Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The mol­ecules of 8-methyl-7,10-diphenyl-5H-benzo[h]pyrazolo­[3,4-b]quinoline-5,6(10H)-dione, C27H17N3O2, (I), are weakly linked into chains by a single C—H...O hydrogen bond, and these chains are linked into sheets by a π–π stacking inter­action involving pyridyl and aryl rings. In 8-methyl-7-(4-methyl­phenyl)-10-phenyl-5H-benzo[h]pyrazolo­[3,4-b]quinoline-5,6(10H)-dione, C28H19N3O2, (II), the mol­ecules are linked into a three-dimensional framework structure by a combination of C—H...N, C—H...O and C—H...π(arene) hydrogen bonds, together with a π–π stacking inter­action analogous to that in (I).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110018500/gz3177sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110018500/gz3177Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110018500/gz3177IIsup3.hkl
Contains datablock II

CCDC references: 782541; 782542

Comment top

We are interested in the synthesis and biological properties of new pyrazolo[3,4-b]quinoline derivatives, some of which have exhibited parasiticidic properties (Bristol–Meyers Co., 1973), bactericidal activity (Farghaly et al., 1989) and vasodilator properties (Bell & Ackerman, 1990), while some have been evaluated for enzymatic inhibitory activity (Gatta et al., 1991). We have directed much of our work in this area towards the synthesis of such compounds using three-component reactions between 5-aminopyrazoles, aromatic aldehydes and ketones containing active methylene units. Here we report the structures of two closely-related benzo[h]pyrazolo[3,4-b]quinoline-5,6(10H)-diones, namely 8-methyl-7,10-diphenyl-5H-benzo[h]pyrazolo[3,4-b]quinoline-5,6(10H)-dione, (I), and 8-methyl-7-(4-methylphenyl)-10-phenyl-5H-benzo[h]pyrazolo[3,4-b]quinoline-5,6(10H)-dione, (II) (Figs. 1 and 2), which were prepared using naphthalene-1,2,4(3H)-trione as the methylene-active ketone component (see scheme). It turned out that these structure determinations were essential for the unambiguous identification of these compounds, because it was not possible using the normal spectroscopic techniques to determine the regiochemistry of the synthetic reactions and, in particular, to distinguish thereby between the benzo[h]pyrazolo[3,4-b]quinolinedione structures actually formed and the possible isomeric benzo[g]pyrazolo[3,4-b]quinolinediones, which had been expected on the basis of a recent report (Chen et al., 2008).

Although the constitutions of (I) and (II) differ only in the presence of a 4-methyl substituent in the C71–C76 aryl ring in (II), nonetheless these two compounds crystallise in different crystal systems, monoclinic and triclinic, respectively. They also exhibit very different modes of supramolecular aggregation, in the form of sheets built from π-stacked hydrogen-bonded chains in (I) compared with a complex three-dimensional framework structure in (II). On the other hand, the corresponding intramolecular bond distances are very similar in the two compounds with, in each case, a long C5—C6 bond between the two adjacent carbonyl groups (Table 1), as is typical for such structural units (Allen et al., 1987). There is clear evidence for bond fixation in the pyrazole ring, with typical aromatic-type delocalisation in the pyridine ring and in the terminal carbocyclic ring of the fused ring system (cf. scheme).

The only significant differences between the molecular structures of (I) and (II) are to be found in their conformations, as defined by the torsion angles (Table 1) defining the orientations of the two pendent aryl rings relative to the fused polycyclic core of the molecules. In both compounds, the carbocyclic ring (C4a/C5/C6/C6a/C11a/C11b) is slightly distorted towards an envelope conformation, folded across the line C5···C6a, slightly more markedly in (II) than in (I): in (I), the maximum deviation from the mean plane described by the ring atoms is 0.046 (2) Å for atom C6, but in (II), the maximum deviation is 0.072 (2) Å, again for atom C6. This ring distortion is reflected in, and possibly caused by, the non-parallel orientation of the two carbonyl groups (Table 1), itself probably resulting from the mutual repulsion of the two negatively polarised O atoms.

The crystal structure of (I) contains just one rather weak C—H···O hydrogen bond, while intermolecular C—H···N and C—H···π interactions are absent. The hydrogen bond links molecules which are related by the 21 screw axis along (0, y, -1/4) into a C(6) (Bernstein et al., 1995) chain running parallel to the [010] direction (Fig. 3). Chains of this type are linked into sheets by means of a ππ stacking interaction. The pyridine ring of the molecule at (x, y, z), which forms part of the C(6) chain along (0, y, -1/4), makes a dihedral angle of only 2.66 (2)° with the C101–C106 aryl ring in the molecule at (x, 1/2 - y, -1/2 + z), which itself forms part of the C(6) chain along (0, y, -3/4). The interplanar spacing between these two rings is ca 3.38 Å, with a ring-centroid separation of 3.601 (2) Å, corresponding to a ring-centroid offset of ca 1.28 Å. In this manner, the reference chain along (0, y, -1/4) is linked to the two adjacent chains along (0, y, -3/4) and (0, y, 1/4), so forming a sheet of π-stacked hydrogen-bonded chains lying parallel to (100) (Fig. 3).

The three-dimensional framework structure of (II) is built from a combination of C—H···N, C—H···O and C—H···π(arene) hydrogen bonds (Table 2), together with a ππ stacking interaction similar to that found in (I). Despite the complexity of the framework, its formation can readily be analysed using the sub-structure approach (Ferguson et al., 1998a,b; Gregson et al., 2000). In particular, an inversion-related pair of C—H···N hydrogen bonds (Table 2) links an inversion-related pair of molecules into a cyclic centrosymmetric R22(14) dimer centred at (1/2, 1/2, 1/2). This finite zero-dimensional sub-structural fragment can be regarded as the key building block in the overall structure, as the other three interactions, acting individually, link dimers of this type to form three distinct one-dimensional sub-structures. It is convenient to consider the actions of each of the other three intermolecular interactions in turn, both when acting alone and when acting to link the R22(14) dimers.

When acting alone, the C—H···O hydrogen bond links molecules related by translation to form a C(12) chain running parallel to the [001] direction. When acting in concert with the C—H···N hydrogen bond, the C—H···O interaction links R22(14) dimers into a chain of rings along [001] in which R22(14) rings centred at (1/2, 1/2, 1/2 + n), where n represents an integer, alternate with R44(30) rings centred at (1/2, 1/2, n), where n again represents an integer (Fig. 4). The C—H···π(arene) hydrogen bond links the molecules at (x, y, z) and (1 - x, 1 - y, 1 - z) into a centrosymmetric dimer and, in combination with the C—H···N hydrogen bond, it generates a chain of centrosymmetric rings running parallel to the [010] direction, with R22(14) rings built from paired C—H···N hydrogen bonds centred at (1/2, 1/2 + n, 1/2) alternating with rings built from paired C—H···π(arene) hydrogen bonds centred at (1/2, n, 1/2), where in both cases n represents an integer (Fig. 5). The pyridine ring of the molecule at (x, y, z) and the fused aryl ring of the molecule at (2 - x, 1 - y, 1 - z) are almost parallel, with a dihedral angle between their mean planes of only 3.36 (2)°. The ring-centroid separation is 3.723 (2) Å and the interplanar spacing is ca 3.42 °, corresponding to a ring-centroid offset of ca 1.47 Å. The effect of this ππ stacking interaction is to link the hydrogen-bonded R22(14) dimers into a π-stacked chain of dimers running parallel to the [100] direction (Fig. 6).

In the structure of (II) it is thus possible to identify three distinct sub-structural chains along [100], [010] and [001], respectively, each utilising a different pair of direction-specific intermolecular interactions. The combination of these three sub-structural motifs generates a three-dimensional framework structure of considerable complexity.

Thus, the notional replacement of a single H atom in (I) by a methyl group in (II) is associated with a change in crystal system, with differences in the overall molecular conformations, in particular the dihedral angles between the polycyclic ring system and the pendent rings (cf. Table 1), and with a major change in the supramolecular aggregation and the molecular packing. The direction-specific intermolecular forces which influence the molecular arrangements in the structures of (I) and (II) are comparatively weak, and the interpretation and prediction of crystal structures dominated by such forces, as opposed to the much stronger forces between charged entities, remains problematic, especially in molecules such as those of (I) and (II) having some degree of conformational flexibility (Day et al., 2009). Any attempt to provide a simple explanation for the observed differences between the structures of (I) and (II) is likely, at the present stage, to be entirely speculative.

Related literature top

For related literature, see: Allen et al. (1987); Bell & Ackerman (1990); Bernstein et al. (1995); Bristol–Meyers & Co (1973); Chen et al. (2008); Day (2009); Farghaly et al. (1989); Ferguson et al. (1998a, 1998b); Gatta et al. (1991); Gregson et al. (2000).

Experimental top

An intimate mixture containing 1 mmole of each of naphthalene-1,2,4(3H)-trione, 5-amino-3-methyl-1-phenylpyrazole and the appropriate aldehyde [benzaldehyde for (I) or 4-tolualdehyde for (II)] was irradiated in a microwave oven in the absence of solvent for 3 min. The solids obtained were purified by recrystallization from ethanol, and crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of solutions in dimethylformamide. Analysis for (I): orange, yield 85%, m.p. 545–546 K; MS m/z (%) = 415 (M+, 19), 386 (100), 77 (6). Analysis for (II): red, yield 85%, m.p. 546–547 K; MS m/z (%) = 429 (M+, 24), 414 (15), 400 (100) 386 (95).

Refinement top

All H atoms were located in difference maps and subsequently treated as riding atoms in geometrically idealised positions, with C—H = 0.95 (aromatic) or 0.98 Å (methyl) and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms.

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003). Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for (I); SIR2004 (Burla et al., 2005) for (II). For both compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular structure of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. A stereoview of part of the crystal structure of (I), showing the π-stacking of the hydrogen-bonded C(6) chains along (0, y, -1/4) and (0, y, -3/4) to form part of the π-stacked sheet parallel to (100). Dashed lines indicate hydrogen bonds. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
[Figure 4] Fig. 4. A stereoview of part of the crystal structure of (II), showing the formation of a hydrogen-bonded chain of alternating R22(14) and R44(30) rings along [001], built from C—H···N and C—H···O hydrogen bonds (dashed lines). For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 5] Fig. 5. A stereoview of part of the crystal structure of (II), showing the formation of a hydrogen-bonded chain of centrosymmetric rings along [010], built from C—H···N and C—H···π(arene) hydrogen bonds (dashed lines). For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 6] Fig. 6. A stereoview of part of the crystal structure of (II), showing the formation of a π-stacked chain of hydrogen-bonded dimers along [100]. Dashed lines indicate hydrogen bonds. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
(I) Benzo[h]pyrazolo[3,4-b]quinoline-5,6(10H)-dione top
Crystal data top
C27H17N3O2F(000) = 864
Mr = 415.44Dx = 1.452 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4362 reflections
a = 15.436 (5) Åθ = 2.7–27.5°
b = 13.622 (7) ŵ = 0.09 mm1
c = 9.359 (5) ÅT = 120 K
β = 105.00 (4)°Needle, orange
V = 1900.9 (16) Å30.27 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3532 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2660 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 9.091 pixels mm-1θmax = 25.5°, θmin = 2.7°
ϕ and ω scansh = 1818
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1616
Tmin = 0.956, Tmax = 0.991l = 1111
20384 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0389P)2 + 0.9212P]
where P = (Fo2 + 2Fc2)/3
3532 reflections(Δ/σ)max = 0.001
290 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C27H17N3O2V = 1900.9 (16) Å3
Mr = 415.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.436 (5) ŵ = 0.09 mm1
b = 13.622 (7) ÅT = 120 K
c = 9.359 (5) Å0.27 × 0.12 × 0.10 mm
β = 105.00 (4)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3532 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2660 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.991Rint = 0.050
20384 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.11Δρmax = 0.20 e Å3
3532 reflectionsΔρmin = 0.24 e Å3
290 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.18866 (13)0.07396 (14)0.1177 (2)0.0224 (5)
H10.23440.07040.20780.027*
C20.14831 (13)0.01084 (15)0.0535 (2)0.0243 (5)
H20.16590.07220.10020.029*
C30.08228 (13)0.00755 (15)0.0786 (2)0.0235 (5)
H30.05360.06610.12160.028*
C40.05887 (13)0.08114 (15)0.1467 (2)0.0219 (5)
H40.01500.08370.23890.026*
C4a0.09843 (12)0.16690 (14)0.0828 (2)0.0183 (4)
C50.07115 (12)0.26049 (15)0.1561 (2)0.0202 (4)
C60.10862 (13)0.35493 (14)0.0756 (2)0.0201 (4)
C6a0.18043 (12)0.34854 (14)0.0626 (2)0.0167 (4)
C70.22149 (12)0.43295 (14)0.1325 (2)0.0179 (4)
C7a0.28336 (12)0.41913 (14)0.2681 (2)0.0176 (4)
C80.33993 (12)0.48015 (14)0.3764 (2)0.0183 (4)
N90.38774 (10)0.42754 (11)0.48466 (17)0.0201 (4)
N100.36500 (10)0.33074 (11)0.45314 (16)0.0176 (4)
C10a0.30141 (12)0.32368 (14)0.32175 (19)0.0166 (4)
N110.26435 (10)0.24204 (11)0.25631 (16)0.0171 (4)
C11a0.20458 (12)0.25521 (14)0.1266 (2)0.0168 (4)
C11b0.16368 (12)0.16430 (14)0.0532 (2)0.0181 (4)
O50.01937 (9)0.26745 (10)0.27699 (15)0.0292 (4)
O60.07557 (10)0.43118 (10)0.12861 (16)0.0330 (4)
C710.20660 (12)0.53259 (13)0.0665 (2)0.0170 (4)
C720.25772 (13)0.56324 (14)0.0264 (2)0.0228 (5)
H720.30050.51990.04910.027*
C730.24702 (14)0.65614 (15)0.0864 (2)0.0256 (5)
H730.28250.67670.15000.031*
C740.18520 (13)0.71907 (15)0.0543 (2)0.0252 (5)
H740.17700.78280.09690.030*
C750.13539 (14)0.68938 (15)0.0396 (2)0.0274 (5)
H750.09320.73320.06300.033*
C760.14587 (13)0.59683 (15)0.1000 (2)0.0243 (5)
H760.11110.57710.16520.029*
C810.34914 (14)0.58829 (14)0.3799 (2)0.0273 (5)
H81A0.30280.61720.42120.041*
H81B0.34230.61290.27920.041*
H81C0.40850.60640.44160.041*
C1010.41376 (12)0.25805 (14)0.5484 (2)0.0183 (4)
C1020.47052 (13)0.28651 (15)0.6822 (2)0.0228 (5)
H1020.47430.35360.71060.027*
C1030.52150 (13)0.21724 (16)0.7738 (2)0.0270 (5)
H1030.56110.23720.86470.032*
C1040.51585 (13)0.11986 (16)0.7355 (2)0.0263 (5)
H1040.55140.07240.79890.032*
C1050.45781 (13)0.09189 (15)0.6037 (2)0.0254 (5)
H1050.45250.02440.57760.030*
C1060.40722 (13)0.16023 (15)0.5090 (2)0.0226 (5)
H1060.36830.14010.41760.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0269 (11)0.0199 (11)0.0187 (10)0.0007 (9)0.0025 (8)0.0016 (8)
C20.0320 (11)0.0170 (11)0.0241 (11)0.0000 (9)0.0078 (9)0.0018 (9)
C30.0284 (11)0.0203 (11)0.0234 (11)0.0065 (9)0.0098 (9)0.0067 (9)
C40.0221 (10)0.0256 (12)0.0182 (10)0.0031 (9)0.0056 (8)0.0040 (9)
C4a0.0190 (10)0.0212 (11)0.0153 (10)0.0022 (8)0.0057 (8)0.0018 (8)
C50.0187 (10)0.0241 (11)0.0177 (10)0.0023 (8)0.0047 (8)0.0010 (8)
C60.0219 (10)0.0184 (11)0.0196 (10)0.0006 (8)0.0047 (8)0.0035 (8)
C6a0.0170 (9)0.0179 (11)0.0151 (9)0.0007 (8)0.0039 (8)0.0006 (8)
C70.0180 (10)0.0193 (11)0.0165 (10)0.0006 (8)0.0047 (8)0.0007 (8)
C7a0.0187 (9)0.0172 (10)0.0177 (10)0.0013 (8)0.0060 (8)0.0008 (8)
C80.0200 (10)0.0172 (10)0.0167 (10)0.0003 (8)0.0032 (8)0.0003 (8)
N90.0241 (9)0.0156 (9)0.0189 (9)0.0024 (7)0.0026 (7)0.0031 (7)
N100.0215 (8)0.0143 (9)0.0149 (8)0.0007 (7)0.0006 (7)0.0008 (7)
C10a0.0174 (9)0.0174 (10)0.0139 (9)0.0004 (8)0.0023 (8)0.0015 (8)
N110.0187 (8)0.0161 (9)0.0156 (8)0.0019 (7)0.0028 (7)0.0008 (7)
C11a0.0183 (9)0.0167 (11)0.0164 (10)0.0004 (8)0.0063 (8)0.0004 (8)
C11b0.0198 (10)0.0173 (10)0.0185 (10)0.0018 (8)0.0072 (8)0.0015 (8)
O50.0310 (8)0.0292 (9)0.0209 (8)0.0027 (7)0.0050 (6)0.0008 (6)
O60.0385 (9)0.0220 (9)0.0291 (8)0.0004 (7)0.0081 (7)0.0030 (7)
C710.0197 (9)0.0146 (10)0.0137 (9)0.0038 (8)0.0011 (8)0.0001 (8)
C720.0252 (11)0.0197 (11)0.0236 (11)0.0010 (9)0.0067 (9)0.0008 (9)
C730.0309 (11)0.0209 (11)0.0272 (11)0.0021 (9)0.0117 (9)0.0048 (9)
C740.0304 (11)0.0175 (11)0.0256 (11)0.0009 (9)0.0033 (9)0.0047 (9)
C750.0294 (11)0.0227 (12)0.0302 (12)0.0059 (9)0.0078 (9)0.0030 (9)
C760.0281 (11)0.0242 (12)0.0223 (11)0.0020 (9)0.0095 (9)0.0041 (9)
C810.0331 (12)0.0180 (11)0.0265 (11)0.0035 (9)0.0001 (9)0.0020 (9)
C1010.0176 (9)0.0204 (11)0.0171 (10)0.0000 (8)0.0052 (8)0.0023 (8)
C1020.0255 (10)0.0214 (11)0.0205 (10)0.0001 (9)0.0043 (8)0.0018 (9)
C1030.0254 (11)0.0342 (13)0.0177 (11)0.0021 (10)0.0010 (9)0.0012 (9)
C1040.0246 (11)0.0295 (12)0.0226 (11)0.0058 (9)0.0020 (9)0.0069 (9)
C1050.0290 (11)0.0199 (11)0.0270 (11)0.0018 (9)0.0068 (9)0.0033 (9)
C1060.0242 (10)0.0231 (12)0.0181 (10)0.0019 (9)0.0012 (8)0.0003 (8)
Geometric parameters (Å, º) top
C1—C21.375 (3)N11—C11a1.333 (2)
C1—C11b1.381 (3)C11a—C11b1.476 (3)
C1—H10.9500C71—C761.377 (3)
C2—C31.385 (3)C71—C721.381 (3)
C2—H20.9500C72—C731.377 (3)
C3—C41.370 (3)C72—H720.9500
C3—H30.9500C73—C741.373 (3)
C4—C4a1.381 (3)C73—H730.9500
C4—H40.9500C74—C751.369 (3)
C4a—C11b1.404 (3)C74—H740.9500
C4a—C51.457 (3)C75—C761.374 (3)
C5—O51.208 (2)C75—H750.9500
C5—C61.527 (3)C76—H760.9500
C6—O61.206 (2)C81—H81A0.9800
C6—C6a1.472 (3)C81—H81B0.9800
C6a—C71.392 (3)C81—H81C0.9800
C6a—C11a1.414 (3)C101—C1061.379 (3)
C7—C7a1.389 (3)C101—C1021.385 (3)
C7—C711.485 (3)C102—C1031.377 (3)
C7a—C10a1.396 (3)C102—H1020.9500
C7a—C81.423 (3)C103—C1041.371 (3)
C8—N91.303 (2)C103—H1030.9500
C8—C811.479 (3)C104—C1051.377 (3)
N9—N101.377 (2)C104—H1040.9500
N10—C10a1.364 (2)C105—C1061.380 (3)
N10—C1011.412 (2)C105—H1050.9500
C10a—N111.326 (2)C106—H1060.9500
C2—C1—C11b120.93 (18)C1—C11b—C11a120.44 (17)
C2—C1—H1119.5C4a—C11b—C11a121.37 (17)
C11b—C1—H1119.5C76—C71—C72119.02 (18)
C1—C2—C3120.57 (19)C76—C71—C7121.80 (18)
C1—C2—H2119.7C72—C71—C7119.12 (17)
C3—C2—H2119.7C73—C72—C71120.42 (19)
C4—C3—C2119.24 (18)C73—C72—H72119.8
C4—C3—H3120.4C71—C72—H72119.8
C2—C3—H3120.4C74—C73—C72120.1 (2)
C3—C4—C4a120.71 (18)C74—C73—H73119.9
C3—C4—H4119.6C72—C73—H73119.9
C4a—C4—H4119.6C75—C74—C73119.56 (19)
C4—C4a—C11b120.30 (18)C75—C74—H74120.2
C4—C4a—C5119.64 (17)C73—C74—H74120.2
C11b—C4a—C5120.05 (17)C74—C75—C76120.6 (2)
O5—C5—C4a123.37 (18)C74—C75—H75119.7
O5—C5—C6118.06 (18)C76—C75—H75119.7
C4a—C5—C6118.57 (16)C75—C76—C71120.24 (19)
O6—C6—C6a123.70 (18)C75—C76—H76119.9
O6—C6—C5117.16 (17)C71—C76—H76119.9
C6a—C6—C5119.12 (16)C8—C81—H81A109.5
C7—C6a—C11a120.35 (17)C8—C81—H81B109.5
C7—C6a—C6120.80 (17)H81A—C81—H81B109.5
C11a—C6a—C6118.80 (16)C8—C81—H81C109.5
C7a—C7—C6a116.06 (17)H81A—C81—H81C109.5
C7a—C7—C71120.00 (16)H81B—C81—H81C109.5
C6a—C7—C71123.82 (16)C106—C101—C102119.85 (18)
C7—C7a—C10a118.75 (17)C106—C101—N10121.21 (17)
C7—C7a—C8136.21 (18)C102—C101—N10118.92 (18)
C10a—C7a—C8105.02 (16)C103—C102—C101119.8 (2)
N9—C8—C7a110.65 (17)C103—C102—H102120.1
N9—C8—C81119.91 (17)C101—C102—H102120.1
C7a—C8—C81129.44 (17)C104—C103—C102120.85 (19)
C8—N9—N10107.37 (15)C104—C103—H103119.6
C10a—N10—N9110.17 (14)C102—C103—H103119.6
C10a—N10—C101131.41 (16)C103—C104—C105118.97 (19)
N9—N10—C101118.13 (15)C103—C104—H104120.5
N11—C10a—N10126.83 (17)C105—C104—H104120.5
N11—C10a—C7a126.38 (16)C104—C105—C106121.2 (2)
N10—C10a—C7a106.79 (16)C104—C105—H105119.4
C10a—N11—C11a114.95 (16)C106—C105—H105119.4
N11—C11a—C6a123.47 (17)C101—C106—C105119.32 (19)
N11—C11a—C11b115.00 (16)C101—C106—H106120.3
C6a—C11a—C11b121.53 (16)C105—C106—H106120.3
C1—C11b—C4a118.19 (17)
C11b—C1—C2—C30.8 (3)C7a—C10a—N11—C11a0.2 (3)
C1—C2—C3—C41.4 (3)C10a—N11—C11a—C6a0.9 (3)
C2—C3—C4—C4a1.9 (3)C10a—N11—C11a—C11b179.65 (16)
C3—C4—C4a—C11b0.2 (3)C7—C6a—C11a—N112.0 (3)
C3—C4—C4a—C5178.85 (18)C6—C6a—C11a—N11175.36 (17)
C4—C4a—C5—O55.4 (3)C7—C6a—C11a—C11b178.58 (17)
C11b—C4a—C5—O5175.54 (18)C6—C6a—C11a—C11b4.0 (3)
C4—C4a—C5—C6173.69 (17)C2—C1—C11b—C4a2.5 (3)
C11b—C4a—C5—C65.4 (3)C2—C1—C11b—C11a177.23 (19)
O5—C5—C6—O69.4 (3)C4—C4a—C11b—C12.0 (3)
C4a—C5—C6—O6169.71 (19)C5—C4a—C11b—C1178.95 (18)
O5—C5—C6—C6a172.12 (18)C4—C4a—C11b—C11a177.73 (17)
C4a—C5—C6—C6a8.8 (3)C5—C4a—C11b—C11a1.3 (3)
O6—C6—C6a—C77.0 (3)N11—C11a—C11b—C10.8 (3)
C5—C6—C6a—C7174.59 (17)C6a—C11a—C11b—C1179.73 (19)
O6—C6—C6a—C11a170.34 (19)N11—C11a—C11b—C4a178.86 (17)
C5—C6—C6a—C11a8.0 (3)C6a—C11a—C11b—C4a0.6 (3)
C11a—C6a—C7—C7a2.3 (3)C7a—C7—C71—C7687.0 (2)
C6—C6a—C7—C7a175.09 (17)C6a—C7—C71—C7696.9 (2)
C11a—C6a—C7—C71173.92 (18)C7a—C7—C71—C7290.2 (2)
C6—C6a—C7—C718.7 (3)C6a—C7—C71—C7285.8 (2)
C6a—C7—C7a—C10a1.6 (3)C76—C71—C72—C731.0 (3)
C71—C7—C7a—C10a174.75 (18)C7—C71—C72—C73178.34 (17)
C6a—C7—C7a—C8179.9 (2)C71—C72—C73—C740.1 (3)
C71—C7—C7a—C83.7 (3)C72—C73—C74—C751.1 (3)
C7—C7a—C8—N9178.4 (2)C73—C74—C75—C760.9 (3)
C10a—C7a—C8—N90.2 (2)C74—C75—C76—C710.2 (3)
C7—C7a—C8—C812.1 (4)C72—C71—C76—C751.2 (3)
C10a—C7a—C8—C81179.3 (2)C7—C71—C76—C75178.42 (18)
C7a—C8—N9—N100.1 (2)C10a—N10—C101—C1066.1 (3)
C81—C8—N9—N10179.43 (17)N9—N10—C101—C106167.10 (18)
C8—N9—N10—C10a0.0 (2)C10a—N10—C101—C102175.39 (19)
C8—N9—N10—C101174.58 (16)N9—N10—C101—C10211.4 (3)
N9—N10—C10a—N11179.44 (18)C106—C101—C102—C1031.3 (3)
C101—N10—C10a—N115.8 (3)N10—C101—C102—C103177.24 (18)
N9—N10—C10a—C7a0.1 (2)C101—C102—C103—C1041.0 (3)
C101—N10—C10a—C7a173.49 (18)C102—C103—C104—C1050.3 (3)
C7—C7a—C10a—N110.6 (3)C103—C104—C105—C1061.5 (3)
C8—C7a—C10a—N11179.52 (18)C102—C101—C106—C1050.2 (3)
C7—C7a—C10a—N10178.73 (16)N10—C101—C106—C105178.32 (18)
C8—C7a—C10a—N100.2 (2)C104—C105—C106—C1011.2 (3)
N10—C10a—N11—C11a178.97 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O5i0.952.603.548 (3)176
Symmetry code: (i) x, y1/2, z1/2.
(II) 8-methyl-7-(4-methylphenyl)-10-phenyl-5H- benzo[h]pyrazolo[3,4-b]quinoline-5,6(10H)-dione top
Crystal data top
C28H19N3O2Z = 2
Mr = 429.46F(000) = 448
Triclinic, P1Dx = 1.380 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9952 (15) ÅCell parameters from 4751 reflections
b = 9.6201 (15) Åθ = 2.5–27.5°
c = 12.537 (4) ŵ = 0.09 mm1
α = 98.72 (2)°T = 120 K
β = 103.31 (2)°Plate, red
γ = 95.48 (2)°0.39 × 0.34 × 0.10 mm
V = 1033.9 (4) Å3
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3849 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2820 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
Detector resolution: 9.091 pixels mm-1θmax = 25.5°, θmin = 2.5°
ϕ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1111
Tmin = 0.963, Tmax = 0.991l = 1515
24512 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0423P)2 + 0.5407P]
where P = (Fo2 + 2Fc2)/3
3849 reflections(Δ/σ)max = 0.001
300 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C28H19N3O2γ = 95.48 (2)°
Mr = 429.46V = 1033.9 (4) Å3
Triclinic, P1Z = 2
a = 8.9952 (15) ÅMo Kα radiation
b = 9.6201 (15) ŵ = 0.09 mm1
c = 12.537 (4) ÅT = 120 K
α = 98.72 (2)°0.39 × 0.34 × 0.10 mm
β = 103.31 (2)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3849 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2820 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.991Rint = 0.056
24512 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.08Δρmax = 0.24 e Å3
3849 reflectionsΔρmin = 0.29 e Å3
300 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9610 (2)0.6597 (2)0.65223 (17)0.0219 (5)
H10.93870.61170.70880.026*
C21.0739 (2)0.7756 (2)0.68022 (19)0.0263 (5)
H21.12940.80620.75580.032*
C31.1072 (2)0.8477 (2)0.59955 (19)0.0273 (5)
H31.18380.92860.61940.033*
C41.0285 (2)0.8014 (2)0.49077 (19)0.0258 (5)
H41.05130.85010.43470.031*
C4a0.9160 (2)0.6842 (2)0.46170 (17)0.0206 (5)
C50.8370 (2)0.6349 (2)0.34442 (18)0.0224 (5)
C60.7215 (2)0.4989 (2)0.31300 (17)0.0206 (5)
C6a0.6728 (2)0.4377 (2)0.40217 (16)0.0177 (4)
C70.5548 (2)0.3228 (2)0.37848 (16)0.0170 (4)
C7a0.5266 (2)0.2687 (2)0.46976 (16)0.0177 (4)
C80.4176 (2)0.1652 (2)0.49021 (17)0.0193 (4)
N90.44275 (19)0.16209 (17)0.59741 (14)0.0210 (4)
N100.56876 (18)0.26179 (17)0.64982 (13)0.0198 (4)
C10a0.6198 (2)0.3282 (2)0.57511 (16)0.0178 (4)
N110.73338 (18)0.43559 (17)0.60024 (13)0.0184 (4)
C11a0.7570 (2)0.4905 (2)0.51363 (16)0.0167 (4)
C11b0.8799 (2)0.6126 (2)0.54274 (17)0.0186 (4)
O50.86105 (18)0.69482 (17)0.27081 (13)0.0350 (4)
O60.67912 (18)0.44708 (17)0.21569 (12)0.0316 (4)
C710.4629 (2)0.2586 (2)0.26496 (16)0.0185 (4)
C720.3617 (2)0.3317 (2)0.20237 (17)0.0248 (5)
H720.35110.42620.23200.030*
C730.2763 (3)0.2693 (2)0.09771 (18)0.0291 (5)
H730.20700.32130.05590.035*
C740.2890 (3)0.1323 (2)0.05197 (18)0.0291 (5)
C750.3892 (3)0.0597 (2)0.11532 (18)0.0305 (5)
H750.39960.03480.08570.037*
C760.4745 (2)0.1206 (2)0.22043 (18)0.0263 (5)
H760.54200.06770.26290.032*
C810.2879 (2)0.0682 (2)0.41112 (18)0.0255 (5)
H81A0.32860.00500.36700.038*
H81B0.22640.12230.36130.038*
H81C0.22290.02330.45270.038*
C1010.6328 (2)0.2841 (2)0.76675 (16)0.0195 (5)
C1020.5387 (2)0.2976 (2)0.83908 (17)0.0235 (5)
H1020.42970.28440.81160.028*
C1030.6049 (3)0.3303 (2)0.95193 (18)0.0283 (5)
H1030.54150.33991.00290.034*
C1040.7628 (3)0.3494 (2)0.99096 (19)0.0328 (6)
H1040.80830.37391.06880.039*
C1050.8547 (3)0.3328 (3)0.91751 (19)0.0327 (6)
H1050.96360.34460.94500.039*
C1060.7904 (2)0.2993 (2)0.80472 (18)0.0258 (5)
H1060.85380.28690.75390.031*
C770.1978 (3)0.0647 (3)0.0633 (2)0.0451 (7)
H77A0.25930.00220.09860.068*
H77B0.17170.13870.10750.068*
H77C0.10290.00910.05900.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0205 (11)0.0208 (11)0.0229 (12)0.0011 (9)0.0043 (9)0.0017 (9)
C20.0235 (12)0.0243 (12)0.0268 (12)0.0025 (10)0.0021 (9)0.0021 (10)
C30.0196 (11)0.0196 (11)0.0392 (14)0.0037 (9)0.0048 (10)0.0022 (10)
C40.0216 (11)0.0233 (12)0.0329 (13)0.0014 (10)0.0065 (10)0.0081 (10)
C4a0.0161 (10)0.0195 (11)0.0265 (12)0.0026 (9)0.0066 (9)0.0032 (9)
C50.0190 (11)0.0234 (12)0.0270 (12)0.0031 (9)0.0079 (9)0.0082 (10)
C60.0180 (11)0.0219 (11)0.0222 (12)0.0042 (9)0.0047 (9)0.0047 (9)
C6a0.0185 (11)0.0169 (10)0.0174 (11)0.0028 (9)0.0047 (8)0.0019 (9)
C70.0174 (10)0.0146 (10)0.0190 (11)0.0051 (8)0.0044 (8)0.0011 (8)
C7a0.0167 (10)0.0162 (10)0.0198 (11)0.0040 (8)0.0042 (8)0.0013 (9)
C80.0189 (11)0.0166 (10)0.0225 (11)0.0035 (9)0.0053 (9)0.0028 (9)
N90.0199 (9)0.0181 (9)0.0246 (10)0.0003 (8)0.0053 (8)0.0044 (8)
N100.0206 (9)0.0195 (9)0.0179 (9)0.0018 (8)0.0035 (7)0.0041 (7)
C10a0.0191 (11)0.0164 (10)0.0181 (11)0.0039 (9)0.0049 (8)0.0026 (9)
N110.0177 (9)0.0186 (9)0.0185 (9)0.0015 (7)0.0044 (7)0.0027 (7)
C11a0.0165 (10)0.0158 (10)0.0189 (11)0.0054 (8)0.0065 (8)0.0012 (8)
C11b0.0160 (10)0.0160 (10)0.0229 (11)0.0032 (8)0.0046 (9)0.0005 (9)
O50.0345 (9)0.0405 (10)0.0296 (9)0.0080 (8)0.0065 (7)0.0153 (8)
O60.0365 (9)0.0366 (10)0.0182 (9)0.0058 (7)0.0060 (7)0.0019 (7)
C710.0174 (10)0.0198 (11)0.0169 (11)0.0016 (9)0.0040 (8)0.0019 (9)
C720.0248 (12)0.0193 (11)0.0270 (12)0.0050 (9)0.0018 (10)0.0003 (9)
C730.0290 (13)0.0298 (13)0.0237 (12)0.0058 (10)0.0030 (10)0.0032 (10)
C740.0309 (13)0.0285 (13)0.0219 (12)0.0008 (10)0.0001 (10)0.0006 (10)
C750.0423 (14)0.0197 (12)0.0240 (12)0.0042 (10)0.0029 (11)0.0050 (10)
C760.0311 (12)0.0208 (11)0.0238 (12)0.0051 (10)0.0001 (10)0.0036 (9)
C810.0242 (12)0.0222 (12)0.0277 (12)0.0037 (10)0.0045 (10)0.0042 (10)
C1010.0240 (11)0.0160 (10)0.0191 (11)0.0031 (9)0.0052 (9)0.0052 (9)
C1020.0264 (12)0.0225 (11)0.0237 (12)0.0040 (9)0.0076 (9)0.0082 (9)
C1030.0377 (14)0.0283 (12)0.0226 (12)0.0061 (10)0.0138 (10)0.0052 (10)
C1040.0409 (15)0.0354 (14)0.0186 (12)0.0026 (11)0.0029 (10)0.0023 (10)
C1050.0282 (13)0.0407 (15)0.0259 (13)0.0043 (11)0.0002 (10)0.0067 (11)
C1060.0260 (12)0.0298 (13)0.0231 (12)0.0066 (10)0.0075 (10)0.0053 (10)
C770.0528 (17)0.0422 (16)0.0274 (14)0.0031 (13)0.0083 (12)0.0035 (12)
Geometric parameters (Å, º) top
C1—C21.378 (3)C71—C721.379 (3)
C1—C11b1.382 (3)C71—C761.383 (3)
C1—H10.9500C72—C731.372 (3)
C2—C31.381 (3)C72—H720.9500
C2—H20.9500C73—C741.381 (3)
C3—C41.368 (3)C73—H730.9500
C3—H30.9500C74—C751.375 (3)
C4—C4a1.384 (3)C74—C771.500 (3)
C4—H40.9500C75—C761.372 (3)
C4a—C11b1.391 (3)C75—H750.9500
C4a—C51.461 (3)C76—H760.9500
C5—O51.208 (2)C81—H81A0.9800
C5—C61.530 (3)C81—H81B0.9800
C6—O61.203 (2)C81—H81C0.9800
C6—C6a1.471 (3)C101—C1061.373 (3)
C6a—C71.403 (3)C101—C1021.377 (3)
C6a—C11a1.417 (3)C102—C1031.377 (3)
C7—C7a1.391 (3)C102—H1020.9500
C7—C711.478 (3)C103—C1041.376 (3)
C7a—C10a1.394 (3)C103—H1030.9500
C7a—C81.423 (3)C104—C1051.373 (3)
C8—N91.316 (3)C104—H1040.9500
C8—C811.481 (3)C105—C1061.374 (3)
N9—N101.377 (2)C105—H1050.9500
N10—C10a1.349 (2)C106—H1060.9500
N10—C1011.421 (3)C77—H77A0.9800
C10a—N111.327 (3)C77—H77B0.9800
N11—C11a1.327 (2)C77—H77C0.9800
C11a—C11b1.474 (3)
C2—C1—C11b120.6 (2)C72—C71—C7121.55 (18)
C2—C1—H1119.7C76—C71—C7119.91 (18)
C11b—C1—H1119.7C73—C72—C71120.5 (2)
C1—C2—C3120.6 (2)C73—C72—H72119.7
C1—C2—H2119.7C71—C72—H72119.7
C3—C2—H2119.7C72—C73—C74121.3 (2)
C4—C3—C2119.2 (2)C72—C73—H73119.3
C4—C3—H3120.4C74—C73—H73119.3
C2—C3—H3120.4C75—C74—C73117.8 (2)
C3—C4—C4a120.5 (2)C75—C74—C77120.8 (2)
C3—C4—H4119.7C73—C74—C77121.4 (2)
C4a—C4—H4119.7C76—C75—C74121.5 (2)
C4—C4a—C11b120.56 (19)C76—C75—H75119.3
C4—C4a—C5119.24 (19)C74—C75—H75119.3
C11b—C4a—C5120.19 (18)C75—C76—C71120.4 (2)
O5—C5—C4a123.05 (19)C75—C76—H76119.8
O5—C5—C6118.45 (19)C71—C76—H76119.8
C4a—C5—C6118.48 (18)C8—C81—H81A109.5
O6—C6—C6a124.22 (19)C8—C81—H81B109.5
O6—C6—C5116.91 (19)H81A—C81—H81B109.5
C6a—C6—C5118.84 (18)C8—C81—H81C109.5
C7—C6a—C11a120.13 (18)H81A—C81—H81C109.5
C7—C6a—C6121.61 (18)H81B—C81—H81C109.5
C11a—C6a—C6118.07 (18)C106—C101—C102121.52 (19)
C7a—C7—C6a116.02 (18)C106—C101—N10118.12 (18)
C7a—C7—C71119.88 (17)C102—C101—N10120.27 (18)
C6a—C7—C71124.10 (18)C101—C102—C103118.9 (2)
C7—C7a—C10a118.25 (18)C101—C102—H102120.5
C7—C7a—C8137.26 (19)C103—C102—H102120.5
C10a—C7a—C8104.42 (17)C104—C103—C102120.1 (2)
N9—C8—C7a110.79 (18)C104—C103—H103120.0
N9—C8—C81119.31 (18)C102—C103—H103120.0
C7a—C8—C81129.89 (19)C105—C104—C103120.1 (2)
C8—N9—N10106.56 (16)C105—C104—H104120.0
C10a—N10—N9110.62 (16)C103—C104—H104120.0
C10a—N10—C101127.16 (17)C104—C105—C106120.6 (2)
N9—N10—C101122.20 (16)C104—C105—H105119.7
N11—C10a—N10125.10 (18)C106—C105—H105119.7
N11—C10a—C7a127.22 (19)C101—C106—C105118.8 (2)
N10—C10a—C7a107.59 (17)C101—C106—H106120.6
C11a—N11—C10a114.58 (17)C105—C106—H106120.6
N11—C11a—C6a123.74 (18)C74—C77—H77A109.5
N11—C11a—C11b114.21 (17)C74—C77—H77B109.5
C6a—C11a—C11b122.05 (18)H77A—C77—H77B109.5
C1—C11b—C4a118.36 (19)C74—C77—H77C109.5
C1—C11b—C11a120.39 (19)H77A—C77—H77C109.5
C4a—C11b—C11a121.24 (18)H77B—C77—H77C109.5
C72—C71—C76118.52 (19)
C11b—C1—C2—C30.6 (3)C10a—N11—C11a—C6a2.0 (3)
C1—C2—C3—C41.1 (3)C10a—N11—C11a—C11b178.09 (17)
C2—C3—C4—C4a0.5 (3)C7—C6a—C11a—N111.3 (3)
C3—C4—C4a—C11b0.7 (3)C6—C6a—C11a—N11173.76 (17)
C3—C4—C4a—C5178.3 (2)C7—C6a—C11a—C11b178.79 (17)
C4—C4a—C5—O52.8 (3)C6—C6a—C11a—C11b6.1 (3)
C11b—C4a—C5—O5178.20 (19)C2—C1—C11b—C4a0.5 (3)
C4—C4a—C5—C6175.60 (18)C2—C1—C11b—C11a178.69 (18)
C11b—C4a—C5—C63.4 (3)C4—C4a—C11b—C11.2 (3)
O5—C5—C6—O611.4 (3)C5—C4a—C11b—C1177.77 (19)
C4a—C5—C6—O6167.14 (19)C4—C4a—C11b—C11a178.01 (18)
O5—C5—C6—C6a170.39 (19)C5—C4a—C11b—C11a3.0 (3)
C4a—C5—C6—C6a11.1 (3)N11—C11a—C11b—C10.9 (3)
O6—C6—C6a—C79.2 (3)C6a—C11a—C11b—C1179.05 (19)
C5—C6—C6a—C7172.72 (18)N11—C11a—C11b—C4a178.34 (18)
O6—C6—C6a—C11a165.83 (19)C6a—C11a—C11b—C4a1.8 (3)
C5—C6—C6a—C11a12.3 (3)C7a—C7—C71—C72113.0 (2)
C11a—C6a—C7—C7a0.9 (3)C6a—C7—C71—C7267.4 (3)
C6—C6a—C7—C7a175.84 (17)C7a—C7—C71—C7665.3 (3)
C11a—C6a—C7—C71178.68 (18)C6a—C7—C71—C76114.3 (2)
C6—C6a—C7—C713.8 (3)C76—C71—C72—C730.9 (3)
C6a—C7—C7a—C10a2.2 (3)C7—C71—C72—C73179.2 (2)
C71—C7—C7a—C10a177.39 (18)C71—C72—C73—C740.1 (3)
C6a—C7—C7a—C8174.3 (2)C72—C73—C74—C750.6 (3)
C71—C7—C7a—C86.1 (4)C72—C73—C74—C77178.9 (2)
C7—C7a—C8—N9177.1 (2)C73—C74—C75—C760.2 (4)
C10a—C7a—C8—N90.2 (2)C77—C74—C75—C76179.3 (2)
C7—C7a—C8—C812.5 (4)C74—C75—C76—C710.8 (3)
C10a—C7a—C8—C81179.4 (2)C72—C71—C76—C751.3 (3)
C7a—C8—N9—N100.5 (2)C7—C71—C76—C75179.7 (2)
C81—C8—N9—N10179.87 (17)C10a—N10—C101—C10642.3 (3)
C8—N9—N10—C10a1.1 (2)N9—N10—C101—C106136.1 (2)
C8—N9—N10—C101177.63 (18)C10a—N10—C101—C102134.3 (2)
N9—N10—C10a—N11175.64 (17)N9—N10—C101—C10247.3 (3)
C101—N10—C10a—N115.8 (3)C106—C101—C102—C1031.6 (3)
N9—N10—C10a—C7a1.2 (2)N10—C101—C102—C103174.89 (18)
C101—N10—C10a—C7a177.39 (18)C101—C102—C103—C1040.1 (3)
C7—C7a—C10a—N111.7 (3)C102—C103—C104—C1051.3 (3)
C8—C7a—C10a—N11175.90 (19)C103—C104—C105—C1061.0 (4)
C7—C7a—C10a—N10178.43 (17)C102—C101—C106—C1051.9 (3)
C8—C7a—C10a—N100.9 (2)N10—C101—C106—C105174.61 (19)
N10—C10a—N11—C11a175.71 (18)C104—C105—C106—C1010.7 (3)
C7a—C10a—N11—C11a0.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C72—H72···N11i0.952.623.395 (3)139
C104—H104···O6ii0.952.453.114 (3)127
C75—H75···Cgiii0.952.893.636 (2)136
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x+1, y, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC27H17N3O2C28H19N3O2
Mr415.44429.46
Crystal system, space groupMonoclinic, P21/cTriclinic, P1
Temperature (K)120120
a, b, c (Å)15.436 (5), 13.622 (7), 9.359 (5)8.9952 (15), 9.6201 (15), 12.537 (4)
α, β, γ (°)90, 105.00 (4), 9098.72 (2), 103.31 (2), 95.48 (2)
V3)1900.9 (16)1033.9 (4)
Z42
Radiation typeMo KαMo Kα
µ (mm1)0.090.09
Crystal size (mm)0.27 × 0.12 × 0.100.39 × 0.34 × 0.10
Data collection
DiffractometerBruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.956, 0.9910.963, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
20384, 3532, 2660 24512, 3849, 2820
Rint0.0500.056
(sin θ/λ)max1)0.6060.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.106, 1.11 0.052, 0.115, 1.08
No. of reflections35323849
No. of parameters290300
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.240.24, 0.29

Computer programs: COLLECT (Nonius, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SHELXS97 (Sheldrick, 2008), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Comparison of selected geometric parameters (Å, °) in (I) and (II) top
Parameter(I)(II)
C5—C61.527 (3)1.530 (3)
C7a—C81.423 (3)1.423 (3)
C8—N91.303 (2)1.316 (3)
N9—N101.377 (2)1.377 (2)
N10—C10a1.364 (2)1.349 (2)
C10a—C7a1.396 (3)1.394 (3)
C6a—C7—C71—C72-85.8 (2)-67.4 (3)
N9—N10—C101—C10211.4 (3)-47.3 (3)
O5—C5—C6—O69.4 (3)11.4 (3)
Comparison of hydrogen-bond parameters (Å, °) in (I) and (II) top
CompoundD—H···AD—HH···AD···AD—H···A
(I)C3—H3···O5i0.952.603.548 (3)176
(II)C72—H72···N11ii0.952.623.395 (3)139
C104—H104···O6iii0.952.453.114 (3)127
C75—H75···Cgiv0.952.893.636 (2)168
Cg represents the centroid of the C101–C106 ring. Symmetry codes: (i) -x, y + 1/2, -z - 1/2; (ii) -x + 1, -y + 1, -z + 1; (iii) x, y, z + 1; (iv) -x + 1, -y, -z + 1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds