) | 0.0061 (4) |
N2 | 0.0421 (5) | 0.0525 (6) | 0.0410 (5) | 0.0071 (4) | 0.0006 (4) | 0.0015 (5) |
N4 | 0.0386 (5) | 0.0381 (5) | 0.0348 (5) | 0.0009 (4) | −0.0010 (4) | 0.0014 (4) |
O1 | 0.0475 (5) | 0.0385 (5) | 0.0429 (5) | −0.0023 (3) | −0.0054 (4) | 0.0054 (4) |
O2 | 0.0389 (5) | 0.0564 (5) | 0.0394 (5) | 0.0040 (4) | 0.0033 (3) | 0.0040 (4) |
Geometric parameters (Å, º) top
C1—C2 | 1.5073 (19) | C4—H4A | 0.9700 |
C1—H1A | 0.9600 | C4—H4B | 0.9700 |
C1—H1B | 0.9600 | C5—O2 | 1.2502 (14) |
C1—H1C | 0.9600 | C5—N1 | 1.3359 (15) |
C2—C4 | 1.5210 (19) | C5—N4 | 1.3637 (15) |
C2—H2A | 0.9700 | N1—N2 | 1.3873 (14) |
C2—H2B | 0.9700 | N1—H2 | 0.8600 |
C3—N2 | 1.2978 (16) | N4—O1 | 1.3706 (12) |
C3—N4 | 1.3702 (15) | O1—H1 | 0.970 (19) |
C3—C4 | 1.4806 (16) | | |
| | | |
C2—C1—H1A | 109.5 | C3—C4—H4A | 108.9 |
C2—C1—H1B | 109.5 | C2—C4—H4A | 108.9 |
H1A—C1—H1B | 109.5 | C3—C4—H4B | 108.9 |
C2—C1—H1C | 109.5 | C2—C4—H4B | 108.9 |
H1A—C1—H1C | 109.5 | H4A—C4—H4B | 107.7 |
H1B—C1—H1C | 109.5 | O2—C5—N1 | 129.55 (11) |
C1—C2—C4 | 113.23 (13) | O2—C5—N4 | 127.39 (11) |
C1—C2—H2A | 108.9 | N1—C5—N4 | 103.06 (10) |
C4—C2—H2A | 108.9 | C5—N1—N2 | 112.86 (10) |
C1—C2—H2B | 108.9 | C5—N1—H2 | 123.6 |
C4—C2—H2B | 108.9 | N2—N1—H2 | 123.6 |
H2A—C2—H2B | 107.7 | C3—N2—N1 | 104.61 (9) |
N2—C3—N4 | 109.85 (10) | C5—N4—C3 | 109.59 (10) |
N2—C3—C4 | 126.46 (11) | C5—N4—O1 | 124.28 (9) |
N4—C3—C4 | 123.63 (11) | C3—N4—O1 | 125.85 (10) |
C3—C4—C2 | 113.28 (10) | N4—O1—H1 | 103.3 (11) |
| | | |
N2—C3—C4—C2 | −115.71 (14) | O2—C5—N4—C3 | 178.17 (11) |
N4—C3—C4—C2 | 61.24 (17) | N1—C5—N4—C3 | −1.36 (12) |
C1—C2—C4—C3 | 175.46 (13) | O2—C5—N4—O1 | −7.53 (18) |
O2—C5—N1—N2 | −177.87 (12) | N1—C5—N4—O1 | 172.94 (9) |
N4—C5—N1—N2 | 1.65 (13) | N2—C3—N4—C5 | 0.63 (14) |
N4—C3—N2—N1 | 0.37 (13) | C4—C3—N4—C5 | −176.75 (10) |
C4—C3—N2—N1 | 177.67 (11) | N2—C3—N4—O1 | −173.55 (10) |
C5—N1—N2—C3 | −1.32 (13) | C4—C3—N4—O1 | 9.06 (18) |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2i | 0.970 (19) | 1.640 (17) | 2.6000 (12) | 170.2 (15) |
N1—H2···O2ii | 0.86 | 1.99 | 2.8292 (13) | 166 |
Symmetry codes: (i) −x, y, −z+3/2; (ii) −x, −y+1, −z+1. |
Experimental details
| (I) | (II) |
Crystal data |
Chemical formula | C12H20N6O2 | C5H9N3O2 |
Mr | 280.34 | 143.15 |
Crystal system, space group | Orthorhombic, Pbca | Monoclinic, C2/c |
Temperature (K) | 293 | 293 |
a, b, c (Å) | 8.326 (5), 13.588 (5), 12.401 (5) | 27.010 (3), 4.2067 (3), 12.1089 (14) |
α, β, γ (°) | 90.000 (5), 90.000 (5), 90.000 (5) | 90, 91.715 (9), 90 |
V (Å3) | 1403.0 (11) | 1375.2 (2) |
Z | 4 | 8 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 0.10 | 0.11 |
Crystal size (mm) | 0.80 × 0.54 × 0.22 | 0.50 × 0.35 × 0.22 |
|
Data collection |
Diffractometer | Stoe IPDS-II diffractometer | Stoe IPDS-II diffractometer |
Absorption correction | Integration (X-RED32; Stoe & Cie, 2002) | Integration (X-RED32; Stoe & Cie, 2002) |
Tmin, Tmax | 0.951, 0.992 | 0.946, 0.972 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11694, 1379, 832 | 5874, 1347, 1207 |
Rint | 0.073 | 0.041 |
(sin θ/λ)max (Å−1) | 0.617 | 0.617 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.072, 0.80 | 0.035, 0.098, 1.13 |
No. of reflections | 1379 | 1347 |
No. of parameters | 92 | 95 |
H-atom treatment | H-atom parameters constrained | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.16, −0.14 | 0.16, −0.24 |
Selected geometric parameters (Å, º) for (I) topC3—N2 | 1.2938 (19) | C5—N4 | 1.3710 (19) |
C3—N4 | 1.3742 (18) | C7—C7i | 1.514 (3) |
C5—O1 | 1.2396 (18) | N1—N2 | 1.3846 (18) |
C5—N1 | 1.341 (2) | | |
| | | |
N4—C6—C7—C7i | −179.05 (16) | | |
Symmetry code: (i) −x+1, −y+1, −z. |
Hydrogen-bond geometry (Å, º) for (I) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1ii | 0.86 | 1.96 | 2.805 (2) | 166.11 (8) |
Symmetry code: (ii) x−1/2, y, −z+1/2. |
Selected bond lengths (Å) for (II) topC3—N2 | 1.2978 (16) | C5—N4 | 1.3637 (15) |
C3—N4 | 1.3702 (15) | N1—N2 | 1.3873 (14) |
C5—O2 | 1.2502 (14) | N4—O1 | 1.3706 (12) |
C5—N1 | 1.3359 (15) | | |
Hydrogen-bond geometry (Å, º) for (II) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2i | 0.970 (19) | 1.640 (17) | 2.6000 (12) | 170.2 (15) |
N1—H2···O2ii | 0.86 | 1.99 | 2.8292 (13) | 166 |
Symmetry codes: (i) −x, y, −z+3/2; (ii) −x, −y+1, −z+1. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.
Recently, much attention has been focused on 1,2,4-triazole derivatives for their broad-spectrum fungicidal, insecticidal, herbicidal, anticonvulsant, antitumour and plant growth regulatory activity (Tsuda & Itoh, 2004; Chai et al., 2003; Er-Rahimini & Mornet, 1992; Nakib et al., 1994; Jenkins et al., 1989). Disubstituted 1,2,4-triazol derivatives have also been reported to show antituberculotic activities (Íkizler et al., 1998). In a previous work, we reported that some 1,2,4-triazol-5-one compounds have antimicrobial effect (Demirbaş et al., 2004). 3-Amino-1,2,4-triazole has been recognized as an inhibitor of chloroplast development, effecting both caretenoid and chlorophyll pigments (Wolf, 1960). The coordination chemistry of azoles acting as ligands for the production of organometallic compounds in the contex of modelling biological systems has gained much interest. In the 4-hydroxyazole tautomer (Íkizler & Sancak, 1992), the O atom of the hydroxy group adjacent to the donor N atom of the heterocyclic ring enables the formation of five-membered chelate ring with transition metal cations. Therefore, the formation of a chelate via an oxy/hydroxy tautomer is one of the major factors for the presence of intermolecular or intramolecular interactions (Kurtziel et al., 2003). Previously, spectroscopic and crystal structure data of some 1,2,4-triazoles have been reported (Çoruh et al., 2004; Zhu et al., 2000; Li et al., 2004). In this paper, we present the synthesis and molecular and crystal structure of 1,4-[di(3-ethyl-1,2,4-triazole-5-one-4-yl] butane, (I), and 3-n-propyl-4-hydroxy-1,2,4-triazole-5-one, (II).
Views of compounds (I) and (II), including the atom-numbering schemes, are shown in Figs. 1 and 2. Compound (I) consists of two 1,2,4-triazole rings, with ethyl groups connected to the 3-positions of the rings, carbonyl O atoms in the 5-positons of the rings and a butane group connecting the two rings at the 4-positions. Compound (II) consists of a 1,2,4-triazole ring with an n-propyl group connected to the 3-position of the ring, a carbonyl O atom on the 5-position of the ring and a hydroxy group on the 4-position of the ring.
In the crystal structure of (I), a strong intermolecular N1—H1···O1(x − 1/2, y, 1/2 − z) hydrogen-bonding interaction is formed. Also, (I) exhibits a weak π–π stacking interaction between the 1,2,4-triazole moieties, with a centroid–centroid distance of 3.917 (3) Å [Cg···Cg(1 − x, −y, −z)]. The crystal structure of (II) is formed by intermolecular hydrogen-bonding interactions of O1—H1···O1(−x, y, 3/2 − z) and N1—H2···O2(−x, 1 − y, 1 − z). These bonds are consistent with the previous report by Li et al. (2004).