Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The orientation relationships (ORs) between the Al matrix and Si2Hf precipitates with an orthorhombic structure in an Al–Si–Mg–Hf alloy after heat treatment at 833 K for 20 h were investigated by transmission electron microscopy and electron diffraction. Four ORs are identified as (100)Al||(010)p, (0\overline {1}1)Al||(101)p and [011]Al||[\overline {1}01]p; (11\overline {1})Al||(010)p and [011]Al||[\overline {1}01]p; (12\overline {1})Al||(010)p, (101)Al||(100)p and [1\overline {11}]Al||[001]p; (\overline {11}1)Al||(010)p and [112]Al||[\overline {1}01]p. The habit planes of these four ORs are rationalized by the fraction of good atomic matching sites at the interface. In addition, the formation of Si2Hf precipitates with a nanobelt-like morphology is interpreted on the basis of the near-coincident site lattice distribution.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds