Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structures of N-(2-chloro­phenyl)-4-hydroxy-2-methyl-2H-1,2-benzo­thia­zine-3-carboxamide 1,1-dioxide and N-(4-chloro­phenyl)-4-hydroxy-2-methyl-2H-1,2-benzo­thia­zine-3-carboxamide 1,1-dioxide, both C16H13ClN2O4S, are stabilized by extensive intra­molecular hydrogen bonds. The 4-chloro derivative forms dimeric pairs of mol­ecules lying about inversion centres as a result of inter­molecular N—H...O hydrogen bonds, forming 14-membered rings representing an R22(14) motif; the 2-chloro derivative is devoid of any such inter­molecular hydrogen bonds. The heterocyclic thia­zine rings in both structures adopt half-chair conformations.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107059173/gz3109sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107059173/gz3109Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107059173/gz3109IIsup3.hkl
Contains datablock II

CCDC references: 677209; 677210

Comment top

In recent years, there has been a rapid growth in the literature dealing with 1,2-benzothiazine-3-carboxamide 1,1-dioxide derivatives, due to their importance as analgesic and anti-inflammatory agents belonging to oxicams, a new class of non-steroidal anti-inflammatory drugs (NSAIDs) (Lombardino & Wiseman, 1972; Hirai et al., 1997; Khalil et al., 2000; Yaltirik et al., 2001; Myung et al., 2002). These drugs are free from steroidal side-effects, although they have little effect on the progression of bone and cartilage destruction (Katzung, 1994). The search for more effective anti-inflammatory agents has led to the exploration of a wide variety of compounds that may inhibit cartilage destruction associated with NSAIDs, or at least reduce their severity. Besides great therapeutic potential, these are very motivating polyfunctional heterocyclic molecules by virtue of their dynamic structural features, including different tautomeric forms and their possible polymorphism (Banerjee & Sarkar, 2002). The crystal structures of piroxicam (an oxicam, 4-hydroxy-2-methyl-N-2-pyridyl-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide) and a wide variety of its derivatives have been reported (Kojić-Prodić & Rużić-Toroš, 1982; Reck et al., 1988; Drebushchak et al., 2006; Bordner et al., 1984; Bhatt et al., 2005; Hammen et al., 1989; Bordner et al., 1989; Chiesi-Villa et al., 1998). The structures of a few derivatives of meloxicam (a 5-methyl-2-thiazolyl analogue of piroxicam) have also been reported (Fabiola et al., 1998; Luger et al., 1996). In continuation of our research in this important area (Siddiqui et al., 2006a,b, 2007), we have synthesized analogues of piroxicam and meloxicam wherein the pyridyl ring of the former and 5-methoxy-2-thiazolyl group of the latter have been replaced by a chlorophenyl ring. A new facile procedure has been adopted that leads to an excellent yield and product purity. In this paper, we report the structures of the 2-chloro- and 4-chlorophenyl derivatives of the title compound, (I) and (II), respectively.

The structure of (I) contains independent molecules separated by normal van der Waals distances (Fig. 1). The heterocyclic thiazine ring in (I) adopts a half-chair conformation, with atoms S1 and N1 displaced by -0.468 (3) and 0.328 (3) Å, respectively, from the plane defined by atoms C1/C6/C7/C8; the puckering parameters (Cremer & Pople, 1975) are Q = 0.522 (1) Å, θ = 117.8 (2)° and ϕ = 204.3 (2)°. Similar conformations of the thiazine ring have been reported in the above-mentioned structures of piroxicams and meloxicams. The conformations about the bonds C8—C9 and C9—N2 in (I) are both EZ, as determined by the intramolecular hydrogen bonds O1—H1O···O4 and N2—H2N···N1, resulting in graph-set patterns S(6) and S(5), respectively (Bernstein et al., 1994). The intramolecular hydrogen bonds N2—H2N···Cl1 and C16—H16···O4 also represent S(5) and S(6) motifs, respectively; details of the hydrogen-bonding geometry are given in Table 2. In the structures of oxicams, EZ and ZZ conformations about the corresponding bonds have been reported previously, depending on the environment of the drug molecules. In (I), the methyl C10 and O3 groups are axial, while atoms O1 and O2 are equatorial to the thiazine ring. Atoms N2/O4/C8/C9/C11 in (I) are essentially planar, with the maximum deviation from the plane being 0.0077 (11) Å for atom N2; the plane is inclined at 27.18 (6)° to the plane of the 2-chlorophenyl ring.

The structure of (II) (Fig. 3) contains dimeric pairs of molecules lying about inversion centres resulting from N2—H2N···O2 hydrogen bonds, thus forming 14-membered rings that can be best described in the graph-set notation as R22(14) (Bernstein et al., 1994) (Fig. 4); the structure of (I) is devoid of any such intermolecular interactions. However, similar hydrogen-bonded dimers have been reported in piroxicams (Kojić-Prodić & Rużić-Toroš, 1982; Drebushchak et al., 2006). The structure of (II) is also stabilized by extensive intramolecular interactions involving hydrogen bonds: N2—H2N···N1, O1—H1O···O4 and C12—H12···O4, representing S(5), S(6) and S(6) motifs, respectively; details of the hydrogen-bonding geometry are given in Table 4. The thiazine ring in (II) also adopts a half-chair conformation, with atoms S1 and N1 displaced by -0.485 (5) and 0.358 (5) Å, respectively, from the plane formed by atoms C1/C6/C7/C8. The values of the puckering parameters in (II) are Q = 0.556 (2) Å, θ = 117.0 (3)° and ϕ = 205.1 (4)°, and these are close to the corresponding values observed in (I) and other related compounds. The conformations about the bonds C8—C9 and C9—N2 in (II) are also both EZ, due to the strong intramolecular hydrogen bonds O1—H1O···O4 and N2—H2N···N1. Intramolecular hydrogen bonds N2—H2N···Cl1 and C16—H16···O4 also represent S(5) and S(6) motifs, respectively (Table 4). The methyl C10 and O3 groups in (II) are axial, while atoms O1 and O2 are equatorial to the thiazine ring. Atoms N2/O4/C8/C9/C11 are essentially planar, with the maximum deviation from the plane being 0.053 (2) Å for atom N2. However, the chlorophenyl ring in (II) is inclined at 33.0 (2)° to the plane formed by atoms N2/O4/C8/C9/C11.

The molecular dimensions in the two structures are unexceptional and agree with the reported values for the corresponding dimensions for oxicams.

Related literature top

For related literature, see: Banerjee & Sarkar (2002); Bernstein et al. (1994); Bhatt et al. (2005); Bordner et al. (1984, 1989); Chiesi-Villa, Rizzoli, Amari, Delcanale, Redenti & Ventura (1998); Cremer & Pople (1975); Drebushchak et al. (2006); Fabiola et al. (1998); Hammen et al. (1989); Hirai et al. (1997); Katzung (1994); Khalil et al. (2000); Kojić-Prodić & Rużić-Toroš (1982); Lombardino & Wiseman (1972); Luger et al. (1996); Myung et al. (2002); Reck et al. (1988); Siddiqui (2007); Siddiqui et al. (2006a, 2006b); Yaltirik et al. (2001).

Experimental top

A mixture of methyl 4-hydroxy-2-methyl-2H-1,2-benzothiazine-3-carboxylate-1,1-dioxide (67.3 g, 250 mmol) and o- or p-chloroaniline (35.7 g, 280 mmol) in xylene (250 ml) was refluxed for 4–12 h in a Soxhlet apparatus having Linde type A4 molecular sieves. Half of the xylene was then distilled off and the remaining contents were allowed to stand overnight at room temperature. The precipitates obtained were filtered, washed with hexane and dried at room temperature to obtain the crystalline products, (I) and (II), respectively. The products were crystallized from CHCl3 solutions by slow evaporation at 313 K.

Analysis for (I): IR (neat, νmax, cm-1): NH 3325 (s), CO 1742 (m), SO2 1380 and 1155; 1H NMR (300 MHz, CDCl3, δ, p.p.m.): 2.75 (s, 3H, CH3), 7.26–7.30 (d, J = 6.8 Hz, 2H), 7.31–7.45 (d, J = 7.5 Hz, 2H), 7.69–7.73 (m, 2H), 7.76–7.88 (d, J = 6.8 Hz, 1H), 7.90–8.06 (d, J = 7.5 Hz, 1H), 8.21 (s, 1H, NH); 13C NMR (δ, p.p.m.): 167.5, 157.3, 136.1, 134.7, 133.4, 132.6, 130.2, 129.1, 128.7, 126.2, 124.3, 121.7, 120.5, 118.3, 111.5, 42.3. Yield: 84.9 g (233 mmol, 93%); m.p. 457–459 K.

Analysis for (II): IR (neat, νmax, cm-1): NH 3337 (s), CO 1744 (m), SO2 1341 and 1156; 1H NMR (300 MHz, CDCl3, δ, p.p.m.): 2.94 (s, 3H, CH3), 7.30–7.31 (d, J = 6.7 Hz, 2H), 7.34–7.58 (d, J = 7.6 Hz, 2H), 7.70–7.75 (m, 2H), 7.76–7.90 (d, J = 6.9 Hz, 1H), 7.91–8.07 (d, J = 7.6 Hz, 1H), 8.38 (s, 1H, NH); 13C NMR (δ, p.p.m.): 166.6, 158.2, 135.0, 134.3, 133.2, 132.5, 130.5, 129.2, 128.5, 126.8, 124.8, 121.8, 120.6, 118.0, 111.6, 40.1. Yield: 87.5 g (240 mmol, 96%); m.p. 496–498 K.

Refinement top

For both structures, H atoms bonded to C atoms were included in the refinements in geometrically idealized positions, with C—H = 0.98 and 0.95 Å for methyl and phenyl H, respectively, and with Uiso(H) = 1.2Ueq(C). H atoms bonded to N and O atoms were allowed to refine, with Uiso(H) = 1.2Ueq(parent). The final difference maps were free of chemically significant features.

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1998); cell refinement: HKL DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SAPI91 (Fan, 1991); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
Fig. 1. A drawing of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Fig. 2. The unit-cell packing of (I), showing the inter- and intramolecular interactions as dashed lines. Only H atoms involved in the hydrogen bonds are shown.

Fig. 3. A drawing of (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Fig. 4. The unit-cell packing of (II), showing the inter- and intramolecular interactions as dashed lines. Only H atoms involved in the hydrogen bonds are shown.
(I) N-(2-chlorophenyl)-4-hydroxy-2-methyl-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide top
Crystal data top
C16H13ClN2O4SF(000) = 752
Mr = 364.79Dx = 1.518 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6588 reflections
a = 7.750 (2) Åθ = 2.9–27.5°
b = 28.588 (7) ŵ = 0.39 mm1
c = 7.519 (1) ÅT = 173 K
β = 106.630 (12)°Block, colourless
V = 1596.2 (6) Å30.22 × 0.20 × 0.11 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3610 independent reflections
Radiation source: fine-focus sealed tube3003 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and ϕ scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1010
Tmin = 0.918, Tmax = 0.958k = 3636
6588 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.038P)2 + 0.84P]
where P = (Fo2 + 2Fc2)/3
3610 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C16H13ClN2O4SV = 1596.2 (6) Å3
Mr = 364.79Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.750 (2) ŵ = 0.39 mm1
b = 28.588 (7) ÅT = 173 K
c = 7.519 (1) Å0.22 × 0.20 × 0.11 mm
β = 106.630 (12)°
Data collection top
Nonius KappaCCD
diffractometer
3610 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
3003 reflections with I > 2σ(I)
Tmin = 0.918, Tmax = 0.958Rint = 0.027
6588 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.30 e Å3
3610 reflectionsΔρmin = 0.37 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.03713 (5)0.513339 (14)0.25279 (6)0.02656 (12)
S10.27132 (5)0.335291 (13)0.26331 (6)0.02365 (12)
O10.78698 (15)0.39971 (4)0.43168 (17)0.0259 (3)
H1O0.766 (3)0.4296 (9)0.412 (3)0.045 (6)*
O20.11188 (16)0.31509 (4)0.2904 (2)0.0353 (3)
O30.28768 (17)0.33967 (4)0.07914 (17)0.0307 (3)
O40.62421 (15)0.47823 (4)0.34834 (16)0.0256 (3)
N10.29741 (17)0.38784 (5)0.35629 (19)0.0216 (3)
N20.31632 (19)0.47767 (5)0.23880 (19)0.0217 (3)
H2N0.225 (3)0.4605 (7)0.230 (3)0.034 (6)*
C10.4624 (2)0.30573 (6)0.4002 (2)0.0229 (3)
C20.4546 (2)0.25848 (6)0.4404 (3)0.0289 (4)
H20.34390.24190.40340.035*
C30.6130 (3)0.23615 (6)0.5360 (3)0.0333 (4)
H30.61060.20390.56510.040*
C40.7735 (3)0.26019 (7)0.5893 (3)0.0341 (4)
H40.88090.24420.65260.041*
C50.7802 (2)0.30753 (6)0.5516 (2)0.0289 (4)
H50.89160.32380.58990.035*
C60.6233 (2)0.33131 (5)0.4573 (2)0.0216 (3)
C70.6242 (2)0.38170 (6)0.4184 (2)0.0203 (3)
C80.4715 (2)0.40792 (5)0.3681 (2)0.0197 (3)
C90.4778 (2)0.45735 (5)0.3193 (2)0.0196 (3)
C100.2379 (2)0.39382 (7)0.5254 (3)0.0308 (4)
H10A0.25230.42660.56480.037*
H10B0.31110.37390.62480.037*
H10C0.11100.38490.49850.037*
C110.2843 (2)0.52450 (5)0.1801 (2)0.0202 (3)
C120.1188 (2)0.54476 (6)0.1741 (2)0.0214 (3)
C130.0742 (2)0.58932 (6)0.1055 (2)0.0286 (4)
H130.04000.60230.10060.034*
C140.1977 (3)0.61507 (6)0.0438 (3)0.0338 (4)
H140.16830.64570.00390.041*
C150.3640 (3)0.59591 (6)0.0520 (2)0.0304 (4)
H150.44930.61380.01210.036*
C160.4073 (2)0.55074 (6)0.1180 (2)0.0251 (3)
H160.52080.53770.12080.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0232 (2)0.0261 (2)0.0314 (2)0.00171 (16)0.00939 (16)0.00061 (16)
S10.0187 (2)0.0158 (2)0.0334 (2)0.00090 (15)0.00256 (16)0.00131 (16)
O10.0149 (5)0.0243 (6)0.0374 (7)0.0001 (5)0.0057 (5)0.0024 (5)
O20.0213 (6)0.0224 (6)0.0601 (9)0.0061 (5)0.0084 (6)0.0008 (6)
O30.0315 (7)0.0258 (7)0.0298 (6)0.0030 (5)0.0010 (5)0.0036 (5)
O40.0191 (5)0.0216 (6)0.0350 (6)0.0036 (5)0.0059 (5)0.0019 (5)
N10.0150 (6)0.0175 (6)0.0318 (7)0.0013 (5)0.0061 (5)0.0020 (5)
N20.0188 (7)0.0150 (6)0.0300 (7)0.0007 (5)0.0048 (6)0.0004 (5)
C10.0227 (8)0.0194 (8)0.0273 (8)0.0036 (6)0.0084 (6)0.0016 (6)
C20.0317 (9)0.0194 (8)0.0379 (10)0.0007 (7)0.0134 (8)0.0025 (7)
C30.0411 (10)0.0212 (8)0.0416 (10)0.0103 (8)0.0181 (9)0.0096 (8)
C40.0332 (10)0.0322 (10)0.0372 (10)0.0155 (8)0.0105 (8)0.0101 (8)
C50.0230 (8)0.0304 (9)0.0325 (9)0.0065 (7)0.0067 (7)0.0037 (7)
C60.0213 (8)0.0203 (8)0.0236 (8)0.0045 (6)0.0072 (6)0.0007 (6)
C70.0181 (7)0.0205 (8)0.0225 (7)0.0009 (6)0.0063 (6)0.0011 (6)
C80.0160 (7)0.0169 (7)0.0260 (8)0.0007 (6)0.0056 (6)0.0015 (6)
C90.0192 (7)0.0191 (8)0.0206 (7)0.0002 (6)0.0059 (6)0.0028 (6)
C100.0237 (8)0.0330 (10)0.0396 (10)0.0028 (7)0.0155 (7)0.0057 (8)
C110.0245 (8)0.0153 (7)0.0191 (7)0.0002 (6)0.0033 (6)0.0014 (6)
C120.0232 (8)0.0202 (8)0.0200 (7)0.0001 (6)0.0048 (6)0.0015 (6)
C130.0310 (9)0.0252 (9)0.0278 (8)0.0087 (7)0.0054 (7)0.0023 (7)
C140.0428 (11)0.0217 (9)0.0351 (9)0.0049 (8)0.0085 (8)0.0086 (7)
C150.0369 (10)0.0257 (9)0.0296 (9)0.0041 (8)0.0110 (8)0.0049 (7)
C160.0274 (8)0.0228 (8)0.0247 (8)0.0005 (7)0.0072 (7)0.0009 (7)
Geometric parameters (Å, º) top
Cl1—C121.7395 (17)C4—H40.9500
S1—O21.4302 (13)C5—C61.396 (2)
S1—O31.4317 (14)C5—H50.9500
S1—N11.6448 (14)C6—C71.470 (2)
S1—C11.7589 (17)C7—C81.360 (2)
O1—C71.340 (2)C8—C91.464 (2)
O1—H1O0.87 (2)C10—H10A0.9800
O4—C91.245 (2)C10—H10B0.9800
N1—C81.445 (2)C10—H10C0.9800
N1—C101.482 (2)C11—C161.394 (2)
N2—C91.355 (2)C11—C121.396 (2)
N2—C111.409 (2)C12—C131.381 (2)
N2—H2N0.85 (2)C13—C141.388 (3)
C1—C21.389 (2)C13—H130.9500
C1—C61.402 (2)C14—C151.385 (3)
C2—C31.388 (3)C14—H140.9500
C2—H20.9500C15—C161.389 (2)
C3—C41.377 (3)C15—H150.9500
C3—H30.9500C16—H160.9500
C4—C51.387 (3)
O2—S1—O3119.48 (8)O1—C7—C6114.83 (13)
O2—S1—N1108.32 (8)C8—C7—C6122.82 (14)
O3—S1—N1107.29 (7)C7—C8—N1121.39 (14)
O2—S1—C1109.86 (8)C7—C8—C9120.86 (14)
O3—S1—C1108.37 (8)N1—C8—C9117.73 (13)
N1—S1—C1102.10 (7)O4—C9—N2123.49 (15)
C7—O1—H1O104.0 (15)O4—C9—C8120.84 (14)
C8—N1—C10114.57 (13)N2—C9—C8115.65 (13)
C8—N1—S1112.82 (10)N1—C10—H10A109.5
C10—N1—S1116.09 (11)N1—C10—H10B109.5
C9—N2—C11127.19 (14)H10A—C10—H10B109.5
C9—N2—H2N115.4 (14)N1—C10—H10C109.5
C11—N2—H2N117.3 (14)H10A—C10—H10C109.5
C2—C1—C6122.02 (15)H10B—C10—H10C109.5
C2—C1—S1120.85 (13)C16—C11—C12118.42 (15)
C6—C1—S1117.04 (12)C16—C11—N2122.68 (14)
C3—C2—C1118.24 (17)C12—C11—N2118.81 (14)
C3—C2—H2120.9C13—C12—C11121.59 (15)
C1—C2—H2120.9C13—C12—Cl1118.67 (13)
C4—C3—C2120.83 (17)C11—C12—Cl1119.74 (12)
C4—C3—H3119.6C12—C13—C14119.43 (16)
C2—C3—H3119.6C12—C13—H13120.3
C3—C4—C5120.75 (16)C14—C13—H13120.3
C3—C4—H4119.6C15—C14—C13119.80 (16)
C5—C4—H4119.6C15—C14—H14120.1
C4—C5—C6120.06 (17)C13—C14—H14120.1
C4—C5—H5120.0C14—C15—C16120.66 (17)
C6—C5—H5120.0C14—C15—H15119.7
C5—C6—C1118.06 (15)C16—C15—H15119.7
C5—C6—C7121.65 (15)C15—C16—C11120.07 (16)
C1—C6—C7120.29 (14)C15—C16—H16120.0
O1—C7—C8122.33 (15)C11—C16—H16120.0
O2—S1—N1—C8169.01 (11)O1—C7—C8—N1179.44 (14)
O3—S1—N1—C860.74 (12)C6—C7—C8—N12.3 (2)
C1—S1—N1—C853.10 (13)O1—C7—C8—C92.1 (2)
O2—S1—N1—C1033.91 (14)C6—C7—C8—C9176.08 (14)
O3—S1—N1—C10164.16 (11)C10—N1—C8—C795.02 (18)
C1—S1—N1—C1082.00 (13)S1—N1—C8—C740.79 (19)
O2—S1—C1—C231.19 (17)C10—N1—C8—C986.52 (17)
O3—S1—C1—C2100.97 (15)S1—N1—C8—C9137.67 (12)
N1—S1—C1—C2145.98 (14)C11—N2—C9—O41.9 (3)
O2—S1—C1—C6152.18 (13)C11—N2—C9—C8179.43 (14)
O3—S1—C1—C675.66 (14)C7—C8—C9—O410.5 (2)
N1—S1—C1—C637.39 (15)N1—C8—C9—O4170.98 (14)
C6—C1—C2—C31.7 (3)C7—C8—C9—N2168.20 (15)
S1—C1—C2—C3174.78 (14)N1—C8—C9—N210.3 (2)
C1—C2—C3—C40.1 (3)C9—N2—C11—C1630.3 (2)
C2—C3—C4—C51.2 (3)C9—N2—C11—C12153.27 (15)
C3—C4—C5—C60.5 (3)C16—C11—C12—C131.2 (2)
C4—C5—C6—C11.2 (3)N2—C11—C12—C13175.34 (15)
C4—C5—C6—C7178.64 (16)C16—C11—C12—Cl1179.29 (12)
C2—C1—C6—C52.3 (2)N2—C11—C12—Cl14.2 (2)
S1—C1—C6—C5174.26 (13)C11—C12—C13—C141.1 (3)
C2—C1—C6—C7177.52 (15)Cl1—C12—C13—C14179.37 (13)
S1—C1—C6—C75.9 (2)C12—C13—C14—C150.1 (3)
C5—C6—C7—O117.7 (2)C13—C14—C15—C161.3 (3)
C1—C6—C7—O1162.40 (14)C14—C15—C16—C111.2 (3)
C5—C6—C7—C8163.91 (16)C12—C11—C16—C150.0 (2)
C1—C6—C7—C815.9 (2)N2—C11—C16—C15176.37 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10C···O1i0.982.453.366 (2)155
C4—H4···O2ii0.952.473.395 (2)165
O1—H1O···O40.87 (2)1.75 (2)2.563 (2)153 (2)
N2—H2N···N10.85 (2)2.29 (2)2.733 (2)113 (2)
N2—H2N···Cl10.85 (2)2.58 (2)2.953 (2)108 (2)
C16—H16···O40.952.382.908 (2)115
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+1/2.
(II) N-(2-chlorophenyl)-4-hydroxy-2-methyl-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide top
Crystal data top
C16H13ClN2O4SZ = 2
Mr = 364.79F(000) = 376
Triclinic, P1Dx = 1.538 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.970 (5) ÅCell parameters from 6690 reflections
b = 10.945 (6) Åθ = 3.7–27.4°
c = 11.133 (7) ŵ = 0.40 mm1
α = 60.61 (3)°T = 173 K
β = 69.81 (3)°Prism, colourless
γ = 86.32 (2)°0.14 × 0.10 × 0.04 mm
V = 787.6 (8) Å3
Data collection top
Nonius KappaCCD
diffractometer
3595 independent reflections
Radiation source: fine-focus sealed tube2197 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ω and ϕ scansθmax = 27.4°, θmin = 3.7°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1010
Tmin = 0.946, Tmax = 0.984k = 1414
6690 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0555P)2 + 0.159P]
where P = (Fo2 + 2Fc2)/3
3595 reflections(Δ/σ)max < 0.001
224 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C16H13ClN2O4Sγ = 86.32 (2)°
Mr = 364.79V = 787.6 (8) Å3
Triclinic, P1Z = 2
a = 7.970 (5) ÅMo Kα radiation
b = 10.945 (6) ŵ = 0.40 mm1
c = 11.133 (7) ÅT = 173 K
α = 60.61 (3)°0.14 × 0.10 × 0.04 mm
β = 69.81 (3)°
Data collection top
Nonius KappaCCD
diffractometer
3595 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
2197 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.984Rint = 0.057
6690 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.34 e Å3
3595 reflectionsΔρmin = 0.37 e Å3
224 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.95427 (10)0.37261 (9)0.07737 (9)0.0386 (2)
S10.27432 (9)0.38747 (7)0.55333 (8)0.0240 (2)
O10.2725 (3)0.0481 (2)0.4711 (2)0.0306 (5)
H1O0.164 (4)0.062 (3)0.405 (3)0.037*
O20.2654 (3)0.4552 (2)0.6335 (2)0.0310 (5)
O30.2889 (3)0.4703 (2)0.4114 (2)0.0289 (5)
O40.0601 (3)0.1388 (2)0.3081 (2)0.0307 (5)
N10.0952 (3)0.3061 (2)0.5333 (2)0.0230 (5)
N20.2034 (3)0.3078 (3)0.3169 (3)0.0261 (6)
H2N0.181 (4)0.354 (3)0.357 (3)0.031*
C10.4473 (4)0.2440 (3)0.6657 (3)0.0237 (6)
C20.5967 (4)0.2417 (3)0.7776 (3)0.0290 (7)
H20.60730.31740.79760.035*
C30.7307 (4)0.1266 (3)0.8600 (3)0.0338 (7)
H30.83310.12220.93830.041*
C40.7147 (4)0.0181 (3)0.8277 (4)0.0360 (8)
H40.80830.05900.88290.043*
C50.5657 (4)0.0203 (3)0.7172 (3)0.0294 (7)
H50.55750.05510.69690.035*
C60.4261 (4)0.1326 (3)0.6345 (3)0.0235 (6)
C70.2605 (4)0.1344 (3)0.5219 (3)0.0229 (6)
C80.1046 (4)0.2176 (3)0.4723 (3)0.0223 (6)
C90.0580 (4)0.2182 (3)0.3591 (3)0.0244 (6)
C100.0320 (4)0.2388 (3)0.6594 (3)0.0323 (7)
H10A0.08750.21060.62860.039*
H10B0.11680.15510.74110.039*
H10C0.02490.30610.69200.039*
C110.3801 (4)0.3180 (3)0.2226 (3)0.0241 (6)
C120.4168 (4)0.3063 (3)0.0971 (3)0.0275 (7)
H120.32060.28730.07430.033*
C130.5929 (4)0.3225 (3)0.0061 (3)0.0293 (7)
H130.61840.31450.07940.035*
C140.7324 (4)0.3504 (3)0.0398 (3)0.0269 (7)
C150.6982 (4)0.3623 (3)0.1642 (3)0.0262 (7)
H150.79470.38180.18640.031*
C160.5228 (4)0.3457 (3)0.2548 (3)0.0265 (7)
H160.49820.35320.34060.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0269 (4)0.0440 (5)0.0411 (5)0.0007 (4)0.0013 (4)0.0251 (4)
S10.0242 (4)0.0221 (4)0.0269 (4)0.0019 (3)0.0063 (3)0.0149 (3)
O10.0294 (12)0.0333 (13)0.0385 (13)0.0029 (10)0.0105 (10)0.0256 (11)
O20.0301 (11)0.0324 (12)0.0361 (12)0.0000 (9)0.0040 (10)0.0260 (11)
O30.0337 (12)0.0236 (11)0.0245 (11)0.0040 (9)0.0093 (10)0.0093 (10)
O40.0319 (12)0.0341 (12)0.0360 (12)0.0038 (9)0.0099 (10)0.0260 (11)
N10.0250 (13)0.0240 (13)0.0250 (13)0.0031 (10)0.0104 (11)0.0150 (11)
N20.0239 (13)0.0305 (15)0.0306 (15)0.0037 (11)0.0052 (11)0.0230 (13)
C10.0214 (15)0.0234 (16)0.0266 (16)0.0025 (12)0.0098 (13)0.0119 (14)
C20.0286 (17)0.0283 (17)0.0311 (17)0.0068 (13)0.0115 (14)0.0155 (15)
C30.0248 (16)0.0307 (18)0.0328 (18)0.0030 (14)0.0035 (14)0.0110 (16)
C40.0262 (17)0.0268 (18)0.045 (2)0.0008 (13)0.0083 (15)0.0134 (16)
C50.0278 (17)0.0259 (17)0.0381 (18)0.0046 (13)0.0159 (15)0.0161 (15)
C60.0234 (15)0.0221 (16)0.0258 (16)0.0020 (12)0.0113 (13)0.0107 (14)
C70.0264 (15)0.0224 (16)0.0262 (16)0.0031 (12)0.0112 (13)0.0157 (14)
C80.0257 (15)0.0226 (16)0.0246 (15)0.0050 (12)0.0110 (13)0.0151 (13)
C90.0245 (15)0.0262 (16)0.0281 (16)0.0064 (12)0.0124 (13)0.0160 (14)
C100.0339 (17)0.0401 (19)0.0329 (18)0.0068 (14)0.0177 (15)0.0220 (16)
C110.0264 (16)0.0186 (16)0.0254 (16)0.0050 (12)0.0086 (13)0.0104 (14)
C120.0273 (16)0.0294 (18)0.0289 (17)0.0042 (13)0.0132 (14)0.0148 (15)
C130.0332 (18)0.0305 (18)0.0249 (16)0.0030 (14)0.0093 (14)0.0149 (15)
C140.0243 (15)0.0225 (16)0.0278 (16)0.0018 (12)0.0038 (13)0.0118 (14)
C150.0258 (16)0.0252 (16)0.0298 (17)0.0031 (12)0.0124 (14)0.0139 (14)
C160.0297 (16)0.0242 (16)0.0276 (16)0.0058 (13)0.0126 (14)0.0133 (14)
Geometric parameters (Å, º) top
Cl1—C141.744 (3)C4—H40.9500
S1—O31.428 (2)C5—C61.398 (4)
S1—O21.433 (2)C5—H50.9500
S1—N11.641 (2)C6—C71.466 (4)
S1—C11.758 (3)C7—C81.362 (4)
O1—C71.340 (3)C8—C91.461 (4)
O1—H1O0.88 (3)C10—H10A0.9800
O4—C91.247 (3)C10—H10B0.9800
N1—C81.448 (3)C10—H10C0.9800
N1—C101.481 (4)C11—C121.393 (4)
N2—C91.358 (3)C11—C161.396 (4)
N2—C111.408 (4)C12—C131.380 (4)
N2—H2N0.80 (3)C12—H120.9500
C1—C21.385 (4)C13—C141.383 (4)
C1—C61.409 (4)C13—H130.9500
C2—C31.390 (4)C14—C151.386 (4)
C2—H20.9500C15—C161.373 (4)
C3—C41.386 (4)C15—H150.9500
C3—H30.9500C16—H160.9500
C4—C51.375 (4)
O3—S1—O2119.26 (13)O1—C7—C6115.4 (2)
O3—S1—N1107.63 (12)C8—C7—C6122.5 (2)
O2—S1—N1108.11 (12)C7—C8—N1120.5 (2)
O3—S1—C1109.37 (13)C7—C8—C9121.4 (2)
O2—S1—C1109.62 (13)N1—C8—C9118.1 (2)
N1—S1—C1101.34 (13)O4—C9—N2123.5 (3)
C7—O1—H1O104.1 (19)O4—C9—C8120.8 (2)
C8—N1—C10114.3 (2)N2—C9—C8115.7 (2)
C8—N1—S1112.17 (17)N1—C10—H10A109.5
C10—N1—S1116.54 (18)N1—C10—H10B109.5
C9—N2—C11127.1 (2)H10A—C10—H10B109.5
C9—N2—H2N112 (2)N1—C10—H10C109.5
C11—N2—H2N121 (2)H10A—C10—H10C109.5
C2—C1—C6122.1 (3)H10B—C10—H10C109.5
C2—C1—S1121.7 (2)C12—C11—C16119.4 (3)
C6—C1—S1116.2 (2)C12—C11—N2122.7 (2)
C1—C2—C3118.8 (3)C16—C11—N2117.9 (2)
C1—C2—H2120.6C13—C12—C11119.9 (2)
C3—C2—H2120.6C13—C12—H12120.0
C4—C3—C2119.9 (3)C11—C12—H12120.0
C4—C3—H3120.0C12—C13—C14119.8 (3)
C2—C3—H3120.0C12—C13—H13120.1
C5—C4—C3121.1 (3)C14—C13—H13120.1
C5—C4—H4119.4C13—C14—C15121.0 (3)
C3—C4—H4119.4C13—C14—Cl1119.3 (2)
C4—C5—C6120.5 (3)C15—C14—Cl1119.7 (2)
C4—C5—H5119.7C16—C15—C14119.1 (2)
C6—C5—H5119.7C16—C15—H15120.5
C5—C6—C1117.5 (3)C14—C15—H15120.5
C5—C6—C7122.0 (2)C15—C16—C11120.8 (3)
C1—C6—C7120.4 (2)C15—C16—H16119.6
O1—C7—C8122.0 (2)C11—C16—H16119.6
O3—S1—N1—C858.3 (2)O1—C7—C8—N1178.0 (2)
O2—S1—N1—C8171.67 (18)C6—C7—C8—N11.8 (4)
C1—S1—N1—C856.5 (2)O1—C7—C8—C90.7 (4)
O3—S1—N1—C10167.31 (19)C6—C7—C8—C9179.5 (3)
O2—S1—N1—C1037.3 (2)C10—N1—C8—C792.2 (3)
C1—S1—N1—C1077.9 (2)S1—N1—C8—C743.2 (3)
O3—S1—C1—C2104.7 (2)C10—N1—C8—C986.5 (3)
O2—S1—C1—C227.7 (3)S1—N1—C8—C9138.0 (2)
N1—S1—C1—C2141.8 (2)C11—N2—C9—O46.2 (5)
O3—S1—C1—C674.7 (2)C11—N2—C9—C8172.7 (3)
O2—S1—C1—C6152.8 (2)C7—C8—C9—O42.3 (4)
N1—S1—C1—C638.8 (2)N1—C8—C9—O4176.4 (2)
C6—C1—C2—C31.0 (4)C7—C8—C9—N2178.7 (3)
S1—C1—C2—C3178.4 (2)N1—C8—C9—N22.5 (4)
C1—C2—C3—C41.1 (4)C9—N2—C11—C1239.1 (4)
C2—C3—C4—C51.6 (5)C9—N2—C11—C16143.1 (3)
C3—C4—C5—C60.1 (4)C16—C11—C12—C130.1 (4)
C4—C5—C6—C12.0 (4)N2—C11—C12—C13177.6 (3)
C4—C5—C6—C7176.2 (3)C11—C12—C13—C140.1 (4)
C2—C1—C6—C52.5 (4)C12—C13—C14—C150.1 (4)
S1—C1—C6—C5176.9 (2)C12—C13—C14—Cl1179.3 (2)
C2—C1—C6—C7175.8 (3)C13—C14—C15—C160.2 (4)
S1—C1—C6—C74.8 (3)Cl1—C14—C15—C16179.5 (2)
C5—C6—C7—O119.9 (4)C14—C15—C16—C110.4 (4)
C1—C6—C7—O1161.9 (2)C12—C11—C16—C150.4 (4)
C5—C6—C7—C8160.0 (3)N2—C11—C16—C15177.5 (3)
C1—C6—C7—C818.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O40.88 (3)1.74 (3)2.560 (3)153 (3)
N2—H2N···N10.80 (3)2.27 (3)2.734 (4)118 (3)
N2—H2N···O2i0.80 (3)2.30 (3)3.006 (3)148 (3)
C13—H13···O2ii0.952.603.414 (4)144
C12—H12···O40.952.512.966 (4)110
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC16H13ClN2O4SC16H13ClN2O4S
Mr364.79364.79
Crystal system, space groupMonoclinic, P21/cTriclinic, P1
Temperature (K)173173
a, b, c (Å)7.750 (2), 28.588 (7), 7.519 (1)7.970 (5), 10.945 (6), 11.133 (7)
α, β, γ (°)90, 106.630 (12), 9060.61 (3), 69.81 (3), 86.32 (2)
V3)1596.2 (6)787.6 (8)
Z42
Radiation typeMo KαMo Kα
µ (mm1)0.390.40
Crystal size (mm)0.22 × 0.20 × 0.110.14 × 0.10 × 0.04
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Multi-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.918, 0.9580.946, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
6588, 3610, 3003 6690, 3595, 2197
Rint0.0270.057
(sin θ/λ)max1)0.6490.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.090, 1.03 0.050, 0.127, 1.02
No. of reflections36103595
No. of parameters226224
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.370.34, 0.37

Computer programs: COLLECT (Nonius, 1998), HKL DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SAPI91 (Fan, 1991), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976).

Selected geometric parameters (Å, º) for (I) top
Cl1—C121.7395 (17)O4—C91.245 (2)
S1—O21.4302 (13)N1—C81.445 (2)
S1—O31.4317 (14)N1—C101.482 (2)
S1—N11.6448 (14)N2—C91.355 (2)
S1—C11.7589 (17)N2—C111.409 (2)
O1—C71.340 (2)
O2—S1—O3119.48 (8)N1—S1—C1102.10 (7)
O2—S1—N1108.32 (8)C8—N1—C10114.57 (13)
O3—S1—N1107.29 (7)C8—N1—S1112.82 (10)
O2—S1—C1109.86 (8)C10—N1—S1116.09 (11)
O3—S1—C1108.37 (8)C9—N2—C11127.19 (14)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C10—H10C···O1i0.982.453.366 (2)155
C4—H4···O2ii0.952.473.395 (2)165
O1—H1O···O40.87 (2)1.75 (2)2.563 (2)153 (2)
N2—H2N···N10.85 (2)2.29 (2)2.733 (2)113 (2)
N2—H2N···Cl10.85 (2)2.58 (2)2.953 (2)108 (2)
C16—H16···O40.952.382.908 (2)115
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+1/2.
Selected geometric parameters (Å, º) for (II) top
Cl1—C141.744 (3)O4—C91.247 (3)
S1—O31.428 (2)N1—C81.448 (3)
S1—O21.433 (2)N1—C101.481 (4)
S1—N11.641 (2)N2—C91.358 (3)
S1—C11.758 (3)N2—C111.408 (4)
O1—C71.340 (3)
O3—S1—O2119.26 (13)N1—S1—C1101.34 (13)
O3—S1—N1107.63 (12)C8—N1—C10114.3 (2)
O2—S1—N1108.11 (12)C8—N1—S1112.17 (17)
O3—S1—C1109.37 (13)C10—N1—S1116.54 (18)
O2—S1—C1109.62 (13)C9—N2—C11127.1 (2)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O40.88 (3)1.74 (3)2.560 (3)153 (3)
N2—H2N···N10.80 (3)2.27 (3)2.734 (4)118 (3)
N2—H2N···O2i0.80 (3)2.30 (3)3.006 (3)148 (3)
C13—H13···O2ii0.952.603.414 (4)144
C12—H12···O40.952.512.966 (4)110
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds