Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112020513/ku3069sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270112020513/ku3069Isup2.hkl |
For related literature, see: Bugaris & zur Loye (2012); Ibers & Smith (1964); Klevtsov (1970); Klevtsova & Magarill (1970); Kolitsch & Tillmanns (2003); Lee et al. (2008); Loye et al. (2012); Mikhailova et al. (2010); Sarapulova et al. (2009); Sebastian et al. (2003); Shannon (1976); Smit et al. (2006, 2008).
Colorless prismatic crystals of Li3Al(MoO4)3 were grown from a mixture of Li2MoO4 (Alfa Aesar, 99+%), α-Al2O3 (Alfa Aesar, 99.9%), and MoO3 (Alfa Aesar, 99.95%). The Li2MoO4 was dried overnight at 423 K to remove any adsorbed water. The starting reagents α-Al2O3 (0.10196 g, 1 mmol), and MoO3 (0.14394 g, 1 mmol), with Li2MoO4 (0.43455 g, 2.5 mmol) acting as both a source of Li and a flux, were ground together thoroughly using a mortar and pestle. The mixture was transferred to an alumina crucible, covered loosely and placed in a furnace. The mixture was heated at a rate of 200 K h-1 to 998 K, where it was held for 12 h, before cooling at a rate of 2 K h-1 to 773 K, at which point it was allowed to cool rapidly to room temperature. The excess lithium molybdate flux was removed by washing with hot water, aided by sonication, and colorless prismatic crystals of the title compound were isolated by vacuum filtration.
A model with substitutional disorder between Li and Al was proposed for this compound. Similar disorder was observed in the isostructural compounds Li3M3+(MoO4)3 (M = V, Cr, Fe, Ga, Sc). The occupancies of the Li1/Al1 and Li2/Al2 crystallographic sites were constrained to 1.00, whereas restraints with an s.u. value of 0.001 were used for keeping the total number of Li atoms in the structural formula at 3.0 and the total number of Al atoms in the structural formula at 1.0, i.e. occupancy(Li1) + 0.5 × occupancy(Li2) = 1.0, and occupancy(Al1) + 0.5 × occupancy(Al2) = 0.5. There is no evidence in the refinement for the presence of Al on the trigonal prismatic site (100% Li).
The largest positive and negative residual electron densities of 0.804 and -0.763 e Å-3 are located 0.76 and 0.58 Å, respectively, from atom Mo1.
Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2012); software used to prepare material for publication: SHELXTL97 (Sheldrick, 2008).
Li3Al(MoO4)3 | F(000) = 976 |
Mr = 527.62 | Dx = 3.903 Mg m−3 |
Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2n | Cell parameters from 4199 reflections |
a = 5.0372 (10) Å | θ = 2.3–32.1° |
b = 10.320 (2) Å | µ = 4.29 mm−1 |
c = 17.272 (4) Å | T = 298 K |
V = 897.8 (3) Å3 | Prism, colourless |
Z = 4 | 0.07 × 0.07 × 0.05 mm |
Bruker SMART APEX CCD area-detector diffractometer | 1606 independent reflections |
Radiation source: fine-focus sealed tube | 1414 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
ω scans | θmax = 32.1°, θmin = 2.3° |
Absorption correction: numerical (SADABS; Sheldrick, 2008) | h = −7→7 |
Tmin = 0.661, Tmax = 0.746 | k = −15→15 |
14109 measured reflections | l = −25→24 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.021 | w = 1/[σ2(Fo2) + (0.0235P)2 + 0.5382P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.048 | (Δ/σ)max = 0.001 |
S = 1.12 | Δρmax = 0.80 e Å−3 |
1606 reflections | Δρmin = −0.76 e Å−3 |
99 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
4 restraints | Extinction coefficient: 0.00156 (18) |
Li3Al(MoO4)3 | V = 897.8 (3) Å3 |
Mr = 527.62 | Z = 4 |
Orthorhombic, Pnma | Mo Kα radiation |
a = 5.0372 (10) Å | µ = 4.29 mm−1 |
b = 10.320 (2) Å | T = 298 K |
c = 17.272 (4) Å | 0.07 × 0.07 × 0.05 mm |
Bruker SMART APEX CCD area-detector diffractometer | 1606 independent reflections |
Absorption correction: numerical (SADABS; Sheldrick, 2008) | 1414 reflections with I > 2σ(I) |
Tmin = 0.661, Tmax = 0.746 | Rint = 0.031 |
14109 measured reflections |
R[F2 > 2σ(F2)] = 0.021 | 99 parameters |
wR(F2) = 0.048 | 4 restraints |
S = 1.12 | Δρmax = 0.80 e Å−3 |
1606 reflections | Δρmin = −0.76 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Li1 | −0.2424 (3) | 0.07138 (18) | 0.52567 (10) | 0.0143 (4) | 0.721 (2) |
Al1 | −0.2424 (3) | 0.07138 (18) | 0.52567 (10) | 0.0143 (4) | 0.279 (2) |
Li2 | 0.3952 (3) | 0.2500 | 0.25035 (9) | 0.0097 (4) | 0.558 (5) |
Al2 | 0.3952 (3) | 0.2500 | 0.25035 (9) | 0.0097 (4) | 0.442 (4) |
Li3 | −0.2535 (12) | 0.2500 | 0.6959 (4) | 0.0249 (13) | |
Mo1 | 0.21939 (5) | 0.2500 | 0.442175 (14) | 0.01130 (7) | |
Mo2 | −0.27972 (4) | −0.023570 (18) | 0.343878 (10) | 0.01200 (7) | |
O1 | 0.1429 (5) | 0.2500 | 0.34148 (13) | 0.0192 (5) | |
O2 | 0.4216 (4) | 0.11598 (16) | 0.46301 (9) | 0.0212 (4) | |
O3 | −0.0569 (5) | 0.2500 | 0.50654 (13) | 0.0240 (5) | |
O4 | 0.1446 (4) | 0.12339 (15) | 0.20699 (9) | 0.0176 (3) | |
O5 | −0.0798 (4) | 0.01325 (17) | 0.42573 (9) | 0.0193 (3) | |
O6 | −0.4391 (3) | 0.11071 (16) | 0.62544 (10) | 0.0212 (3) | |
O7 | −0.0816 (4) | −0.12129 (17) | 0.28713 (10) | 0.0242 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Li1 | 0.0123 (8) | 0.0180 (8) | 0.0125 (8) | −0.0009 (6) | −0.0002 (6) | 0.0039 (6) |
Al1 | 0.0123 (8) | 0.0180 (8) | 0.0125 (8) | −0.0009 (6) | −0.0002 (6) | 0.0039 (6) |
Li2 | 0.0095 (8) | 0.0097 (8) | 0.0099 (7) | 0.000 | −0.0007 (6) | 0.000 |
Al2 | 0.0095 (8) | 0.0097 (8) | 0.0099 (7) | 0.000 | −0.0007 (6) | 0.000 |
Li3 | 0.024 (3) | 0.027 (3) | 0.024 (3) | 0.000 | −0.004 (2) | 0.000 |
Mo1 | 0.01160 (12) | 0.01323 (13) | 0.00908 (12) | 0.000 | −0.00015 (8) | 0.000 |
Mo2 | 0.01278 (10) | 0.01106 (10) | 0.01214 (10) | 0.00103 (6) | −0.00103 (6) | 0.00171 (6) |
O1 | 0.0300 (13) | 0.0135 (11) | 0.0140 (10) | 0.000 | −0.0036 (9) | 0.000 |
O2 | 0.0235 (9) | 0.0216 (9) | 0.0185 (8) | 0.0028 (7) | −0.0018 (7) | 0.0006 (6) |
O3 | 0.0186 (12) | 0.0364 (15) | 0.0169 (11) | 0.000 | 0.0002 (9) | 0.000 |
O4 | 0.0245 (8) | 0.0133 (7) | 0.0150 (7) | 0.0006 (7) | 0.0004 (6) | −0.0015 (6) |
O5 | 0.0167 (8) | 0.0252 (9) | 0.0161 (7) | −0.0001 (7) | 0.0001 (6) | 0.0013 (6) |
O6 | 0.0239 (8) | 0.0166 (8) | 0.0230 (8) | −0.0045 (7) | −0.0059 (7) | 0.0017 (6) |
O7 | 0.0215 (9) | 0.0261 (9) | 0.0252 (9) | 0.0064 (7) | −0.0017 (7) | −0.0057 (7) |
Li1—O5 | 2.003 (2) | Li3—Li3xii | 3.136 (8) |
Li1—O5i | 2.025 (2) | Li3—Li1vi | 3.471 (6) |
Li1—O6 | 2.029 (2) | Mo1—O2 | 1.7550 (17) |
Li1—O2ii | 2.061 (2) | Mo1—O2vi | 1.7550 (17) |
Li1—O3 | 2.093 (2) | Mo1—O3 | 1.781 (3) |
Li1—O2i | 2.143 (3) | Mo1—O1 | 1.781 (2) |
Li1—Al1i | 2.987 (3) | Mo1—Li1vi | 3.2999 (17) |
Li1—Li1i | 2.987 (3) | Mo1—Li1viii | 3.3647 (19) |
Li1—Li1iii | 3.113 (3) | Mo1—Li1i | 3.3647 (19) |
Li1—Al1iii | 3.113 (3) | Mo2—O7 | 1.7244 (17) |
Li1—Mo2 | 3.2946 (18) | Mo2—O6iii | 1.7595 (17) |
Li1—Mo1 | 3.2999 (17) | Mo2—O5 | 1.7770 (17) |
Li2—O4iv | 1.957 (2) | Mo2—O4vii | 1.7937 (16) |
Li2—O4v | 1.957 (2) | Mo2—Li1iii | 3.3337 (17) |
Li2—O4vi | 1.965 (2) | Mo2—Li2vii | 3.3757 (10) |
Li2—O4 | 1.965 (2) | O1—Al2vii | 2.018 (3) |
Li2—O1v | 2.018 (3) | O1—Li2vii | 2.018 (3) |
Li2—O1 | 2.023 (3) | O2—Al1xiii | 2.061 (2) |
Li2—Al2v | 2.5186 (5) | O2—Li1xiii | 2.061 (2) |
Li2—Li2v | 2.5186 (5) | O2—Al1i | 2.143 (3) |
Li2—Li2vii | 2.5186 (5) | O2—Li1i | 2.143 (3) |
Li2—Al2vii | 2.5186 (5) | O3—Al1vi | 2.093 (2) |
Li2—Mo2v | 3.3756 (10) | O3—Li1vi | 2.093 (2) |
Li2—Mo2iv | 3.3756 (10) | O4—Mo2v | 1.7936 (16) |
Li3—O6 | 2.103 (5) | O4—Al2vii | 1.957 (2) |
Li3—O6vi | 2.103 (5) | O4—Li2vii | 1.957 (2) |
Li3—O7viii | 2.168 (5) | O5—Al1i | 2.025 (2) |
Li3—O7i | 2.168 (5) | O5—Li1i | 2.025 (2) |
Li3—O7ix | 2.222 (6) | O6—Mo2iii | 1.7595 (17) |
Li3—O7x | 2.222 (6) | O7—Li3i | 2.168 (5) |
Li3—Li3xi | 3.136 (8) | O7—Li3xiv | 2.222 (6) |
O5—Li1—O5i | 84.27 (10) | O6—Li3—O6vi | 86.3 (3) |
O5—Li1—O6 | 172.68 (12) | O6—Li3—O7viii | 147.5 (4) |
O5i—Li1—O6 | 97.21 (10) | O6vi—Li3—O7viii | 90.32 (12) |
O5—Li1—O2ii | 87.14 (9) | O6—Li3—O7i | 90.32 (12) |
O5i—Li1—O2ii | 166.42 (12) | O6vi—Li3—O7i | 147.5 (4) |
O6—Li1—O2ii | 90.03 (9) | O7viii—Li3—O7i | 75.6 (2) |
O5—Li1—O3 | 86.85 (10) | O6—Li3—O7ix | 130.8 (3) |
O5i—Li1—O3 | 95.01 (11) | O6vi—Li3—O7ix | 80.53 (14) |
O6—Li1—O3 | 100.13 (11) | O7viii—Li3—O7ix | 80.15 (15) |
O2ii—Li1—O3 | 95.00 (11) | O7i—Li3—O7ix | 124.2 (3) |
O5—Li1—O2i | 88.90 (10) | O6—Li3—O7x | 80.53 (14) |
O5i—Li1—O2i | 84.87 (10) | O6vi—Li3—O7x | 130.8 (3) |
O6—Li1—O2i | 84.11 (9) | O7viii—Li3—O7x | 124.2 (3) |
O2ii—Li1—O2i | 84.46 (9) | O7i—Li3—O7x | 80.15 (15) |
O3—Li1—O2i | 175.73 (12) | O7ix—Li3—O7x | 73.4 (2) |
O5—Li1—Al1i | 42.43 (7) | O6—Li3—Li3xi | 89.30 (15) |
O5i—Li1—Al1i | 41.85 (6) | O6vi—Li3—Li3xi | 89.30 (15) |
O6—Li1—Al1i | 138.60 (11) | O7viii—Li3—Li3xi | 123.0 (3) |
O2ii—Li1—Al1i | 128.73 (11) | O7i—Li3—Li3xi | 123.0 (3) |
O3—Li1—Al1i | 91.28 (10) | O7ix—Li3—Li3xi | 43.72 (19) |
O2i—Li1—Al1i | 85.78 (9) | O7x—Li3—Li3xi | 43.72 (19) |
O5—Li1—Li1i | 42.43 (7) | O6—Li3—Li3xii | 134.58 (13) |
O5i—Li1—Li1i | 41.85 (6) | O6vi—Li3—Li3xii | 134.58 (13) |
O6—Li1—Li1i | 138.60 (11) | O7viii—Li3—Li3xii | 45.10 (8) |
O2ii—Li1—Li1i | 128.73 (11) | O7i—Li3—Li3xii | 45.10 (8) |
O3—Li1—Li1i | 91.28 (10) | O7ix—Li3—Li3xii | 83.0 (3) |
O2i—Li1—Li1i | 85.78 (9) | O7x—Li3—Li3xii | 83.0 (3) |
O5—Li1—Li1iii | 87.35 (10) | Li3xi—Li3—Li3xii | 106.9 (4) |
O5i—Li1—Li1iii | 125.59 (11) | O6—Li3—Li1vi | 83.1 (2) |
O6—Li1—Li1iii | 85.97 (9) | O6vi—Li3—Li1vi | 32.19 (12) |
O2ii—Li1—Li1iii | 43.24 (6) | O7viii—Li3—Li1vi | 77.09 (15) |
O3—Li1—Li1iii | 138.08 (12) | O7i—Li3—Li1vi | 115.3 (3) |
O2i—Li1—Li1iii | 41.22 (6) | O7ix—Li3—Li1vi | 106.81 (10) |
Al1i—Li1—Li1iii | 111.32 (11) | O7x—Li3—Li1vi | 157.6 (3) |
Li1i—Li1—Li1iii | 111.32 (11) | Li3xi—Li3—Li1vi | 121.18 (16) |
O5—Li1—Al1iii | 87.35 (10) | Li3xii—Li3—Li1vi | 119.46 (17) |
O5i—Li1—Al1iii | 125.59 (11) | O6—Li3—Li1 | 32.19 (12) |
O6—Li1—Al1iii | 85.97 (9) | O6vi—Li3—Li1 | 83.1 (2) |
O2ii—Li1—Al1iii | 43.24 (6) | O7viii—Li3—Li1 | 115.3 (3) |
O3—Li1—Al1iii | 138.08 (12) | O7i—Li3—Li1 | 77.09 (15) |
O2i—Li1—Al1iii | 41.22 (6) | O7ix—Li3—Li1 | 157.6 (3) |
Al1i—Li1—Al1iii | 111.32 (11) | O7x—Li3—Li1 | 106.81 (10) |
Li1i—Li1—Al1iii | 111.32 (11) | Li3xi—Li3—Li1 | 121.18 (16) |
O5—Li1—Mo2 | 27.48 (6) | Li3xii—Li3—Li1 | 119.46 (17) |
O5i—Li1—Mo2 | 108.21 (8) | Li1vi—Li3—Li1 | 64.16 (13) |
O6—Li1—Mo2 | 147.27 (9) | O2—Mo1—O2vi | 104.01 (12) |
O2ii—Li1—Mo2 | 61.25 (6) | O2—Mo1—O3 | 109.00 (7) |
O3—Li1—Mo2 | 97.87 (8) | O2vi—Mo1—O3 | 109.00 (7) |
O2i—Li1—Mo2 | 78.15 (7) | O2—Mo1—O1 | 109.01 (7) |
Al1i—Li1—Mo2 | 67.48 (6) | O2vi—Mo1—O1 | 109.01 (7) |
Li1i—Li1—Mo2 | 67.48 (6) | O3—Mo1—O1 | 116.13 (12) |
Li1iii—Li1—Mo2 | 62.63 (6) | O2—Mo1—Li1 | 83.07 (7) |
Al1iii—Li1—Mo2 | 62.63 (6) | O2vi—Mo1—Li1 | 139.45 (6) |
O5—Li1—Mo1 | 60.15 (7) | O3—Mo1—Li1 | 34.56 (4) |
O5i—Li1—Mo1 | 81.78 (7) | O1—Mo1—Li1 | 105.91 (8) |
O6—Li1—Mo1 | 127.13 (9) | O2—Mo1—Li1vi | 139.45 (6) |
O2ii—Li1—Mo1 | 102.98 (8) | O2vi—Mo1—Li1vi | 83.07 (7) |
O3—Li1—Mo1 | 28.86 (7) | O3—Mo1—Li1vi | 34.56 (3) |
O2i—Li1—Mo1 | 147.24 (9) | O1—Mo1—Li1vi | 105.91 (8) |
Al1i—Li1—Mo1 | 64.49 (6) | Li1—Mo1—Li1vi | 67.92 (6) |
Li1i—Li1—Mo1 | 64.49 (6) | O2—Mo1—Li1viii | 136.30 (6) |
Li1iii—Li1—Mo1 | 136.68 (8) | O2vi—Mo1—Li1viii | 33.83 (7) |
Al1iii—Li1—Mo1 | 136.68 (8) | O3—Mo1—Li1viii | 85.64 (3) |
Mo2—Li1—Mo1 | 77.87 (4) | O1—Mo1—Li1viii | 99.71 (3) |
O4iv—Li2—O4v | 83.79 (11) | Li1—Mo1—Li1viii | 120.19 (3) |
O4iv—Li2—O4vi | 96.43 (8) | Li1vi—Mo1—Li1viii | 53.24 (5) |
O4v—Li2—O4vi | 179.69 (8) | O2—Mo1—Li1i | 33.83 (7) |
O4iv—Li2—O4 | 179.69 (8) | O2vi—Mo1—Li1i | 136.30 (6) |
O4v—Li2—O4 | 96.43 (8) | O3—Mo1—Li1i | 85.64 (3) |
O4vi—Li2—O4 | 83.36 (12) | O1—Mo1—Li1i | 99.71 (3) |
O4iv—Li2—O1v | 84.20 (9) | Li1—Mo1—Li1i | 53.24 (5) |
O4v—Li2—O1v | 84.20 (9) | Li1vi—Mo1—Li1i | 120.18 (3) |
O4vi—Li2—O1v | 95.60 (10) | Li1viii—Mo1—Li1i | 160.59 (6) |
O4—Li2—O1v | 95.60 (10) | O7—Mo2—O6iii | 109.77 (8) |
O4iv—Li2—O1 | 96.34 (9) | O7—Mo2—O5 | 104.43 (8) |
O4v—Li2—O1 | 96.34 (9) | O6iii—Mo2—O5 | 109.03 (8) |
O4vi—Li2—O1 | 83.85 (9) | O7—Mo2—O4vii | 109.81 (8) |
O4—Li2—O1 | 83.85 (9) | O6iii—Mo2—O4vii | 114.12 (8) |
O1v—Li2—O1 | 179.27 (15) | O5—Mo2—O4vii | 109.23 (8) |
O4iv—Li2—Al2v | 50.19 (6) | O7—Mo2—Li1 | 133.05 (7) |
O4v—Li2—Al2v | 50.19 (6) | O6iii—Mo2—Li1 | 84.89 (6) |
O4vi—Li2—Al2v | 129.83 (8) | O5—Mo2—Li1 | 31.33 (6) |
O4—Li2—Al2v | 129.83 (8) | O4vii—Mo2—Li1 | 103.15 (6) |
O1v—Li2—Al2v | 51.53 (9) | O7—Mo2—Li1iii | 135.68 (7) |
O1—Li2—Al2v | 129.20 (13) | O6iii—Mo2—Li1iii | 30.63 (6) |
O4iv—Li2—Li2v | 50.19 (6) | O5—Mo2—Li1iii | 84.45 (6) |
O4v—Li2—Li2v | 50.19 (6) | O4vii—Mo2—Li1iii | 107.62 (6) |
O4vi—Li2—Li2v | 129.83 (8) | Li1—Mo2—Li1iii | 56.02 (5) |
O4—Li2—Li2v | 129.83 (8) | O7—Mo2—Li2vii | 93.67 (7) |
O1v—Li2—Li2v | 51.53 (9) | O6iii—Mo2—Li2vii | 141.51 (6) |
O1—Li2—Li2v | 129.20 (13) | O5—Mo2—Li2vii | 93.25 (6) |
O4iv—Li2—Li2vii | 130.08 (8) | O4vii—Mo2—Li2vii | 27.40 (6) |
O4v—Li2—Li2vii | 130.08 (8) | Li1—Mo2—Li2vii | 101.30 (4) |
O4vi—Li2—Li2vii | 49.90 (6) | Li1iii—Mo2—Li2vii | 129.65 (4) |
O4—Li2—Li2vii | 49.90 (6) | Mo1—O1—Al2vii | 154.31 (16) |
O1v—Li2—Li2vii | 127.92 (13) | Mo1—O1—Li2vii | 154.31 (16) |
O1—Li2—Li2vii | 51.35 (9) | Mo1—O1—Li2 | 128.58 (15) |
Al2v—Li2—Li2vii | 179.45 (15) | Al2vii—O1—Li2 | 77.11 (8) |
Li2v—Li2—Li2vii | 179.45 (15) | Li2vii—O1—Li2 | 77.11 (8) |
O4iv—Li2—Al2vii | 130.08 (8) | Mo1—O2—Al1xiii | 139.49 (11) |
O4v—Li2—Al2vii | 130.08 (8) | Mo1—O2—Li1xiii | 139.49 (11) |
O4vi—Li2—Al2vii | 49.90 (6) | Mo1—O2—Al1i | 119.03 (10) |
O4—Li2—Al2vii | 49.90 (6) | Al1xiii—O2—Al1i | 95.54 (9) |
O1v—Li2—Al2vii | 127.92 (13) | Li1xiii—O2—Al1i | 95.54 (9) |
O1—Li2—Al2vii | 51.35 (9) | Mo1—O2—Li1i | 119.03 (10) |
Al2v—Li2—Al2vii | 179.45 (15) | Al1xiii—O2—Li1i | 95.54 (9) |
Li2v—Li2—Al2vii | 179.45 (15) | Li1xiii—O2—Li1i | 95.54 (9) |
O4iv—Li2—Mo2v | 155.18 (8) | Mo1—O3—Al1vi | 116.58 (8) |
O4v—Li2—Mo2v | 77.92 (5) | Mo1—O3—Li1vi | 116.58 (8) |
O4vi—Li2—Mo2v | 101.81 (7) | Mo1—O3—Li1 | 116.58 (8) |
O4—Li2—Mo2v | 24.84 (5) | Al1vi—O3—Li1 | 123.45 (16) |
O1v—Li2—Mo2v | 77.43 (5) | Li1vi—O3—Li1 | 123.45 (16) |
O1—Li2—Mo2v | 102.19 (5) | Mo2v—O4—Al2vii | 152.31 (11) |
Al2v—Li2—Mo2v | 104.99 (5) | Mo2v—O4—Li2vii | 152.31 (11) |
Li2v—Li2—Mo2v | 104.99 (5) | Mo2v—O4—Li2 | 127.76 (10) |
Li2vii—Li2—Mo2v | 74.73 (4) | Al2vii—O4—Li2 | 79.92 (6) |
Al2vii—Li2—Mo2v | 74.73 (4) | Li2vii—O4—Li2 | 79.92 (6) |
O4iv—Li2—Mo2iv | 77.92 (5) | Mo2—O5—Li1 | 121.19 (11) |
O4v—Li2—Mo2iv | 155.18 (8) | Mo2—O5—Al1i | 133.77 (11) |
O4vi—Li2—Mo2iv | 24.84 (5) | Li1—O5—Al1i | 95.73 (10) |
O4—Li2—Mo2iv | 101.81 (7) | Mo2—O5—Li1i | 133.77 (11) |
O1v—Li2—Mo2iv | 77.43 (5) | Li1—O5—Li1i | 95.73 (10) |
O1—Li2—Mo2iv | 102.19 (5) | Mo2iii—O6—Li1 | 123.14 (10) |
Al2v—Li2—Mo2iv | 104.99 (5) | Mo2iii—O6—Li3 | 122.2 (2) |
Li2v—Li2—Mo2iv | 104.99 (5) | Li1—O6—Li3 | 114.3 (2) |
Li2vii—Li2—Mo2iv | 74.73 (4) | Mo2—O7—Li3i | 137.1 (2) |
Al2vii—Li2—Mo2iv | 74.73 (4) | Mo2—O7—Li3xiv | 122.43 (18) |
Mo2v—Li2—Mo2iv | 113.51 (5) | Li3i—O7—Li3xiv | 91.18 (18) |
Symmetry codes: (i) −x, −y, −z+1; (ii) x−1, y, z; (iii) −x−1, −y, −z+1; (iv) x+1/2, −y+1/2, −z+1/2; (v) x+1/2, y, −z+1/2; (vi) x, −y+1/2, z; (vii) x−1/2, y, −z+1/2; (viii) −x, y+1/2, −z+1; (ix) −x−1/2, y+1/2, z+1/2; (x) −x−1/2, −y, z+1/2; (xi) x−1/2, y, −z+3/2; (xii) x+1/2, y, −z+3/2; (xiii) x+1, y, z; (xiv) −x−1/2, −y, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | Li3Al(MoO4)3 |
Mr | 527.62 |
Crystal system, space group | Orthorhombic, Pnma |
Temperature (K) | 298 |
a, b, c (Å) | 5.0372 (10), 10.320 (2), 17.272 (4) |
V (Å3) | 897.8 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 4.29 |
Crystal size (mm) | 0.07 × 0.07 × 0.05 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD area-detector diffractometer |
Absorption correction | Numerical (SADABS; Sheldrick, 2008) |
Tmin, Tmax | 0.661, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14109, 1606, 1414 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.748 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.021, 0.048, 1.12 |
No. of reflections | 1606 |
No. of parameters | 99 |
No. of restraints | 4 |
Δρmax, Δρmin (e Å−3) | 0.80, −0.76 |
Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (Palmer, 2012), SHELXTL97 (Sheldrick, 2008).
Li1—O5 | 2.003 (2) | Li3—O6v | 2.103 (5) |
Li1—O5i | 2.025 (2) | Li3—O7vi | 2.168 (5) |
Li1—O6 | 2.029 (2) | Li3—O7i | 2.168 (5) |
Li1—O2ii | 2.061 (2) | Li3—O7vii | 2.222 (6) |
Li1—O3 | 2.093 (2) | Li3—O7viii | 2.222 (6) |
Li1—O2i | 2.143 (3) | Mo1—O2 | 1.7550 (17) |
Li2—O4iii | 1.957 (2) | Mo1—O2v | 1.7550 (17) |
Li2—O4iv | 1.957 (2) | Mo1—O3 | 1.781 (3) |
Li2—O4v | 1.965 (2) | Mo1—O1 | 1.781 (2) |
Li2—O4 | 1.965 (2) | Mo2—O7 | 1.7244 (17) |
Li2—O1iv | 2.018 (3) | Mo2—O6ix | 1.7595 (17) |
Li2—O1 | 2.023 (3) | Mo2—O5 | 1.7770 (17) |
Li3—O6 | 2.103 (5) | Mo2—O4x | 1.7937 (16) |
Symmetry codes: (i) −x, −y, −z+1; (ii) x−1, y, z; (iii) x+1/2, −y+1/2, −z+1/2; (iv) x+1/2, y, −z+1/2; (v) x, −y+1/2, z; (vi) −x, y+1/2, −z+1; (vii) −x−1/2, y+1/2, z+1/2; (viii) −x−1/2, −y, z+1/2; (ix) −x−1, −y, −z+1; (x) x−1/2, y, −z+1/2. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register
Although its namesake mineral, α-Cu3Fe4(VO4)6, was not structurally characterized until much later [Reference needed?], the lyonsite crystal structure was first observed in 1964 in NaCo2.31(MoO4)3 (Ibers & Smith, 1964). An excellent review of this structure type was published recently (Smit et al., 2006). The general formula for the lyonsite family of compounds can be written as A16B12O48 (or A16(BO4)12 or A4(BO4)3). The A cations, with octahedral and trigonal prismatic coordination environments, most commonly have formal oxidation states of +1, +2 or +3, though some examples have been found with cations in higher oxidation states, such as Ti4+ (Smit et al., 2008) and Nb5+ (Smit et al., 2006). The tetrahedral B cations in lyonsite consist exclusively of V5+, Mo6+ and W6+. Typically, there is a mixture of two cations on the A site, or sometimes cationic vacancies, in order to preserve overall electroneutrality.
The lyonsite crystal structure (Fig. 1) features isolated BO4 tetrahedra which are interconnected by AO6 octahedra and trigonal prisms. The octahedra and trigonal prisms form hexagonal tunnels in the [100] direction. The BO4 tetrahedra line the interior of these tunnels, and infinite chains of face-sharing AO6 octahedra extend through the center of the tunnels. The AO6 octahedra in the hexagonal tunnels share edges to form columns, while the AO6 trigonal prisms share edges to form zigzag sheets. When there are multiple A cations, the larger ones tend to be localized on the more geometrically accomodating trigonal prismatic site. Because the face-sharing octahedra in the infinite chains possess the shortest A···A interatomic distances, cationic vacancies, when present, are concentrated on this site to reduce coulombic repulsions.
The title compound crystallizes in space group Pnma of the orthorhombic system with the lyonsite structure type. Previously, only the unit-cell parameters of Li3Al(MoO4)3 had been reported on the basis of indexing of powder X-ray diffraction data (Klevtsov, 1970). Here, we report the first high-quality single-crystal X-ray diffraction structure determination. The crystals were prepared by a high-temperature solution reaction where Li2MoO4 served as the flux. Alkali molybdates are commonly used as flux for the growth of single crystals of complex molybdenum-containing oxides (Bugaris & zur Loye, 2012).
In Li3Al(MoO4)3 (Fig. 2), the B sites are occupied by Mo6+ cations tetrahedrally coordinated by oxide anions. The Mo—O bond distances in the title compound are in the range 1.7244 (17)–1.7937 (16) Å [average 1.766 (5) Å]. These interatomic distances are consistent with those for the isostructural compound, Li3Ga(MoO4)3 (van der Lee et al., 2008), which are in the range 1.734 (2)–1.795 (2) Å. The O—Mo—O angles of 104.01 (12)–116.13 (12)° correspond to a nearly regular MoO4 tetrahedron.
The A cationic sites in the title compound are occupied by a mixture of Li+ and Al3+ cations in a 3:1 ratio necessary to preserve charge electroneutrality. The trigonal prismatic sites are occupied completely by Li+ cations, while the octahedral sites are occupied by a mixture of Li+ and Al3+ cations. The edge-sharing AO6 octahedra in the hexagonal tunnels contain 72.1 (2)% Li+, while the face-sharing AO6 octahedra in the infinite chains contain 55.8 (5)% Li+. As the ionic radius of six-coordinate Al3+ is significantly smaller than that of six-coordinate Li+ (0.535 Å versus 0.76 Å; Shannon, 1976), it is to be expected that a higher percentage of Al3+ is found on the face-sharing octahedral site in order to alleviate coulombic repulsions. No Al3+ is found on the trigonal prismatic site, consistent with the fact that this latter site is more accomodating towards a larger cation, in this case Li+. A similar separation of large and small cations into trigonal prismatic and octahedral sites is observed in the 2H-perovskite related oxide structure type (zur Loye et al., 2012).
Other compounds belonging to the Li3M3+(MoO4)3 family of compounds with the lyonsite structure type exhibit disorder of the Li+ and M3+ cations on the A sites. The edge-sharing AO6 octahedral sites contain 70 (1), 69.2 (1), 66.67, 71.91 (17) and 75% of Li+, while the face-sharing AO6 octahedral sites contain 56 (1), 61.7 (1), 66.67, 57.9 (3) and 58% of Li+, for M = V3+ (Mikhailova et al., 2010), Cr3+ (Sarapulova et al., 2009), Fe3+ (Klevtsova & Magarill, 1970), Ga3+ (van der Lee et al., 2008) and Sc3+ (Kolitsch & Tillmanns, 2003), respectively. With regard to the examples containing V3+, Cr3+, Fe3+ and Ga3+, the trigonal prismatic site is occupied entirely by Li+. For Li3Sc(MoO4)3, the trigonal prismatic site contains 92% Li+ and 8% Sc3+. The appearance of Sc3+ on the trigonal prismatic site can be attributed to the larger ionic radius of six-coordinate Sc3+ (0.745 Å), which is approaching the size of six-coordinate Li+. The ionic radii of six-coordinate Cr3+ (0.615 Å), Ga3+ (0.62 Å), V3+ (0.64 Å) and Fe3+ (0.645 Å) are significantly smaller than that of Li+, so as in the title compound, none of these cations is found on the trigonal prismatic site.
In Li3Al(MoO4)3, the Li/Al—O bond distances in the edge-sharing octahedra are in the range 2.003 (2)–2.143 (3) Å. For the face-sharing octahedra, the Li/Al—O interatomic distances are in the range 1.957 (2)–2.023 (3) Å. The bond lengths are shorter for the face-sharing octahedra because a higher concentration of the smaller Al3+ cation is found on those sites. Finally, the Li—O interatomic distances in the trigonal prisms are in the range 2.103 (5)–2.222 (6) Å.
The Li-ion conductivity of various Li-containing lyonsite materials has been investigated for their potential application as electrolyte materials in Li-ion batteries (Sebastian et al., 2003). It was determined that, although the lyonsite crystal structure is a three-dimensional framework, the conduction pathway of the Li+ ions is limited to the zigzag sheets of edge-sharing trigonal prisms. Therefore, it is to be expected that compounds with a greater concentration of Li+ on the trigonal prismatic sites would exhibit higher ionic conductivities. For example, the ionic conductivities measured for Li3Cr(MoO4)3 and Li3Fe(MoO4)3 were higher than those of the Li2-2xMg2+x(MoO4)3 series of compounds. In the Cr- and Fe-containing materials, the trigonal prismatic sites are fully occupied by Li+, whereas in the Mg-containing materials, the trigonal prismatic sites are occupied by a mixture of Li+ and Mg2+. It would be interesting to measure the ionic conductivity of the title compound, Li3Al(MoO4)3, which contains only Li+ on the trigonal prismatic sites, in order to ascertain whether the ionic conductivity is comparable with or higher than the Cr- and Fe-containing materials.