Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The first structure report of trichlorido[4'-(p-tolyl)-2,2':6',2''-terpyridine]iridium(III) dimethyl sulfoxide solvate, [IrCl3(C22H17N3)]·C2H6OS, (I), is presented, along with a higher-symmetry setting of previously reported bis­[4'-(p-tolyl)-2,2':6',2''-terpyridine]iridium(III) tris­(hexa­fluorido­phosphate) acetonitrile disolvate, [Ir(C22H17N3)2](PF6)3·2C2H3N, (II) [Yoshikawa, Yamabe, Kanehisa, Kai, Takashima & Tsukahara (2007). Eur. J. Inorg. Chem. pp. 1911-1919]. For (I), the data were collected with synchrotron radiation and the dimethyl sulfoxide solvent mol­ecule is disordered over three positions, one of which is an inversion center. The previously reported structure of (II) is presented in the more appropriate C2/c space group. The iridium complex and one PF6- anion lie on twofold axes in this structure, making half of the mol­ecule unique.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110002751/gz3173sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110002751/gz3173Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110002751/gz3173IIsup3.hkl
Contains datablock II

CCDC references: 774062; 774063

Comment top

To our knowledge, before the publication of this paper only seven structures of terpyridine iridium(III) complexes were present in the Cambridge Structural Database (CSD, Version 5.30 of May 2009; Allen, 2002). The lack of both mono- and bis-terpyridine-based iridium(III) structures may be due in part to the inertness of the metal center or the difficulty of making tricationic iridium(III) species in considerable yield (Cusanelli et al., 1996; Collin et al., 1999). In an attempt to synthesize a tricationic bis-ttpy (ttpy is tolylterpyridine?) species, we were able to isolate the neutral trichloride species. Here we present the structures of both trichlorido[4'-(p-tolyl)-2,2':6',2''-terpyridine]iridium(III) dimethyl sulfoxide solvate, (I), and bis[4'-(p-tolyl)-2,2':6',2''-terpyridine]iridium(III) tris(hexafluorophosphate) acetonitrile disolvate, (II).

Structure (I), Ir(ttpy)Cl3.DMSO (DMSO is dimethysulfoxide), is shown in Fig. 1. The DMSO solvent molecule is disordered over three positions, one of which is 1. The tolyl group at the 4'-position of the terpyridine ligand is positionally disordered over two positions [0.64 (4):0.37 (4)]. The plane formed by the Ir metal center and the atoms of the three chelating rings (N1/C1–C5, N2/C6–C10 and N3/C11–C13 [C15?]) of the ttpy ligand is planar, with an r.m.s. deviation of 0.0673 Å. This plane is twisted by 89.84 (5)° relative to the plane formed by the Ir atom and the three Cl ligands, which has an r.m.s. deviation of 0.0054 Å. Due to the bite angle of the ttpy ligand, the bond distance from Ir1 to the central atom N2 is 1.947 (4) Å, which is significantly shorter than those for the two outer atoms, N1 and N3, of 2.037 (5) and 2.041 (4) Å, respectively. The chloride ligand (Cl2) trans to the central N atom of the ttpy ligand exhibits the longest bond distance of the three chlorides [Ir1—Cl2 = 2.3856 (13) Å]. All of the Ir—N and Ir—Cl bond distances in (I) fall within the expected ranges based on a CSD search.

The data for structure (II), [Ir(ttpy)2](PF6)3.2CH3CN, were collected initially to aid in the identification of the products from a reaction between Ir(ttpy)Cl3 and ttpy. While the collection temperature for (II) was lower, at 173 K, the initial unit-cell parameters and cell volume were similar to a room-temperature structure reported by Yoshikawa et al. (2007) for the same compound (CSD refcode YIDGAU). The previously reported structure was solved in space group Cc. However, closer examination of the bond distances within this structure led us to believe that the structure had been solved in the incorrect space group.

A comparison of the chemically equivalent bond distances between the two independent ttpy ligands in structure YIDGAU revealed many that were more than five standard deviations apart. This result was surprising considering the inherent D2d symmetry of the molecule. Marsh (1997) reports that the space group Cc is often misassigned when a two-fold axis has been overlooked. It appears that many structures in Cc are often revised to be C2/c after this missing symmetry element is found (Herbstein & Marsh, 1998; Marsh, 1997). Furthermore, this space group change leads to more reasonable bond lengths and angles within the structure. The ADDSYM routine in PLATON (Spek, 2009) was conducted on the YIDGAU CIF and conclusively found missing symmetry in the structure. The addition of 1 and two-fold symmetry to the structure leads to a solution in space group C2/c. Solving the structure of (II) in the centrosymmetric space group C2/c gave comparable bond lengths and angles to those reported for a bis(2,2':6',2''-terpyridine)iridium(III) structure (CSD refcode FOHQAU; Collin et al., 1999), leading us to believe that C2/c is indeed the correct space group setting for (II).

In (II), one P atom (P1) is not on a special postion, while the second (P2) lies on a two-fold axis. The Ir atom also lies on this two-fold axis, making half of the cation unique. The acetonitrile solvent molecule is located on a general position as well (Fig. 2). Bond distances from the N atoms to the Ir atom are 2.052 (6) (N1), 1.966 (6) (N2) and 2.047 (6) Å (N3), following the similar long–short–long pattern found in the mono-ttpy derivative, (I), and are within the expected range for Ir—N bond distances. The Ir atom and the atoms of the three chelating rings of the ttpy ligand are planar, with an r.m.s. deviation from the plane of 0.0457 Å.

Experimental top

Ir(ttpy)Cl3 was synthesized following the method of Collin et al. (1999) and single crystals of (I) were grown from slow cooling of a hot solution in DMSO. X-ray data were collected at the APS synchrotron sector 15-ID-C at Argonne National Laboratory, due to the extremely small size of at least one of the crystal dimensions.

[Ir(ttpy)2](PF6)3 was synthesized according to the method of Collin et al. (1999) and crystals of (II) were grown by slow evaporation of a solution in acetonitrile after separation of the compound with dichloromethane and acetone on a neutral alumina column.

Refinement top

In structure (I), the DMSO molecule was modeled over three positions whose site-occupation factors were restrained to sum to 1.00 [actual occupation factors of the three orientations = 0.500 (3), 0.328 (3) and 0.173 (2)]. Similarity restraints were applied to the chemically equivalent bond lengths and angles across the three orientations, while the distances between the S and O atoms and between the S and C atoms were restrained to 1.678 (5) and 1.862 (5) Å, respectively. The atomic displacement parameters of the corresponding atom in each of the three orientations were constrained to be identical. The tolyl substituent was also disordered over two orientations, with C16 serving as the anchor atom. The atomic displacement parameters of corresponding atoms in the two orientations were also constrained to be identical, while (**author to appropriately correct and complete the next bit **) similarity restraints were applied to the chemically equivalent bond lengths and angles.

In structure (II), a direct methods solution was attempted, but did not yield the correct position of the heavy atom. When a Patterson map solution was used, the correct position of the Ir atom was chosen as that on the 2 [text incomplete?]. Refinement of the remaining atoms proceeded without incident. No disorder was modeled within this structure.

In both structures, all aromatic H atoms were placed in ideal positions and refined as riding, with C—H = 0.95 Å and with Uiso(H) = 1.2Ueq(C). Methyl H atoms were placed in ideal positions and refined as riding, with C—H = 0.98 Å and with Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008) for (I); SMART (Bruker, 2003) for (II). Cell refinement: APEX2 (Bruker, 2008) for (I); SAINT (Bruker, 2003) for (II). For both compounds, data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: [Please provide missing details].

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been removed for clarity. Within the Ir-containing molecule, solid bonds represent the main disorder component. DMSO modeling is also shown and the molecule represented with dashed bonds is over the inversion center.
[Figure 2] Fig. 2. The symmetry-generated molecule of (II). Displacement ellipsoids are drawn at the 50% probability level. H atoms have been removed for clarity and only selected atoms have been labeled. [Please include sufficient C-atom labels to enable unambiguous assignment]
(I) trichlorido[4'-(p-tolyl)-2,2':6',2''-terpyridine]iridium(III) dimethyl sulfoxide solvate top
Crystal data top
[IrCl3(C22H17N3)]·C2H6OSF(000) = 1360
Mr = 700.06Dx = 1.868 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.41328 Å
a = 10.377 (2) ÅCell parameters from 9999 reflections
b = 23.166 (5) Åθ = 2.3–20.0°
c = 10.370 (2) ŵ = 3.08 mm1
β = 93.22 (3)°T = 100 K
V = 2488.9 (9) Å3Needle, yellow
Z = 40.08 × 0.01 × 0.01 mm
Data collection top
Bruker SMART APEXII
diffractometer
7484 independent reflections
Radiation source: APS15-ID-B6292 reflections with I > 2σ(I)
Double-diamond monochromatorRint = 0.045
ϕ and ω scansθmax = 17.2°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1995)
h = 1414
Tmin = 0.791, Tmax = 0.985k = 3333
68215 measured reflectionsl = 1214
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0375P)2 + 14.1866P]
where P = (Fo2 + 2Fc2)/3
7484 reflections(Δ/σ)max = 0.002
346 parametersΔρmax = 3.32 e Å3
61 restraintsΔρmin = 2.40 e Å3
Crystal data top
[IrCl3(C22H17N3)]·C2H6OSV = 2488.9 (9) Å3
Mr = 700.06Z = 4
Monoclinic, P21/cSynchrotron radiation, λ = 0.41328 Å
a = 10.377 (2) ŵ = 3.08 mm1
b = 23.166 (5) ÅT = 100 K
c = 10.370 (2) Å0.08 × 0.01 × 0.01 mm
β = 93.22 (3)°
Data collection top
Bruker SMART APEXII
diffractometer
7484 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1995)
6292 reflections with I > 2σ(I)
Tmin = 0.791, Tmax = 0.985Rint = 0.045
68215 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03761 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0375P)2 + 14.1866P]
where P = (Fo2 + 2Fc2)/3
7484 reflectionsΔρmax = 3.32 e Å3
346 parametersΔρmin = 2.40 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The DMSO molecule was modeled using Part 1, 2, and Part -1 statements along with the SUMP command to ensure the occupancy of the three parts was 1.00. Two SAME commands were used within each part and included SAME S1 > C24 and a SAME statement for the part itself. The distance between the sulfur atoms and oxygen atoms was restrained to 1.68 Angstrom Å with DFIX. The distance between the sulfur atoms and respective carbon atoms was also restrained to a distance of 1.86 Angstrom Å with DFIX. EADP was used to control the thermal parameters of the same atom in each of the three parts. The tolyl substituent was modeled using Part 1 and Part 2 statements with C16 serving as the anchor atom. The thermal parameters of the two parts were refined to be the same with EADP.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ir10.879171 (17)0.376314 (8)0.700962 (17)0.02401 (6)
Cl11.06502 (13)0.38087 (7)0.84170 (14)0.0380 (3)
Cl21.00449 (13)0.39997 (6)0.52240 (12)0.0323 (3)
Cl30.68960 (12)0.37249 (5)0.56234 (12)0.0280 (2)
N10.8286 (4)0.45677 (19)0.7593 (4)0.0303 (9)
N20.7752 (4)0.35540 (17)0.8444 (4)0.0232 (7)
N30.8990 (4)0.28871 (18)0.6942 (4)0.0232 (7)
C10.8617 (6)0.5080 (2)0.7080 (6)0.0349 (11)
H1A0.91120.50850.63360.042*
C20.8245 (6)0.5597 (3)0.7623 (7)0.0416 (13)
H2A0.84910.59530.72530.050*
C30.7516 (7)0.5595 (2)0.8704 (6)0.0408 (13)
H3A0.72770.59480.90920.049*
C40.7141 (6)0.5069 (2)0.9211 (6)0.0360 (11)
H4A0.66190.50590.99340.043*
C50.7536 (5)0.4562 (2)0.8652 (5)0.0285 (9)
C60.7199 (5)0.3982 (2)0.9107 (5)0.0263 (9)
C70.6394 (5)0.3835 (2)1.0082 (5)0.0271 (9)
H7A0.59890.41291.05510.032*
C80.6176 (4)0.3251 (2)1.0376 (5)0.0243 (9)
C90.6772 (4)0.2825 (2)0.9656 (4)0.0234 (8)
H9A0.66320.24280.98300.028*
C100.7569 (4)0.29875 (19)0.8686 (4)0.0212 (8)
C110.8311 (4)0.2605 (2)0.7851 (4)0.0225 (8)
C120.8377 (5)0.2011 (2)0.7986 (5)0.0255 (9)
H12A0.79140.18220.86280.031*
C130.9130 (5)0.1694 (2)0.7172 (5)0.0296 (10)
H13A0.91770.12860.72450.036*
C140.9812 (5)0.1980 (2)0.6252 (5)0.0304 (10)
H14A1.03290.17700.56880.036*
C150.9726 (5)0.2577 (2)0.6169 (5)0.0282 (9)
H15A1.02020.27730.55470.034*
C160.5287 (5)0.3092 (2)1.1396 (5)0.0257 (9)0.64 (4)
C170.505 (9)0.349 (2)1.236 (7)0.039 (2)0.64 (4)
H17A0.55430.38381.24410.047*0.64 (4)
C180.408 (2)0.3381 (7)1.3223 (17)0.035 (3)0.64 (4)
H18A0.39000.36611.38570.042*0.64 (4)
C190.3382 (16)0.2869 (8)1.3164 (16)0.028 (3)0.64 (4)
C200.3675 (17)0.2461 (7)1.2255 (17)0.033 (3)0.64 (4)
H20A0.31800.21171.21680.040*0.64 (4)
C210.471 (5)0.2555 (13)1.146 (4)0.037 (4)0.64 (4)
H21A0.50090.22461.09520.045*0.64 (4)
C220.2318 (15)0.2759 (9)1.4078 (16)0.035 (3)0.64 (4)
H22A0.24580.30001.48490.052*0.64 (4)
H22B0.23260.23511.43300.052*0.64 (4)
H22C0.14810.28541.36440.052*0.64 (4)
C16'0.5287 (5)0.3092 (2)1.1396 (5)0.0257 (9)0.36 (4)
C17'0.495 (16)0.346 (4)1.239 (12)0.039 (2)0.36 (4)
H17B0.52650.38501.24080.047*0.36 (4)
C18'0.416 (4)0.3271 (13)1.336 (3)0.035 (3)0.36 (4)
H18B0.40670.35021.41020.042*0.36 (4)
C19'0.352 (3)0.2744 (12)1.324 (3)0.028 (3)0.36 (4)
C20'0.395 (3)0.2362 (11)1.234 (3)0.033 (3)0.36 (4)
H20B0.37480.19631.24030.040*0.36 (4)
C21'0.467 (10)0.256 (2)1.132 (8)0.037 (4)0.36 (4)
H21B0.47360.23291.05690.045*0.36 (4)
C22'0.242 (3)0.2578 (13)1.406 (3)0.035 (3)0.36 (4)
H22D0.21880.29071.45920.052*0.36 (4)
H22E0.26810.22531.46180.052*0.36 (4)
H22F0.16680.24651.34970.052*0.36 (4)
S10.6173 (3)0.51044 (14)0.3243 (3)0.0407 (5)0.500 (3)
O10.5516 (9)0.4956 (5)0.1819 (7)0.044 (2)0.500 (3)
C230.7860 (7)0.4879 (7)0.301 (2)0.044 (3)0.500 (3)
H23A0.79160.44570.30270.066*0.500 (3)
H23B0.84330.50410.36960.066*0.500 (3)
H23C0.81200.50200.21680.066*0.500 (3)
C240.6528 (18)0.5889 (3)0.327 (2)0.095 (7)0.500 (3)
H24A0.57180.61060.32790.143*0.500 (3)
H24B0.69830.59930.25010.143*0.500 (3)
H24C0.70710.59820.40460.143*0.500 (3)
S1'0.6490 (5)0.5333 (2)0.2647 (5)0.0407 (5)0.328 (3)
O1'0.6009 (12)0.6014 (3)0.2754 (15)0.044 (2)0.328 (3)
C23'0.8029 (17)0.4987 (11)0.319 (3)0.044 (3)0.328 (3)
H23D0.85930.49620.24700.066*0.328 (3)
H23E0.78570.45970.35130.066*0.328 (3)
H23F0.84510.52160.38900.066*0.328 (3)
C24'0.591 (3)0.5212 (13)0.4299 (15)0.095 (7)0.328 (3)
H24D0.50880.54120.43790.143*0.328 (3)
H24E0.65500.53640.49450.143*0.328 (3)
H24F0.57940.47980.44410.143*0.328 (3)
S1A0.5433 (9)0.5269 (4)0.3082 (9)0.0407 (5)0.172 (3)
O1A0.582 (3)0.4835 (14)0.189 (3)0.044 (2)0.172 (3)
C23A0.656 (3)0.5132 (13)0.451 (2)0.044 (3)0.172 (3)
H23G0.63300.47690.49200.066*0.172 (3)
H23H0.65050.54500.51250.066*0.172 (3)
H23I0.74460.51060.42260.066*0.172 (3)
C24A0.646 (4)0.5901 (14)0.271 (5)0.095 (7)0.172 (3)
H24G0.63960.59760.17810.143*0.172 (3)
H24H0.73590.58200.29910.143*0.172 (3)
H24I0.61610.62420.31730.143*0.172 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.02325 (9)0.03044 (10)0.01906 (10)0.00487 (6)0.00763 (6)0.00212 (6)
Cl10.0312 (6)0.0541 (8)0.0289 (6)0.0134 (5)0.0031 (5)0.0064 (5)
Cl20.0352 (6)0.0386 (6)0.0244 (6)0.0072 (5)0.0117 (4)0.0051 (5)
Cl30.0288 (5)0.0285 (5)0.0268 (6)0.0007 (4)0.0034 (4)0.0027 (4)
N10.036 (2)0.030 (2)0.025 (2)0.0102 (17)0.0069 (17)0.0009 (16)
N20.0226 (17)0.0261 (18)0.0216 (19)0.0034 (14)0.0065 (14)0.0008 (14)
N30.0212 (17)0.0316 (19)0.0175 (18)0.0001 (14)0.0065 (13)0.0002 (14)
C10.039 (3)0.032 (2)0.034 (3)0.009 (2)0.007 (2)0.003 (2)
C20.047 (3)0.029 (3)0.049 (4)0.009 (2)0.008 (3)0.002 (2)
C30.053 (4)0.029 (3)0.041 (3)0.006 (2)0.006 (3)0.005 (2)
C40.043 (3)0.032 (3)0.034 (3)0.003 (2)0.007 (2)0.004 (2)
C50.031 (2)0.030 (2)0.026 (2)0.0050 (18)0.0059 (18)0.0016 (18)
C60.030 (2)0.026 (2)0.023 (2)0.0034 (17)0.0054 (17)0.0040 (17)
C70.029 (2)0.030 (2)0.022 (2)0.0014 (18)0.0091 (17)0.0042 (17)
C80.022 (2)0.029 (2)0.023 (2)0.0005 (16)0.0085 (16)0.0008 (16)
C90.024 (2)0.027 (2)0.020 (2)0.0014 (16)0.0076 (16)0.0011 (16)
C100.0200 (19)0.027 (2)0.018 (2)0.0012 (15)0.0063 (14)0.0001 (15)
C110.0199 (19)0.030 (2)0.018 (2)0.0002 (16)0.0066 (15)0.0011 (16)
C120.024 (2)0.032 (2)0.021 (2)0.0009 (17)0.0082 (16)0.0018 (17)
C130.029 (2)0.035 (2)0.026 (2)0.0048 (19)0.0060 (18)0.0010 (18)
C140.027 (2)0.039 (3)0.025 (2)0.0064 (19)0.0079 (18)0.0026 (19)
C150.024 (2)0.041 (3)0.020 (2)0.0038 (19)0.0083 (16)0.0027 (18)
C160.024 (2)0.034 (2)0.020 (2)0.0001 (17)0.0114 (16)0.0004 (17)
C170.047 (13)0.039 (5)0.034 (4)0.000 (3)0.024 (4)0.003 (4)
C180.045 (4)0.033 (7)0.028 (5)0.017 (5)0.021 (4)0.010 (5)
C190.019 (4)0.041 (7)0.023 (3)0.012 (5)0.009 (3)0.009 (4)
C200.020 (7)0.048 (6)0.032 (4)0.007 (5)0.011 (5)0.005 (4)
C210.039 (4)0.050 (3)0.025 (9)0.016 (3)0.017 (7)0.012 (4)
C220.029 (4)0.043 (9)0.033 (3)0.008 (5)0.019 (3)0.003 (6)
C16'0.024 (2)0.034 (2)0.020 (2)0.0001 (17)0.0114 (16)0.0004 (17)
C17'0.047 (13)0.039 (5)0.034 (4)0.000 (3)0.024 (4)0.003 (4)
C18'0.045 (4)0.033 (7)0.028 (5)0.017 (5)0.021 (4)0.010 (5)
C19'0.019 (4)0.041 (7)0.023 (3)0.012 (5)0.009 (3)0.009 (4)
C20'0.020 (7)0.048 (6)0.032 (4)0.007 (5)0.011 (5)0.005 (4)
C21'0.039 (4)0.050 (3)0.025 (9)0.016 (3)0.017 (7)0.012 (4)
C22'0.029 (4)0.043 (9)0.033 (3)0.008 (5)0.019 (3)0.003 (6)
S10.0447 (14)0.0360 (12)0.0428 (14)0.0033 (10)0.0153 (11)0.0005 (9)
O10.032 (5)0.046 (5)0.056 (4)0.001 (3)0.007 (3)0.026 (4)
C230.033 (4)0.034 (7)0.062 (8)0.003 (5)0.016 (4)0.013 (5)
C240.083 (10)0.134 (15)0.068 (12)0.082 (11)0.003 (9)0.003 (10)
S1'0.0447 (14)0.0360 (12)0.0428 (14)0.0033 (10)0.0153 (11)0.0005 (9)
O1'0.032 (5)0.046 (5)0.056 (4)0.001 (3)0.007 (3)0.026 (4)
C23'0.033 (4)0.034 (7)0.062 (8)0.003 (5)0.016 (4)0.013 (5)
C24'0.083 (10)0.134 (15)0.068 (12)0.082 (11)0.003 (9)0.003 (10)
S1A0.0447 (14)0.0360 (12)0.0428 (14)0.0033 (10)0.0153 (11)0.0005 (9)
O1A0.032 (5)0.046 (5)0.056 (4)0.001 (3)0.007 (3)0.026 (4)
C23A0.033 (4)0.034 (7)0.062 (8)0.003 (5)0.016 (4)0.013 (5)
C24A0.083 (10)0.134 (15)0.068 (12)0.082 (11)0.003 (9)0.003 (10)
Geometric parameters (Å, º) top
Ir1—N21.947 (4)C20—C211.406 (18)
Ir1—N12.037 (5)C20—H20A0.9500
Ir1—N32.041 (4)C21—H21A0.9500
Ir1—Cl12.3546 (16)C22—H22A0.9800
Ir1—Cl32.3719 (14)C22—H22B0.9800
Ir1—Cl22.3856 (13)C22—H22C0.9800
N1—C11.352 (7)C17'—C18'1.41 (2)
N1—C51.382 (6)C17'—H17B0.9500
N2—C101.352 (6)C18'—C19'1.393 (16)
N2—C61.352 (6)C18'—H18B0.9500
N3—C151.346 (6)C19'—C20'1.377 (16)
N3—C111.374 (6)C19'—C22'1.516 (15)
C1—C21.388 (8)C20'—C21'1.41 (2)
C1—H1A0.9500C20'—H20B0.9500
C2—C31.387 (9)C21'—H21B0.9500
C2—H2A0.9500C22'—H22D0.9800
C3—C41.392 (8)C22'—H22E0.9800
C3—H3A0.9500C22'—H22F0.9800
C4—C51.383 (7)S1—O11.628 (5)
C4—H4A0.9500S1—C241.853 (5)
C5—C61.474 (7)S1—C231.856 (5)
C6—C71.390 (7)C23—H23A0.9800
C7—C81.407 (7)C23—H23B0.9800
C7—H7A0.9500C23—H23C0.9800
C8—C91.402 (6)C24—H24A0.9800
C8—C161.488 (6)C24—H24B0.9800
C9—C101.390 (6)C24—H24C0.9800
C9—H9A0.9500S1'—O1'1.661 (5)
C10—C111.484 (6)S1'—C23'1.848 (5)
C11—C121.384 (7)S1'—C24'1.868 (5)
C12—C131.392 (7)C23'—H23D0.9800
C12—H12A0.9500C23'—H23E0.9800
C13—C141.387 (7)C23'—H23F0.9800
C13—H13A0.9500C24'—H24D0.9800
C14—C151.389 (8)C24'—H24E0.9800
C14—H14A0.9500C24'—H24F0.9800
C15—H15A0.9500S1A—O1A1.657 (5)
C16—C211.385 (11)S1A—C23A1.860 (5)
C16—C171.400 (10)S1A—C24A1.863 (5)
C17—C181.404 (17)C23A—H23G0.9800
C17—H17A0.9500C23A—H23H0.9800
C18—C191.392 (12)C23A—H23I0.9800
C18—H18A0.9500C24A—H24G0.9800
C19—C201.380 (11)C24A—H24H0.9800
C19—C221.516 (10)C24A—H24I0.9800
N2—Ir1—N180.67 (17)C19—C18—C17121.3 (10)
N2—Ir1—N380.79 (16)C19—C18—H18A119.4
N1—Ir1—N3161.39 (16)C17—C18—H18A119.4
N2—Ir1—Cl190.43 (13)C20—C19—C18118.6 (9)
N1—Ir1—Cl189.45 (14)C20—C19—C22120.6 (10)
N3—Ir1—Cl189.14 (12)C18—C19—C22120.8 (10)
N2—Ir1—Cl388.70 (12)C19—C20—C21120.1 (11)
N1—Ir1—Cl389.75 (13)C19—C20—H20A119.9
N3—Ir1—Cl391.37 (11)C21—C20—H20A119.9
Cl1—Ir1—Cl3178.90 (5)C16—C21—C20120.8 (16)
N2—Ir1—Cl2178.61 (12)C16—C21—H21A119.6
N1—Ir1—Cl2100.43 (12)C20—C21—H21A119.6
N3—Ir1—Cl298.13 (11)C18'—C17'—H17B119.8
Cl1—Ir1—Cl290.43 (5)C19'—C18'—C17'121 (2)
Cl3—Ir1—Cl290.46 (5)C19'—C18'—H18B119.6
C1—N1—C5119.2 (5)C17'—C18'—H18B119.6
C1—N1—Ir1127.6 (4)C20'—C19'—C18'117.1 (15)
C5—N1—Ir1113.2 (3)C20'—C19'—C22'119.8 (18)
C10—N2—C6123.3 (4)C18'—C19'—C22'123.1 (19)
C10—N2—Ir1118.3 (3)C19'—C20'—C21'120 (2)
C6—N2—Ir1118.4 (3)C19'—C20'—H20B119.9
C15—N3—C11119.0 (4)C21'—C20'—H20B119.9
C15—N3—Ir1127.8 (3)C20'—C21'—H21B119.6
C11—N3—Ir1113.1 (3)C19'—C22'—H22D109.5
N1—C1—C2121.0 (5)C19'—C22'—H22E109.5
N1—C1—H1A119.5H22D—C22'—H22E109.5
C2—C1—H1A119.5C19'—C22'—H22F109.5
C3—C2—C1120.2 (5)H22D—C22'—H22F109.5
C3—C2—H2A119.9H22E—C22'—H22F109.5
C1—C2—H2A119.9O1—S1—C24107.1 (7)
C2—C3—C4119.0 (5)O1—S1—C2399.8 (6)
C2—C3—H3A120.5C24—S1—C2395.2 (8)
C4—C3—H3A120.5S1—C23—H23A109.5
C5—C4—C3119.4 (5)S1—C23—H23B109.5
C5—C4—H4A120.3H23A—C23—H23B109.5
C3—C4—H4A120.3S1—C23—H23C109.5
N1—C5—C4121.2 (5)H23A—C23—H23C109.5
N1—C5—C6114.7 (4)H23B—C23—H23C109.5
C4—C5—C6124.1 (5)S1—C24—H24A109.5
N2—C6—C7118.7 (4)S1—C24—H24B109.5
N2—C6—C5113.0 (4)H24A—C24—H24B109.5
C7—C6—C5128.3 (4)S1—C24—H24C109.5
C6—C7—C8120.2 (4)H24A—C24—H24C109.5
C6—C7—H7A119.9H24B—C24—H24C109.5
C8—C7—H7A119.9O1'—S1'—C23'130.5 (10)
C9—C8—C7118.7 (4)O1'—S1'—C24'88.2 (9)
C9—C8—C16120.8 (4)C23'—S1'—C24'88.3 (12)
C7—C8—C16120.4 (4)S1'—C23'—H23D109.5
C10—C9—C8119.4 (4)S1'—C23'—H23E109.5
C10—C9—H9A120.3H23D—C23'—H23E109.5
C8—C9—H9A120.3S1'—C23'—H23F109.5
N2—C10—C9119.6 (4)H23D—C23'—H23F109.5
N2—C10—C11112.8 (4)H23E—C23'—H23F109.5
C9—C10—C11127.5 (4)S1'—C24'—H24D109.5
N3—C11—C12121.2 (4)S1'—C24'—H24E109.5
N3—C11—C10114.8 (4)H24D—C24'—H24E109.5
C12—C11—C10124.0 (4)S1'—C24'—H24F109.5
C11—C12—C13119.3 (4)H24D—C24'—H24F109.5
C11—C12—H12A120.3H24E—C24'—H24F109.5
C13—C12—H12A120.3O1A—S1A—C23A108.8 (14)
C14—C13—C12119.4 (5)O1A—S1A—C24A99.3 (15)
C14—C13—H13A120.3C23A—S1A—C24A87.4 (14)
C12—C13—H13A120.3S1A—C23A—H23G109.5
C13—C14—C15119.0 (5)S1A—C23A—H23H109.5
C13—C14—H14A120.5H23G—C23A—H23H109.5
C15—C14—H14A120.5S1A—C23A—H23I109.5
N3—C15—C14122.1 (4)H23G—C23A—H23I109.5
N3—C15—H15A119.0H23H—C23A—H23I109.5
C14—C15—H15A119.0S1A—C24A—H24G109.5
C21—C16—C17118.0 (9)S1A—C24A—H24H109.5
C21—C16—C8122.9 (7)H24G—C24A—H24H109.5
C17—C16—C8119.1 (8)S1A—C24A—H24I109.5
C16—C17—C18119.6 (14)H24G—C24A—H24I109.5
C16—C17—H17A120.2H24H—C24A—H24I109.5
C18—C17—H17A120.2
N2—Ir1—N1—C1180.0 (5)C4—C5—C6—C74.4 (9)
N3—Ir1—N1—C1175.2 (5)N2—C6—C7—C80.8 (8)
Cl1—Ir1—N1—C189.5 (5)C5—C6—C7—C8179.4 (5)
Cl3—Ir1—N1—C191.2 (5)C6—C7—C8—C90.8 (7)
Cl2—Ir1—N1—C10.8 (5)C6—C7—C8—C16178.4 (5)
N2—Ir1—N1—C51.1 (4)C7—C8—C9—C100.7 (7)
N3—Ir1—N1—C53.7 (8)C16—C8—C9—C10178.3 (4)
Cl1—Ir1—N1—C589.4 (4)C6—N2—C10—C90.4 (7)
Cl3—Ir1—N1—C589.8 (4)Ir1—N2—C10—C9176.4 (3)
Cl2—Ir1—N1—C5179.7 (3)C6—N2—C10—C11178.4 (4)
N1—Ir1—N2—C10177.8 (4)Ir1—N2—C10—C114.9 (5)
N3—Ir1—N2—C103.8 (3)C8—C9—C10—N20.5 (7)
Cl1—Ir1—N2—C1092.8 (3)C8—C9—C10—C11178.1 (4)
Cl3—Ir1—N2—C1087.8 (3)C15—N3—C11—C120.3 (7)
N1—Ir1—N2—C60.9 (4)Ir1—N3—C11—C12177.1 (4)
N3—Ir1—N2—C6179.3 (4)C15—N3—C11—C10177.8 (4)
Cl1—Ir1—N2—C690.3 (4)Ir1—N3—C11—C100.4 (5)
Cl3—Ir1—N2—C689.1 (4)N2—C10—C11—N33.3 (6)
N2—Ir1—N3—C15175.5 (4)C9—C10—C11—N3178.1 (4)
N1—Ir1—N3—C15170.6 (5)N2—C10—C11—C12174.1 (4)
Cl1—Ir1—N3—C1584.9 (4)C9—C10—C11—C124.5 (8)
Cl3—Ir1—N3—C1596.1 (4)N3—C11—C12—C131.1 (7)
Cl2—Ir1—N3—C155.4 (4)C10—C11—C12—C13178.3 (5)
N2—Ir1—N3—C111.7 (3)C11—C12—C13—C140.8 (8)
N1—Ir1—N3—C116.5 (7)C12—C13—C14—C150.1 (8)
Cl1—Ir1—N3—C1192.3 (3)C11—N3—C15—C140.6 (7)
Cl3—Ir1—N3—C1186.8 (3)Ir1—N3—C15—C14177.6 (4)
Cl2—Ir1—N3—C11177.4 (3)C13—C14—C15—N30.8 (8)
C5—N1—C1—C21.9 (8)C9—C8—C16—C2119 (4)
Ir1—N1—C1—C2177.0 (5)C7—C8—C16—C21158 (4)
N1—C1—C2—C30.4 (10)C9—C8—C16—C17159 (6)
C1—C2—C3—C41.5 (10)C7—C8—C16—C1724 (6)
C2—C3—C4—C52.0 (10)C21—C16—C17—C1811 (12)
C1—N1—C5—C41.4 (8)C8—C16—C17—C18171 (6)
Ir1—N1—C5—C4177.6 (4)C16—C17—C18—C193 (12)
C1—N1—C5—C6178.2 (5)C17—C18—C19—C201 (6)
Ir1—N1—C5—C62.8 (6)C17—C18—C19—C22179 (6)
C3—C4—C5—N10.5 (9)C18—C19—C20—C213 (4)
C3—C4—C5—C6179.9 (6)C22—C19—C20—C21177 (4)
C10—N2—C6—C70.5 (7)C17—C16—C21—C2016 (9)
Ir1—N2—C6—C7176.2 (4)C8—C16—C21—C20166 (3)
C10—N2—C6—C5179.3 (4)C19—C20—C21—C1612 (7)
Ir1—N2—C6—C52.6 (6)C17'—C18'—C19'—C20'17 (12)
N1—C5—C6—N23.5 (7)C17'—C18'—C19'—C22'165 (11)
C4—C5—C6—N2176.9 (5)C18'—C19'—C20'—C21'21 (8)
N1—C5—C6—C7175.2 (5)C22'—C19'—C20'—C21'161 (7)
(II) bis[4'-(p-tolyl)-2,2':6',2''-terpyridine]iridium(III) tris(hexafluorophosphate) acetonitrile disolvate top
Crystal data top
[Ir(C22H17N3)2](PF6)3·2C2H3NF(000) = 2672
Mr = 1355.99Dx = 1.814 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 14.6977 (14) ÅCell parameters from 130 reflections
b = 16.3737 (16) Åθ = 2.3–22.5°
c = 21.420 (2) ŵ = 2.90 mm1
β = 105.639 (2)°T = 173 K
V = 4964.0 (8) Å3Block, red
Z = 40.25 × 0.25 × 0.12 mm
Data collection top
Bruker SMART Platform CCD area-detector
diffractometer
4995 independent reflections
Radiation source: normal-focus sealed tube3790 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
area detector, ω scans per ϕθmax = 26.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1995)
h = 1518
Tmin = 0.531, Tmax = 0.722k = 1320
13655 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0837P)2 + 2.2984P]
where P = (Fo2 + 2Fc2)/3
4995 reflections(Δ/σ)max = 0.001
355 parametersΔρmax = 1.69 e Å3
0 restraintsΔρmin = 1.22 e Å3
Crystal data top
[Ir(C22H17N3)2](PF6)3·2C2H3NV = 4964.0 (8) Å3
Mr = 1355.99Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.6977 (14) ŵ = 2.90 mm1
b = 16.3737 (16) ÅT = 173 K
c = 21.420 (2) Å0.25 × 0.25 × 0.12 mm
β = 105.639 (2)°
Data collection top
Bruker SMART Platform CCD area-detector
diffractometer
4995 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1995)
3790 reflections with I > 2σ(I)
Tmin = 0.531, Tmax = 0.722Rint = 0.046
13655 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.11Δρmax = 1.69 e Å3
4995 reflectionsΔρmin = 1.22 e Å3
355 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Initially, a direct methods solution was attempted, but did not yield the correct position of the heavy atom. When a Patterson was used, the correct position of the iridium atom was chosen as that on the 2. Refinement of the remaining atoms proceeded without incident. No disorder was modeled within this structure.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir11.00000.78757 (3)0.75000.03946 (16)
N11.0228 (4)0.6997 (4)0.6876 (3)0.0438 (14)
N20.8738 (4)0.7832 (4)0.6884 (3)0.0409 (13)
N30.9313 (4)0.8744 (4)0.7889 (3)0.0462 (14)
C11.1034 (6)0.6607 (5)0.6899 (4)0.053 (2)
H1A1.15850.67420.72320.064*
C21.1089 (7)0.6016 (6)0.6455 (4)0.064 (2)
H2A1.16630.57300.64900.077*
C31.0292 (6)0.5844 (6)0.5957 (4)0.066 (2)
H3A1.03180.54510.56360.079*
C40.9466 (6)0.6246 (5)0.5930 (4)0.057 (2)
H4A0.89150.61270.55920.068*
C50.9429 (5)0.6817 (5)0.6387 (3)0.0423 (16)
C60.8581 (5)0.7282 (5)0.6401 (3)0.0451 (18)
C70.7673 (5)0.7191 (5)0.5994 (3)0.0457 (17)
H7A0.75600.68190.56410.055*
C80.6938 (5)0.7638 (5)0.6103 (4)0.0446 (17)
C90.7120 (5)0.8207 (5)0.6622 (3)0.0479 (17)
H9A0.66250.85220.67070.057*
C100.8026 (5)0.8288 (5)0.6994 (3)0.0426 (16)
C110.8368 (5)0.8834 (5)0.7557 (3)0.0465 (17)
C120.7806 (6)0.9400 (5)0.7751 (4)0.057 (2)
H12A0.71600.94550.75190.069*
C130.8183 (7)0.9884 (6)0.8281 (4)0.074 (3)
H13A0.77971.02640.84270.088*
C140.9137 (7)0.9810 (6)0.8601 (4)0.068 (2)
H14A0.94121.01510.89610.082*
C150.9676 (6)0.9247 (5)0.8397 (4)0.057 (2)
H15A1.03280.92060.86180.068*
C160.5961 (5)0.7531 (5)0.5685 (3)0.0458 (17)
C170.5689 (6)0.6807 (5)0.5354 (4)0.0545 (19)
H17A0.61340.63750.54050.065*
C180.4792 (6)0.6692 (6)0.4953 (4)0.057 (2)
H18A0.46290.61820.47410.069*
C190.4123 (6)0.7316 (6)0.4854 (4)0.056 (2)
C200.4379 (7)0.8032 (6)0.5192 (5)0.068 (3)
H20A0.39270.84590.51420.082*
C210.5277 (6)0.8151 (6)0.5606 (4)0.060 (2)
H21A0.54290.86510.58350.072*
C220.3166 (7)0.7203 (6)0.4391 (5)0.070 (3)
H22A0.29250.66580.44500.105*
H22B0.32130.72580.39450.105*
H22C0.27330.76180.44740.105*
P10.27840 (17)0.48968 (15)0.54259 (11)0.0590 (6)
P20.00000.4395 (3)0.75000.1062 (15)
F10.1721 (4)0.4737 (4)0.5422 (3)0.0932 (19)
F20.2507 (4)0.4845 (5)0.4654 (3)0.0939 (19)
F30.2608 (5)0.5840 (4)0.5400 (3)0.0961 (19)
F40.2969 (5)0.3937 (3)0.5464 (3)0.098 (2)
F50.3067 (4)0.4927 (4)0.6193 (3)0.0856 (16)
F60.3841 (4)0.5036 (4)0.5426 (3)0.0822 (16)
F70.0734 (8)0.3731 (6)0.7828 (7)0.214 (6)
F80.0436 (7)0.4399 (6)0.6904 (5)0.149 (3)
F90.0735 (6)0.5094 (6)0.7822 (4)0.136 (3)
N71.3310 (11)0.6668 (12)0.7439 (8)0.164 (6)
C231.3745 (13)0.6745 (13)0.7062 (9)0.134 (5)
C241.444 (2)0.6804 (16)0.6733 (17)0.29 (2)
H24A1.49910.64780.69590.437*
H24B1.46290.73770.67190.437*
H24C1.41920.65990.62900.437*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.0307 (2)0.0515 (3)0.0351 (2)0.0000.00715 (14)0.000
N10.043 (4)0.052 (4)0.039 (3)0.005 (3)0.015 (3)0.004 (2)
N20.035 (3)0.052 (3)0.035 (3)0.000 (3)0.009 (2)0.001 (3)
N30.039 (3)0.056 (4)0.044 (3)0.005 (3)0.011 (3)0.008 (3)
C10.040 (5)0.067 (6)0.051 (4)0.011 (4)0.008 (3)0.001 (4)
C20.058 (6)0.073 (6)0.062 (5)0.012 (5)0.019 (4)0.001 (4)
C30.059 (6)0.081 (6)0.056 (5)0.012 (5)0.014 (4)0.014 (4)
C40.052 (5)0.066 (5)0.051 (4)0.002 (4)0.009 (4)0.010 (4)
C50.037 (4)0.047 (4)0.044 (4)0.003 (3)0.012 (3)0.005 (3)
C60.037 (4)0.059 (5)0.039 (3)0.001 (3)0.011 (3)0.002 (3)
C70.042 (4)0.053 (4)0.041 (3)0.003 (4)0.009 (3)0.004 (3)
C80.036 (4)0.049 (4)0.047 (4)0.001 (3)0.007 (3)0.000 (3)
C90.039 (4)0.058 (4)0.045 (4)0.005 (4)0.008 (3)0.003 (3)
C100.034 (4)0.053 (4)0.041 (3)0.001 (3)0.010 (3)0.001 (3)
C110.036 (4)0.056 (5)0.047 (4)0.002 (3)0.010 (3)0.003 (3)
C120.048 (5)0.064 (5)0.055 (4)0.011 (4)0.006 (4)0.005 (4)
C130.069 (6)0.080 (7)0.066 (5)0.020 (5)0.010 (5)0.017 (5)
C140.067 (6)0.072 (6)0.059 (5)0.004 (5)0.005 (4)0.019 (4)
C150.057 (5)0.057 (5)0.053 (4)0.002 (4)0.010 (4)0.001 (4)
C160.039 (4)0.055 (4)0.042 (4)0.002 (4)0.010 (3)0.002 (3)
C170.043 (5)0.058 (5)0.064 (5)0.002 (4)0.018 (4)0.003 (4)
C180.051 (5)0.065 (5)0.054 (4)0.006 (4)0.011 (4)0.005 (4)
C190.041 (5)0.074 (6)0.049 (4)0.010 (4)0.006 (3)0.000 (4)
C200.049 (5)0.078 (7)0.070 (5)0.008 (4)0.003 (4)0.002 (5)
C210.042 (5)0.073 (6)0.059 (5)0.001 (4)0.005 (4)0.006 (4)
C220.043 (5)0.092 (7)0.065 (5)0.007 (5)0.003 (4)0.000 (5)
P10.0525 (14)0.0614 (14)0.0622 (12)0.0032 (11)0.0139 (10)0.0025 (10)
P20.095 (4)0.098 (3)0.135 (4)0.0000.049 (3)0.000
F10.056 (3)0.123 (5)0.107 (4)0.012 (3)0.034 (3)0.038 (4)
F20.084 (4)0.137 (6)0.058 (3)0.006 (4)0.014 (3)0.005 (3)
F30.102 (5)0.066 (4)0.114 (5)0.016 (3)0.017 (4)0.006 (3)
F40.141 (6)0.057 (3)0.126 (5)0.011 (3)0.088 (5)0.003 (3)
F50.087 (4)0.101 (4)0.066 (3)0.017 (3)0.016 (3)0.001 (3)
F60.058 (3)0.094 (4)0.093 (4)0.001 (3)0.016 (3)0.020 (3)
F70.164 (9)0.158 (9)0.350 (17)0.085 (7)0.122 (10)0.122 (10)
F80.154 (8)0.164 (8)0.162 (8)0.012 (6)0.097 (7)0.027 (6)
F90.110 (6)0.159 (7)0.142 (7)0.041 (6)0.039 (5)0.018 (5)
N70.124 (12)0.230 (17)0.150 (13)0.003 (12)0.058 (10)0.022 (13)
C230.118 (13)0.159 (14)0.130 (13)0.004 (12)0.044 (11)0.001 (12)
C240.35 (4)0.19 (2)0.47 (5)0.06 (2)0.35 (4)0.05 (3)
Geometric parameters (Å, º) top
Ir1—N2i1.966 (6)C14—C151.362 (12)
Ir1—N21.966 (6)C14—H14A0.9500
Ir1—N32.047 (6)C15—H15A0.9500
Ir1—N3i2.047 (6)C16—C171.383 (12)
Ir1—N12.052 (6)C16—C211.406 (12)
Ir1—N1i2.052 (6)C17—C181.378 (12)
N1—C11.335 (10)C17—H17A0.9500
N1—C51.378 (9)C18—C191.393 (12)
N2—C61.345 (9)C18—H18A0.9500
N2—C101.356 (9)C19—C201.376 (12)
N3—C151.355 (10)C19—C221.499 (12)
N3—C111.386 (9)C20—C211.391 (12)
C1—C21.374 (12)C20—H20A0.9500
C1—H1A0.9500C21—H21A0.9500
C2—C31.384 (12)C22—H22A0.9800
C2—H2A0.9500C22—H22B0.9800
C3—C41.368 (12)C22—H22C0.9800
C3—H3A0.9500P1—F31.565 (6)
C4—C51.365 (10)P1—F61.571 (6)
C4—H4A0.9500P1—F11.582 (6)
C5—C61.468 (11)P1—F51.584 (6)
C6—C71.391 (11)P1—F41.593 (6)
C7—C81.377 (10)P1—F21.594 (6)
C7—H7A0.9500P2—F71.559 (9)
C8—C91.418 (11)P2—F7ii1.559 (10)
C8—C161.483 (10)P2—F8ii1.575 (8)
C9—C101.361 (10)P2—F81.575 (8)
C9—H9A0.9500P2—F91.597 (9)
C10—C111.476 (10)P2—F9ii1.597 (8)
C11—C121.380 (11)N7—C231.16 (2)
C12—C131.371 (12)C23—C241.39 (2)
C12—H12A0.9500C24—H24A0.9800
C13—C141.390 (13)C24—H24B0.9800
C13—H13A0.9500C24—H24C0.9800
N2i—Ir1—N2175.8 (3)C13—C14—H14A120.1
N2i—Ir1—N3103.4 (2)N3—C15—C14122.1 (8)
N2—Ir1—N379.5 (2)N3—C15—H15A119.0
N2i—Ir1—N3i79.5 (2)C14—C15—H15A119.0
N2—Ir1—N3i103.4 (2)C17—C16—C21117.2 (7)
N3—Ir1—N3i92.0 (3)C17—C16—C8120.7 (7)
N2i—Ir1—N197.0 (2)C21—C16—C8122.1 (7)
N2—Ir1—N180.1 (2)C18—C17—C16122.2 (8)
N3—Ir1—N1159.6 (2)C18—C17—H17A118.9
N3i—Ir1—N192.1 (2)C16—C17—H17A118.9
N2i—Ir1—N1i80.1 (2)C17—C18—C19120.8 (8)
N2—Ir1—N1i97.0 (2)C17—C18—H18A119.6
N3—Ir1—N1i92.1 (2)C19—C18—H18A119.6
N3i—Ir1—N1i159.6 (2)C20—C19—C18117.6 (8)
N1—Ir1—N1i90.9 (3)C20—C19—C22121.9 (8)
C1—N1—C5119.4 (6)C18—C19—C22120.5 (8)
C1—N1—Ir1127.6 (5)C19—C20—C21122.2 (9)
C5—N1—Ir1113.0 (5)C19—C20—H20A118.9
C6—N2—C10121.4 (6)C21—C20—H20A118.9
C6—N2—Ir1118.4 (5)C20—C21—C16120.0 (9)
C10—N2—Ir1119.8 (5)C20—C21—H21A120.0
C15—N3—C11118.1 (7)C16—C21—H21A120.0
C15—N3—Ir1128.2 (6)C19—C22—H22A109.5
C11—N3—Ir1113.6 (5)C19—C22—H22B109.5
N1—C1—C2121.9 (8)H22A—C22—H22B109.5
N1—C1—H1A119.0C19—C22—H22C109.5
C2—C1—H1A119.0H22A—C22—H22C109.5
C1—C2—C3118.8 (8)H22B—C22—H22C109.5
C1—C2—H2A120.6F3—P1—F690.6 (4)
C3—C2—H2A120.6F3—P1—F190.5 (4)
C4—C3—C2119.4 (8)F6—P1—F1178.8 (4)
C4—C3—H3A120.3F3—P1—F590.0 (3)
C2—C3—H3A120.3F6—P1—F590.7 (3)
C5—C4—C3120.4 (8)F1—P1—F589.6 (3)
C5—C4—H4A119.8F3—P1—F4179.1 (4)
C3—C4—H4A119.8F6—P1—F489.3 (4)
C4—C5—N1120.1 (7)F1—P1—F489.5 (4)
C4—C5—C6124.6 (7)F5—P1—F489.1 (3)
N1—C5—C6115.3 (6)F3—P1—F291.3 (4)
N2—C6—C7119.4 (7)F6—P1—F289.1 (3)
N2—C6—C5113.1 (6)F1—P1—F290.6 (3)
C7—C6—C5127.5 (7)F5—P1—F2178.7 (4)
C8—C7—C6120.1 (7)F4—P1—F289.6 (4)
C8—C7—H7A120.0F7—P2—F7ii91.6 (11)
C6—C7—H7A120.0F7—P2—F8ii91.2 (6)
C7—C8—C9119.4 (7)F7ii—P2—F8ii89.1 (6)
C7—C8—C16120.7 (7)F7—P2—F889.1 (6)
C9—C8—C16120.0 (7)F7ii—P2—F891.2 (6)
C10—C9—C8118.1 (7)F8ii—P2—F8179.5 (8)
C10—C9—H9A120.9F7—P2—F990.0 (6)
C8—C9—H9A120.9F7ii—P2—F9178.4 (8)
N2—C10—C9121.6 (7)F8ii—P2—F991.3 (5)
N2—C10—C11111.5 (6)F8—P2—F988.4 (5)
C9—C10—C11126.9 (7)F7—P2—F9ii178.4 (8)
C12—C11—N3121.0 (7)F7ii—P2—F9ii90.0 (6)
C12—C11—C10123.7 (7)F8ii—P2—F9ii88.4 (5)
N3—C11—C10115.3 (6)F8—P2—F9ii91.3 (5)
C13—C12—C11119.8 (8)F9—P2—F9ii88.4 (7)
C13—C12—H12A120.1N7—C23—C24167 (3)
C11—C12—H12A120.1C23—C24—H24A109.5
C12—C13—C14119.1 (8)C23—C24—H24B109.5
C12—C13—H13A120.4H24A—C24—H24B109.5
C14—C13—H13A120.4C23—C24—H24C109.5
C15—C14—C13119.9 (8)H24A—C24—H24C109.5
C15—C14—H14A120.1H24B—C24—H24C109.5
N2i—Ir1—N1—C14.8 (7)N1—C5—C6—N22.1 (9)
N2—Ir1—N1—C1178.1 (7)C4—C5—C6—C74.9 (13)
N3—Ir1—N1—C1176.5 (7)N1—C5—C6—C7175.8 (7)
N3i—Ir1—N1—C174.9 (7)N2—C6—C7—C82.5 (11)
N1i—Ir1—N1—C184.9 (6)C5—C6—C7—C8175.2 (7)
N2i—Ir1—N1—C5175.3 (5)C6—C7—C8—C91.7 (11)
N2—Ir1—N1—C51.7 (5)C6—C7—C8—C16178.4 (7)
N3—Ir1—N1—C53.4 (9)C7—C8—C9—C100.1 (11)
N3i—Ir1—N1—C5104.9 (5)C16—C8—C9—C10179.9 (7)
N1i—Ir1—N1—C595.2 (5)C6—N2—C10—C90.3 (11)
N3—Ir1—N2—C6177.6 (6)Ir1—N2—C10—C9172.4 (6)
N3i—Ir1—N2—C692.9 (5)C6—N2—C10—C11178.8 (6)
N1—Ir1—N2—C63.0 (5)Ir1—N2—C10—C116.1 (8)
N1i—Ir1—N2—C686.7 (5)C8—C9—C10—N21.1 (11)
N3—Ir1—N2—C104.6 (5)C8—C9—C10—C11179.4 (7)
N3i—Ir1—N2—C1094.2 (6)C15—N3—C11—C122.2 (11)
N1—Ir1—N2—C10176.0 (6)Ir1—N3—C11—C12179.3 (6)
N1i—Ir1—N2—C1086.3 (6)C15—N3—C11—C10177.8 (7)
N2i—Ir1—N3—C158.2 (7)Ir1—N3—C11—C100.7 (8)
N2—Ir1—N3—C15174.8 (7)N2—C10—C11—C12175.8 (7)
N3i—Ir1—N3—C1571.6 (6)C9—C10—C11—C125.8 (13)
N1—Ir1—N3—C15173.2 (6)N2—C10—C11—N34.2 (9)
N1i—Ir1—N3—C1588.5 (7)C9—C10—C11—N3174.3 (7)
N2i—Ir1—N3—C11175.1 (5)N3—C11—C12—C130.0 (13)
N2—Ir1—N3—C111.9 (5)C10—C11—C12—C13180.0 (8)
N3i—Ir1—N3—C11105.2 (5)C11—C12—C13—C142.0 (15)
N1—Ir1—N3—C113.6 (10)C12—C13—C14—C151.8 (15)
N1i—Ir1—N3—C1194.8 (5)C11—N3—C15—C142.4 (12)
C5—N1—C1—C21.4 (12)Ir1—N3—C15—C14179.0 (7)
Ir1—N1—C1—C2178.8 (6)C13—C14—C15—N30.5 (14)
N1—C1—C2—C32.6 (13)C7—C8—C16—C1724.9 (11)
C1—C2—C3—C42.1 (14)C9—C8—C16—C17155.1 (7)
C2—C3—C4—C50.6 (14)C7—C8—C16—C21155.2 (8)
C3—C4—C5—N10.5 (12)C9—C8—C16—C2124.8 (11)
C3—C4—C5—C6179.9 (8)C21—C16—C17—C181.2 (12)
C1—N1—C5—C40.2 (11)C8—C16—C17—C18178.9 (7)
Ir1—N1—C5—C4179.7 (6)C16—C17—C18—C191.2 (13)
C1—N1—C5—C6179.5 (7)C17—C18—C19—C202.7 (12)
Ir1—N1—C5—C60.3 (8)C17—C18—C19—C22176.8 (8)
C10—N2—C6—C71.5 (10)C18—C19—C20—C211.8 (14)
Ir1—N2—C6—C7174.4 (5)C22—C19—C20—C21177.7 (9)
C10—N2—C6—C5176.5 (6)C19—C20—C21—C160.6 (14)
Ir1—N2—C6—C53.7 (8)C17—C16—C21—C202.1 (12)
C4—C5—C6—N2177.3 (7)C8—C16—C21—C20178.0 (8)
Symmetry codes: (i) x+2, y, z+3/2; (ii) x, y, z+3/2.

Experimental details

(I)(II)
Crystal data
Chemical formula[IrCl3(C22H17N3)]·C2H6OS[Ir(C22H17N3)2](PF6)3·2C2H3N
Mr700.061355.99
Crystal system, space groupMonoclinic, P21/cMonoclinic, C2/c
Temperature (K)100173
a, b, c (Å)10.377 (2), 23.166 (5), 10.370 (2)14.6977 (14), 16.3737 (16), 21.420 (2)
β (°) 93.22 (3) 105.639 (2)
V3)2488.9 (9)4964.0 (8)
Z44
Radiation typeSynchrotron, λ = 0.41328 ÅMo Kα
µ (mm1)3.082.90
Crystal size (mm)0.08 × 0.01 × 0.010.25 × 0.25 × 0.12
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Bruker SMART Platform CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1995)
Multi-scan
(SADABS; Sheldrick, 1995)
Tmin, Tmax0.791, 0.9850.531, 0.722
No. of measured, independent and
observed [I > 2σ(I)] reflections
68215, 7484, 6292 13655, 4995, 3790
Rint0.0450.046
(sin θ/λ)max1)0.7140.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.101, 1.11 0.051, 0.146, 1.11
No. of reflections74844995
No. of parameters346355
No. of restraints610
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0375P)2 + 14.1866P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0837P)2 + 2.2984P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)3.32, 2.401.69, 1.22

Computer programs: APEX2 (Bruker, 2008), SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), [Please provide missing details].

 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds