Buy article online - an online subscription or single-article purchase is required to access this article.
research papers
Alignment of anisotropic particles along specific orientations influences the mechanical and rheological properties of a material. Small-angle scattering techniques are widely used to probe this alignment through analysis of anisotropic two-dimensional scattering intensity patterns. The anisotropy factor is the simplest and most common quantitative parameter for describing scattering anisotropy, especially in systems containing rod-like particles, and there are several methods for calculating this factor. However, there has been no systematic study comparing these methods while also evaluating the limitations imposed by non-idealities from instrumentation or polydisperse morphology. Three of the most common methods for calculating an anisotropy factor are examined here and their effectiveness for describing the orientation of a theoretical cylinder is evaluated. It is found that the maximum theoretical value of 1 for the anisotropy factor is only accessible at certain values of scattering vector q. The analysis details recommendations for q-range selection and data binning, as these influence the calculations. The theoretical results are supported by experimental small-angle neutron scattering data for a wormlike micelle solution undergoing shear, where different calculation methods yield distinct quantifications of anisotropy.