Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
For five bromo­methyl­ated azo­benzenes, namely (E)-[4-(bromo­meth­yl)phen­yl][4-(di­bromo­meth­yl)phen­yl]diazene, C14H11Br3N2, (E)-1,2-bis­[4-(di­bromo­meth­yl)phen­yl]diazene, C14H10Br4N2, (E)-[3-(bromo­meth­yl)phen­yl][3-(di­bromo­meth­yl)phen­yl]diazene, C14H11Br3N2, (E)-[3-(di­bromo­meth­yl)phen­yl][3-(tri­bromo­meth­yl)phen­yl]diazene, C14H10Br4N2, and (E)-1,2-bis­[3-(di­bromo­meth­yl)phen­yl]diazene, C14H9Br5N2, the computationally cheap CLP PIXEL approach and CrystalExplorer were used for calculating lattice energies and performing Hirshfeld surface analysis via the enrichment ratios of atomic contacts. The procedures and caveats are discussed in detail. The findings from these tools are contrasted with the results of geometric analysis of the structures. We conclude that an energy-based discussion of the crystal packing provides substanti­ally more insight than one based purely on geometry, as has so long been the custom in crystallography. In addition, we find a surprising shortage of halogen–halogen inter­actions in these highly bromo­methyl­ated compounds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618015309/ky3150sup1.cif
Contains datablocks 5, 6, 7, 8, 9, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618015309/ky31505sup2.hkl
Contains datablock 5

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229618015309/ky31505sup7.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618015309/ky31506sup3.hkl
Contains datablock 6

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229618015309/ky31506sup8.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618015309/ky31507sup4.hkl
Contains datablock 7

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229618015309/ky31507sup9.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229618015309/ky31508sup10.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618015309/ky31508sup5.hkl
Contains datablock 8

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229618015309/ky31509sup11.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618015309/ky31509sup6.hkl
Contains datablock 9

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229618015309/ky3150sup12.pdf
Computational details and additional figures

CCDC references: 1876016; 1876015; 1876014; 1876013; 1876012

Computing details top

For all structures, data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015) and shelXle(Hübschle et al., 2011); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015).

(E)-[4-(Bromomethyl)phenyl][4-(dibromomethyl)phenyl]diazene (5) top
Crystal data top
C14H11Br3N2Dx = 2.036 Mg m3
Mr = 446.98Melting point: 146–148 C K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.538 (1) ÅCell parameters from 6003 reflections
b = 5.283 (1) Åθ = 2.5–31.0°
c = 32.801 (4) ŵ = 8.29 mm1
β = 99.692 (5)°T = 100 K
V = 1458.4 (4) Å3Plate, orange
Z = 40.45 × 0.35 × 0.18 mm
F(000) = 856
Data collection top
Bruker SMART 1000
diffractometer
4445 independent reflections
Radiation source: fine-focus sealed tube3947 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 31.4°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1212
Tmin = 0.316, Tmax = 0.746k = 77
13694 measured reflectionsl = 4746
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0221P)2 + 4.4145P]
where P = (Fo2 + 2Fc2)/3
4445 reflections(Δ/σ)max = 0.003
172 parametersΔρmax = 1.41 e Å3
0 restraintsΔρmin = 1.06 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.61597 (4)1.05498 (6)0.95232 (2)0.01420 (8)
Br20.92730 (4)0.72243 (7)0.95898 (2)0.01715 (9)
Br30.67770 (4)1.00291 (6)0.54184 (2)0.01277 (8)
N10.6931 (4)0.7036 (6)0.75752 (9)0.0146 (5)
N20.8014 (4)0.8208 (6)0.74401 (8)0.0142 (5)
C10.6963 (4)0.7378 (6)0.80072 (9)0.0123 (6)
C20.7807 (4)0.9300 (7)0.82415 (10)0.0137 (6)
H20.8375871.0525120.8112750.016*
C30.7804 (4)0.9398 (6)0.86638 (10)0.0115 (6)
H30.8367701.0708220.8824330.014*
C40.6985 (4)0.7599 (6)0.88542 (9)0.0106 (6)
C50.6105 (4)0.5728 (6)0.86189 (10)0.0126 (6)
H50.5521690.4522750.8747610.015*
C60.6084 (4)0.5639 (7)0.81934 (10)0.0137 (6)
H60.5470200.4388900.8030440.016*
C70.7088 (4)0.7544 (6)0.93152 (10)0.0109 (6)
H70.6487220.6032560.9388250.013*
C110.8005 (4)0.7837 (6)0.70107 (10)0.0120 (6)
C120.7182 (4)0.5901 (7)0.67781 (10)0.0139 (6)
H120.6585650.4710340.6905840.017*
C130.7239 (4)0.5723 (6)0.63590 (10)0.0129 (6)
H130.6687970.4392580.6200780.015*
C140.8103 (4)0.7486 (6)0.61663 (10)0.0120 (6)
C150.8945 (4)0.9373 (7)0.64037 (10)0.0140 (6)
H150.9551001.0554900.6276980.017*
C160.8909 (4)0.9551 (7)0.68238 (10)0.0140 (6)
H160.9499211.0835740.6984320.017*
C170.8106 (4)0.7318 (6)0.57118 (10)0.0139 (6)
H17A0.7689910.5648110.5607950.017*
H17B0.9207420.7479390.5657560.017*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01541 (16)0.01421 (16)0.01425 (15)0.00470 (12)0.00615 (11)0.00083 (11)
Br20.00833 (15)0.0289 (2)0.01414 (15)0.00497 (13)0.00154 (11)0.00409 (12)
Br30.00854 (15)0.01608 (16)0.01370 (14)0.00059 (12)0.00187 (11)0.00244 (11)
N10.0130 (13)0.0186 (14)0.0126 (12)0.0007 (11)0.0031 (10)0.0008 (10)
N20.0145 (13)0.0177 (14)0.0111 (12)0.0002 (11)0.0037 (10)0.0001 (10)
C10.0090 (14)0.0173 (16)0.0108 (13)0.0018 (12)0.0022 (11)0.0003 (11)
C20.0130 (15)0.0151 (15)0.0136 (14)0.0015 (12)0.0045 (12)0.0018 (11)
C30.0078 (14)0.0121 (14)0.0151 (14)0.0030 (11)0.0037 (11)0.0005 (11)
C40.0076 (13)0.0130 (14)0.0119 (13)0.0028 (11)0.0039 (11)0.0013 (11)
C50.0078 (14)0.0143 (15)0.0164 (14)0.0031 (12)0.0038 (11)0.0008 (11)
C60.0104 (15)0.0167 (16)0.0142 (14)0.0023 (12)0.0026 (11)0.0008 (12)
C70.0075 (13)0.0116 (14)0.0147 (14)0.0013 (11)0.0047 (11)0.0010 (11)
C110.0083 (14)0.0157 (15)0.0121 (13)0.0019 (12)0.0015 (11)0.0015 (11)
C120.0126 (15)0.0154 (15)0.0138 (14)0.0005 (12)0.0027 (11)0.0019 (11)
C130.0100 (14)0.0141 (15)0.0144 (14)0.0011 (12)0.0019 (11)0.0006 (11)
C140.0104 (14)0.0134 (15)0.0126 (13)0.0028 (12)0.0031 (11)0.0003 (11)
C150.0104 (15)0.0176 (16)0.0148 (14)0.0024 (12)0.0049 (11)0.0005 (12)
C160.0100 (15)0.0181 (16)0.0139 (14)0.0021 (12)0.0023 (11)0.0030 (12)
C170.0147 (15)0.0141 (15)0.0135 (14)0.0023 (12)0.0044 (12)0.0003 (11)
Geometric parameters (Å, º) top
Br1—C71.948 (3)C6—H60.9500
Br2—C71.938 (3)C7—H71.0000
Br3—C171.974 (3)C11—C121.393 (5)
N1—N21.254 (4)C11—C161.397 (5)
N1—C11.424 (4)C12—C131.387 (4)
N2—C111.421 (4)C12—H120.9500
C1—C61.391 (5)C13—C141.403 (5)
C1—C21.398 (5)C13—H130.9500
C2—C31.386 (4)C14—C151.389 (5)
C2—H20.9500C14—C171.494 (4)
C3—C41.389 (4)C15—C161.387 (4)
C3—H30.9500C15—H150.9500
C4—C51.394 (5)C16—H160.9500
C4—C71.500 (4)C17—H17A0.9900
C5—C61.394 (4)C17—H17B0.9900
C5—H50.9500
N2—N1—C1113.4 (3)Br1—C7—H7108.2
N1—N2—C11113.6 (3)C12—C11—C16120.0 (3)
C6—C1—C2120.3 (3)C12—C11—N2124.2 (3)
C6—C1—N1115.6 (3)C16—C11—N2115.7 (3)
C2—C1—N1124.1 (3)C13—C12—C11119.6 (3)
C3—C2—C1119.3 (3)C13—C12—H12120.2
C3—C2—H2120.4C11—C12—H12120.2
C1—C2—H2120.4C12—C13—C14120.7 (3)
C2—C3—C4120.6 (3)C12—C13—H13119.7
C2—C3—H3119.7C14—C13—H13119.7
C4—C3—H3119.7C15—C14—C13119.1 (3)
C3—C4—C5120.1 (3)C15—C14—C17120.9 (3)
C3—C4—C7121.2 (3)C13—C14—C17120.0 (3)
C5—C4—C7118.6 (3)C16—C15—C14120.6 (3)
C6—C5—C4119.6 (3)C16—C15—H15119.7
C6—C5—H5120.2C14—C15—H15119.7
C4—C5—H5120.2C15—C16—C11119.9 (3)
C1—C6—C5120.0 (3)C15—C16—H16120.0
C1—C6—H6120.0C11—C16—H16120.0
C5—C6—H6120.0C14—C17—Br3110.3 (2)
C4—C7—Br2111.0 (2)C14—C17—H17A109.6
C4—C7—Br1112.3 (2)Br3—C17—H17A109.6
Br2—C7—Br1108.96 (15)C14—C17—H17B109.6
C4—C7—H7108.2Br3—C17—H17B109.6
Br2—C7—H7108.2H17A—C17—H17B108.1
C1—N1—N2—C11178.9 (3)C5—C4—C7—Br1117.6 (3)
N2—N1—C1—C6163.6 (3)N1—N2—C11—C1216.0 (5)
N2—N1—C1—C216.2 (5)N1—N2—C11—C16164.7 (3)
C6—C1—C2—C32.3 (5)C16—C11—C12—C131.4 (5)
N1—C1—C2—C3177.5 (3)N2—C11—C12—C13179.4 (3)
C1—C2—C3—C40.6 (5)C11—C12—C13—C140.7 (5)
C2—C3—C4—C52.5 (5)C12—C13—C14—C152.0 (5)
C2—C3—C4—C7174.6 (3)C12—C13—C14—C17177.9 (3)
C3—C4—C5—C61.6 (5)C13—C14—C15—C161.3 (5)
C7—C4—C5—C6175.5 (3)C17—C14—C15—C16178.6 (3)
C2—C1—C6—C53.2 (5)C14—C15—C16—C110.8 (5)
N1—C1—C6—C5176.7 (3)C12—C11—C16—C152.1 (5)
C4—C5—C6—C11.2 (5)N2—C11—C16—C15178.6 (3)
C3—C4—C7—Br257.0 (4)C15—C14—C17—Br373.7 (4)
C5—C4—C7—Br2120.1 (3)C13—C14—C17—Br3106.1 (3)
C3—C4—C7—Br165.3 (4)
(E)-1,2-Bis[4-(dibromomethyl)phenyl]diazene (6) top
Crystal data top
C14H10Br4N2Dx = 2.220 Mg m3
Mr = 525.88Melting point: 151-153 C K
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 20.379 (3) ÅCell parameters from 2626 reflections
b = 8.6401 (10) Åθ = 2.4–30.9°
c = 9.8451 (10) ŵ = 10.22 mm1
β = 114.797 (2)°T = 100 K
V = 1573.7 (3) Å3Block, red
Z = 40.51 × 0.48 × 0.38 mm
F(000) = 992
Data collection top
Bruker SMART 1000
diffractometer
2322 independent reflections
Radiation source: fine-focus sealed tube2049 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 31.2°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2429
Tmin = 0.406, Tmax = 0.746k = 1212
5663 measured reflectionsl = 1413
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0249P)2 + 1.3279P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
2322 reflectionsΔρmax = 0.82 e Å3
92 parametersΔρmin = 0.60 e Å3
0 restraintsExtinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00183 (16)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.23156 (2)0.44833 (3)0.27413 (3)0.01427 (7)
Br20.36677 (2)0.26407 (2)0.50812 (3)0.01505 (8)
N10.48068 (10)0.9973 (2)0.5356 (2)0.0120 (4)
C10.44107 (11)0.8564 (2)0.5167 (2)0.0096 (4)
C20.44206 (13)0.7356 (2)0.4222 (3)0.0124 (4)
H20.4706860.7434890.3672800.015*
C30.40098 (13)0.6056 (2)0.4103 (3)0.0124 (4)
H30.4017200.5229150.3473090.015*
C40.35791 (12)0.5935 (2)0.4902 (2)0.0102 (4)
C50.35691 (12)0.7138 (2)0.5828 (3)0.0116 (4)
H50.3276970.7066570.6365820.014*
C60.39902 (12)0.8452 (2)0.5966 (3)0.0119 (4)
H60.3989370.9271790.6608210.014*
C70.31141 (13)0.4548 (2)0.4738 (3)0.0118 (4)
H70.2907210.4618290.5494950.014*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.00683 (12)0.01807 (11)0.01567 (13)0.00205 (7)0.00252 (9)0.00163 (8)
Br20.01663 (14)0.00894 (10)0.01627 (13)0.00040 (7)0.00363 (10)0.00142 (7)
N10.0100 (10)0.0096 (7)0.0146 (10)0.0021 (6)0.0032 (8)0.0006 (6)
C10.0058 (10)0.0094 (8)0.0104 (10)0.0015 (7)0.0004 (8)0.0003 (7)
C20.0119 (11)0.0125 (9)0.0136 (11)0.0025 (8)0.0060 (9)0.0026 (8)
C30.0133 (11)0.0110 (9)0.0138 (11)0.0019 (7)0.0065 (9)0.0031 (7)
C40.0079 (10)0.0092 (8)0.0113 (10)0.0019 (7)0.0017 (8)0.0006 (7)
C50.0103 (11)0.0122 (9)0.0129 (11)0.0010 (7)0.0055 (9)0.0007 (7)
C60.0115 (11)0.0103 (8)0.0133 (11)0.0006 (7)0.0046 (9)0.0009 (7)
C70.0111 (11)0.0104 (9)0.0144 (11)0.0023 (7)0.0057 (9)0.0021 (7)
Geometric parameters (Å, º) top
Br1—C71.958 (2)C3—C41.407 (3)
Br2—C71.945 (2)C3—H30.9500
N1—N1i1.255 (4)C4—C51.388 (3)
N1—C11.429 (3)C4—C71.494 (3)
C1—C61.389 (3)C5—C61.395 (3)
C1—C21.404 (3)C5—H50.9500
C2—C31.376 (3)C6—H60.9500
C2—H20.9500C7—H71.0000
N1i—N1—C1114.3 (2)C4—C5—C6119.7 (2)
C6—C1—C2120.49 (19)C4—C5—H5120.2
C6—C1—N1115.77 (18)C6—C5—H5120.2
C2—C1—N1123.7 (2)C1—C6—C5120.2 (2)
C3—C2—C1119.1 (2)C1—C6—H6119.9
C3—C2—H2120.5C5—C6—H6119.9
C1—C2—H2120.5C4—C7—Br2111.44 (16)
C2—C3—C4120.8 (2)C4—C7—Br1110.73 (15)
C2—C3—H3119.6Br2—C7—Br1109.11 (10)
C4—C3—H3119.6C4—C7—H7108.5
C5—C4—C3119.76 (19)Br2—C7—H7108.5
C5—C4—C7119.2 (2)Br1—C7—H7108.5
C3—C4—C7120.99 (19)
N1i—N1—C1—C6178.6 (2)C7—C4—C5—C6178.7 (2)
N1i—N1—C1—C22.6 (4)C2—C1—C6—C50.4 (3)
C6—C1—C2—C30.2 (3)N1—C1—C6—C5178.4 (2)
N1—C1—C2—C3179.0 (2)C4—C5—C6—C10.8 (3)
C1—C2—C3—C40.6 (3)C5—C4—C7—Br2128.80 (19)
C2—C3—C4—C50.3 (3)C3—C4—C7—Br252.9 (3)
C2—C3—C4—C7178.0 (2)C5—C4—C7—Br1109.6 (2)
C3—C4—C5—C60.4 (3)C3—C4—C7—Br168.7 (2)
Symmetry code: (i) x+1, y+2, z+1.
(E)-[3-(Bromomethyl)phenyl][3-(dibromomethyl)phenyl]diazene (7) top
Crystal data top
C14H11Br3N2Dx = 2.006 Mg m3
Mr = 446.98Melting point: 120-121 C K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.1219 (12) ÅCell parameters from 3951 reflections
b = 16.904 (2) Åθ = 2.4–30.6°
c = 10.3633 (14) ŵ = 8.16 mm1
β = 112.122 (2)°T = 100 K
V = 1480.4 (3) Å3Plate, orange
Z = 40.52 × 0.45 × 0.15 mm
F(000) = 856
Data collection top
Bruker SMART 1000
diffractometer
4362 independent reflections
Radiation source: fine-focus sealed tube3587 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 31.2°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 129
Tmin = 0.349, Tmax = 0.746k = 2323
12573 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0501P)2 + 3.0958P]
where P = (Fo2 + 2Fc2)/3
4362 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 2.24 e Å3
0 restraintsΔρmin = 1.56 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.09235 (4)0.54419 (2)0.34234 (3)0.01965 (10)
Br20.94505 (5)0.41237 (2)0.11026 (4)0.02092 (10)
Br30.00058 (5)0.24139 (2)0.40366 (4)0.02690 (11)
N10.4960 (4)0.43930 (17)0.3487 (3)0.0157 (6)
N20.5936 (3)0.39273 (16)0.4327 (3)0.0136 (5)
C10.5604 (4)0.48745 (18)0.2701 (3)0.0134 (6)
C20.7098 (4)0.47785 (19)0.2674 (3)0.0139 (6)
H20.7791230.4383020.3227460.017*
C30.7572 (4)0.52686 (19)0.1825 (3)0.0138 (6)
C40.6551 (4)0.58540 (19)0.1023 (3)0.0166 (6)
H40.6882480.6188770.0447990.020*
C50.5056 (4)0.5950 (2)0.1060 (3)0.0177 (7)
H50.4370650.6352330.0521670.021*
C60.4570 (4)0.54534 (19)0.1888 (3)0.0157 (6)
H60.3539930.5506220.1903900.019*
C70.9147 (4)0.51828 (19)0.1700 (3)0.0157 (6)
H70.9172800.5561870.0967810.019*
C110.5242 (4)0.34393 (18)0.5071 (3)0.0133 (6)
C120.3667 (4)0.34994 (19)0.4934 (3)0.0144 (6)
H120.2988560.3877760.4316830.017*
C130.3095 (4)0.3004 (2)0.5702 (3)0.0153 (6)
C140.4110 (4)0.2447 (2)0.6609 (3)0.0178 (7)
H140.3715480.2104090.7129550.021*
C150.5673 (5)0.2392 (2)0.6753 (3)0.0184 (7)
H150.6352040.2016360.7377130.022*
C160.6254 (4)0.2887 (2)0.5980 (3)0.0160 (6)
H160.7327940.2850660.6070320.019*
C170.1423 (5)0.3077 (2)0.5578 (4)0.0226 (7)
H17A0.1089210.3637080.5406900.027*
H17B0.1339990.2912360.6464490.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.00936 (17)0.02557 (18)0.02167 (16)0.00070 (13)0.00316 (13)0.00445 (13)
Br20.0205 (2)0.01986 (16)0.02431 (17)0.00050 (13)0.01055 (14)0.00337 (12)
Br30.01277 (19)0.0289 (2)0.0310 (2)0.00430 (15)0.00094 (14)0.00581 (15)
N10.0137 (15)0.0168 (12)0.0150 (12)0.0008 (11)0.0036 (11)0.0013 (10)
N20.0107 (14)0.0148 (12)0.0141 (11)0.0004 (10)0.0034 (10)0.0010 (10)
C10.0125 (16)0.0140 (13)0.0115 (12)0.0020 (12)0.0021 (11)0.0012 (11)
C20.0109 (16)0.0150 (14)0.0125 (13)0.0004 (12)0.0006 (11)0.0002 (11)
C30.0120 (16)0.0137 (13)0.0122 (12)0.0000 (12)0.0007 (11)0.0013 (11)
C40.0169 (18)0.0144 (14)0.0154 (14)0.0015 (13)0.0025 (13)0.0029 (11)
C50.0152 (17)0.0167 (14)0.0170 (14)0.0010 (13)0.0012 (12)0.0032 (12)
C60.0105 (16)0.0165 (14)0.0172 (14)0.0001 (12)0.0020 (12)0.0003 (12)
C70.0159 (17)0.0161 (14)0.0144 (13)0.0018 (13)0.0048 (12)0.0012 (11)
C110.0131 (16)0.0131 (13)0.0122 (12)0.0024 (12)0.0029 (11)0.0015 (11)
C120.0130 (16)0.0151 (14)0.0133 (13)0.0012 (12)0.0030 (12)0.0000 (11)
C130.0128 (16)0.0176 (14)0.0148 (13)0.0018 (12)0.0044 (12)0.0050 (11)
C140.0171 (18)0.0198 (15)0.0152 (14)0.0054 (14)0.0045 (13)0.0003 (12)
C150.0173 (18)0.0161 (14)0.0163 (14)0.0006 (13)0.0001 (12)0.0032 (12)
C160.0105 (16)0.0174 (14)0.0177 (14)0.0027 (13)0.0024 (12)0.0007 (12)
C170.0166 (19)0.0266 (18)0.0269 (17)0.0027 (15)0.0108 (15)0.0020 (14)
Geometric parameters (Å, º) top
Br1—C71.957 (3)C6—H60.9500
Br2—C71.948 (3)C7—H71.0000
Br3—C171.985 (4)C11—C121.393 (5)
N1—N21.260 (4)C11—C161.398 (5)
N1—C11.425 (4)C12—C131.385 (5)
N2—C111.430 (4)C12—H120.9500
C1—C21.383 (5)C13—C141.404 (5)
C1—C61.400 (5)C13—C171.487 (5)
C2—C31.390 (4)C14—C151.380 (6)
C2—H20.9500C14—H140.9500
C3—C41.398 (4)C15—C161.395 (5)
C3—C71.497 (5)C15—H150.9500
C4—C51.388 (5)C16—H160.9500
C4—H40.9500C17—H17A0.9900
C5—C61.387 (5)C17—H17B0.9900
C5—H50.9500
N2—N1—C1114.6 (3)Br1—C7—H7107.5
N1—N2—C11113.1 (3)C12—C11—C16120.8 (3)
C2—C1—C6121.0 (3)C12—C11—N2123.5 (3)
C2—C1—N1124.5 (3)C16—C11—N2115.7 (3)
C6—C1—N1114.4 (3)C13—C12—C11119.6 (3)
C1—C2—C3119.1 (3)C13—C12—H12120.2
C1—C2—H2120.4C11—C12—H12120.2
C3—C2—H2120.4C12—C13—C14119.6 (3)
C2—C3—C4120.1 (3)C12—C13—C17119.7 (3)
C2—C3—C7122.3 (3)C14—C13—C17120.6 (3)
C4—C3—C7117.6 (3)C15—C14—C13120.8 (3)
C5—C4—C3120.5 (3)C15—C14—H14119.6
C5—C4—H4119.7C13—C14—H14119.6
C3—C4—H4119.7C14—C15—C16119.9 (3)
C6—C5—C4119.5 (3)C14—C15—H15120.1
C6—C5—H5120.2C16—C15—H15120.1
C4—C5—H5120.2C15—C16—C11119.4 (3)
C5—C6—C1119.7 (3)C15—C16—H16120.3
C5—C6—H6120.2C11—C16—H16120.3
C1—C6—H6120.2C13—C17—Br3111.4 (2)
C3—C7—Br2111.9 (2)C13—C17—H17A109.4
C3—C7—Br1113.0 (2)Br3—C17—H17A109.4
Br2—C7—Br1109.14 (17)C13—C17—H17B109.4
C3—C7—H7107.5Br3—C17—H17B109.4
Br2—C7—H7107.5H17A—C17—H17B108.0
C1—N1—N2—C11178.5 (3)C4—C3—C7—Br1114.7 (3)
N2—N1—C1—C29.4 (5)N1—N2—C11—C123.0 (4)
N2—N1—C1—C6173.0 (3)N1—N2—C11—C16177.5 (3)
C6—C1—C2—C30.2 (5)C16—C11—C12—C130.3 (5)
N1—C1—C2—C3177.6 (3)N2—C11—C12—C13179.7 (3)
C1—C2—C3—C40.6 (5)C11—C12—C13—C140.1 (5)
C1—C2—C3—C7177.8 (3)C11—C12—C13—C17178.8 (3)
C2—C3—C4—C50.3 (5)C12—C13—C14—C150.5 (5)
C7—C3—C4—C5178.2 (3)C17—C13—C14—C15178.3 (3)
C3—C4—C5—C60.8 (5)C13—C14—C15—C160.7 (5)
C4—C5—C6—C11.5 (5)C14—C15—C16—C110.3 (5)
C2—C1—C6—C51.2 (5)C12—C11—C16—C150.2 (5)
N1—C1—C6—C5178.9 (3)N2—C11—C16—C15179.6 (3)
C2—C3—C7—Br256.7 (4)C12—C13—C17—Br388.1 (3)
C4—C3—C7—Br2121.7 (3)C14—C13—C17—Br393.0 (3)
C2—C3—C7—Br166.9 (4)
(E)-1,2-Bis[3-(dibromomethyl)phenyl]diazene (8) top
Crystal data top
C14H10Br4N2F(000) = 248
Mr = 525.88Dx = 2.274 Mg m3
Triclinic, P1Melting point: 130-132 C K
a = 4.899 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.294 (2) ÅCell parameters from 2578 reflections
c = 9.942 (3) Åθ = 2.5–31.2°
α = 98.103 (4)°µ = 10.47 mm1
β = 103.640 (3)°T = 100 K
γ = 96.650 (3)°Block, red
V = 384.0 (2) Å30.45 × 0.25 × 0.20 mm
Z = 1
Data collection top
Bruker SMART 1000
diffractometer
2249 independent reflections
Radiation source: fine-focus sealed tube1993 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 31.2°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 67
Tmin = 0.308, Tmax = 0.746k = 1111
5417 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0356P)2 + 0.5445P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2249 reflectionsΔρmax = 1.08 e Å3
92 parametersΔρmin = 1.11 e Å3
0 restraintsExtinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.022 (2)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.70209 (6)0.44619 (3)0.34815 (3)0.01868 (11)
Br20.20145 (6)0.33924 (4)0.06638 (3)0.01621 (11)
N10.0313 (5)0.0658 (3)0.4728 (3)0.0132 (5)
C10.4352 (5)0.1125 (3)0.2374 (3)0.0112 (5)
C20.5243 (6)0.0295 (4)0.1812 (3)0.0120 (5)
H20.6387100.0238510.1164790.014*
C30.4455 (6)0.1808 (4)0.2198 (3)0.0139 (5)
H30.5050530.2779810.1811290.017*
C40.2802 (6)0.1874 (3)0.3148 (3)0.0134 (5)
H40.2254210.2898570.3408430.016*
C50.1935 (5)0.0453 (3)0.3726 (3)0.0112 (5)
C60.2684 (6)0.1049 (3)0.3332 (3)0.0121 (5)
H60.2064960.2014980.3712280.015*
C70.5238 (6)0.2695 (4)0.1914 (3)0.0128 (5)
H70.6670190.2486020.1366990.015*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02306 (17)0.00910 (16)0.01960 (17)0.00228 (11)0.00056 (11)0.00057 (11)
Br20.01474 (16)0.01765 (18)0.01783 (17)0.00473 (11)0.00286 (10)0.00875 (11)
N10.0128 (10)0.0114 (11)0.0144 (11)0.0008 (9)0.0016 (8)0.0026 (9)
C10.0096 (11)0.0097 (12)0.0123 (12)0.0010 (9)0.0007 (8)0.0021 (9)
C20.0128 (11)0.0116 (13)0.0098 (11)0.0021 (10)0.0000 (9)0.0009 (10)
C30.0187 (13)0.0075 (12)0.0140 (12)0.0035 (10)0.0019 (10)0.0004 (10)
C40.0165 (12)0.0070 (12)0.0146 (12)0.0006 (10)0.0010 (9)0.0011 (10)
C50.0099 (11)0.0106 (13)0.0117 (11)0.0002 (9)0.0005 (8)0.0024 (9)
C60.0126 (11)0.0093 (12)0.0136 (12)0.0019 (9)0.0016 (9)0.0024 (10)
C70.0114 (11)0.0102 (12)0.0150 (12)0.0005 (9)0.0007 (9)0.0018 (10)
Geometric parameters (Å, º) top
Br1—C71.938 (3)C2—H20.9500
Br2—C71.965 (3)C3—C41.384 (4)
N1—N1i1.253 (5)C3—H30.9500
N1—C51.429 (4)C4—C51.393 (4)
C1—C21.393 (4)C4—H40.9500
C1—C61.397 (4)C5—C61.393 (4)
C1—C71.491 (4)C6—H60.9500
C2—C31.402 (4)C7—H71.0000
N1i—N1—C5113.9 (3)C4—C5—C6120.1 (3)
C2—C1—C6120.1 (3)C4—C5—N1115.8 (2)
C2—C1—C7117.7 (2)C6—C5—N1124.1 (3)
C6—C1—C7122.2 (2)C5—C6—C1119.6 (3)
C1—C2—C3120.1 (3)C5—C6—H6120.2
C1—C2—H2119.9C1—C6—H6120.2
C3—C2—H2119.9C1—C7—Br1112.63 (19)
C4—C3—C2119.4 (3)C1—C7—Br2111.38 (18)
C4—C3—H3120.3Br1—C7—Br2109.85 (14)
C2—C3—H3120.3C1—C7—H7107.6
C3—C4—C5120.6 (3)Br1—C7—H7107.6
C3—C4—H4119.7Br2—C7—H7107.6
C5—C4—H4119.7
C6—C1—C2—C30.4 (4)C4—C5—C6—C11.2 (4)
C7—C1—C2—C3179.5 (2)N1—C5—C6—C1178.0 (2)
C1—C2—C3—C40.4 (4)C2—C1—C6—C50.4 (4)
C2—C3—C4—C50.4 (4)C7—C1—C6—C5179.7 (2)
C3—C4—C5—C61.2 (4)C2—C1—C7—Br1128.1 (2)
C3—C4—C5—N1178.1 (3)C6—C1—C7—Br152.1 (3)
N1i—N1—C5—C4176.8 (3)C2—C1—C7—Br2108.0 (2)
N1i—N1—C5—C62.4 (4)C6—C1—C7—Br271.9 (3)
Symmetry code: (i) x, y, z+1.
(E)-[3-(Dibromomethyl)phenyl][3-(tribromomethyl)phenyl]diazene (9) top
Crystal data top
C14H9Br5N2F(000) = 564
Mr = 604.78Dx = 2.375 Mg m3
Triclinic, P1Melting point: 142-143 C K
a = 7.0161 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.5634 (13) ÅCell parameters from 1139 reflections
c = 14.897 (2) Åθ = 2.5–31.1°
α = 103.257 (2)°µ = 11.87 mm1
β = 102.974 (2)°T = 100 K
γ = 91.703 (2)°Block, orange
V = 845.8 (2) Å30.45 × 0.43 × 0.21 mm
Z = 2
Data collection top
Bruker SMART 1000
diffractometer
6827 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.066
ω scansθmax = 31.3°, θmin = 1.5°
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2012)
h = 109
Tmin = 0.014, Tmax = 0.052k = 1212
15148 measured reflectionsl = 021
8987 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0797P)2]
where P = (Fo2 + 2Fc2)/3
8987 reflections(Δ/σ)max = 0.001
213 parametersΔρmax = 1.81 e Å3
58 restraintsΔρmin = 1.56 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component twin. The structure was solved using direct methods with only the non-overlapping reflections of component 1. The structure was refined using the hklf 5 routine with all reflections of both components (including the overlapping ones), resulting in a BASF value of 0.481 (1).

Minor but clearly resolved disorder was observed for the dibromomethyl group. The major and minor moieties were restrained to have similar geometries (SAME restraint of SHELXL, e.s.d. 0.02 Angstrom). The carbon atom C10 was included in the disorder modeling and 1,2 and 1,3 C—C distances involving the major and minor components of C10 were restrained to be similar (SADI restraint of SHELXL, e.s.d. 0.02 Angstrom). Uij components of ADPs for disordered atoms closer to each other than 2.0 Angstrom were restrained to be similar. Subject to these conditions the occupancy ratio refined to 0.9601 (19) to 0.0399 (19).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.90836 (8)1.08792 (7)0.36771 (5)0.02429 (15)
Br20.46223 (8)1.07967 (7)0.37101 (5)0.02458 (15)
N10.7664 (6)0.6292 (6)0.5351 (3)0.0191 (9)
N20.7756 (6)0.4901 (6)0.5496 (3)0.0206 (9)
C10.7187 (7)0.6301 (7)0.4368 (4)0.0181 (10)
C30.6536 (7)0.9644 (6)0.3090 (4)0.0177 (10)
C40.6279 (8)0.6584 (7)0.2506 (4)0.0203 (10)
H40.5956990.6672010.1866130.024*
C50.7064 (7)0.7811 (7)0.4171 (4)0.0179 (10)
H50.7290070.8748650.4679090.021*
C60.6409 (8)0.5070 (7)0.2697 (4)0.0238 (11)
H60.6190700.4135650.2186930.029*
C70.8868 (8)0.3130 (8)0.7556 (4)0.0258 (12)
H70.9011780.2085460.7666900.031*
C80.9118 (8)0.4452 (7)0.8309 (4)0.0251 (12)
H80.9449670.4319070.8939370.030*
C90.6853 (8)0.4911 (7)0.3621 (4)0.0212 (10)
H90.6931240.3874860.3749780.025*
C110.8212 (7)0.4838 (7)0.6464 (4)0.0191 (10)
C120.8889 (8)0.5986 (7)0.8152 (4)0.0228 (11)
C140.8450 (7)0.6200 (7)0.7228 (4)0.0205 (10)
H140.8314520.7245520.7118060.025*
C150.8403 (8)0.3321 (7)0.6629 (4)0.0217 (11)
H150.8217530.2405100.6109470.026*
C160.6612 (7)0.7963 (7)0.3236 (4)0.0186 (10)
Br30.58568 (11)0.97768 (9)0.17782 (4)0.03647 (18)
C100.9060 (9)0.7456 (8)0.8944 (4)0.0281 (13)0.9601 (19)
H100.8782190.8402930.8663130.034*0.9601 (19)
Br40.71615 (10)0.72607 (10)0.97006 (5)0.0349 (2)0.9601 (19)
Br51.16852 (11)0.78735 (12)0.98005 (6)0.0371 (2)0.9601 (19)
C10B0.942 (6)0.735 (2)0.9006 (16)0.034 (7)0.0399 (19)
H10B0.8516590.7247030.9423830.041*0.0399 (19)
Br4B0.910 (3)0.930 (2)0.8670 (14)0.049 (5)0.0399 (19)
Br5B1.209 (3)0.711 (3)0.9683 (15)0.0371 (2)0.0399 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0214 (3)0.0195 (3)0.0315 (3)0.00001 (18)0.0047 (2)0.0070 (2)
Br20.0248 (3)0.0212 (3)0.0314 (3)0.0066 (2)0.0109 (2)0.0091 (2)
N10.020 (2)0.020 (2)0.017 (2)0.0008 (16)0.0021 (16)0.0049 (18)
N20.024 (2)0.020 (2)0.019 (2)0.0013 (17)0.0053 (17)0.0067 (19)
C10.018 (2)0.017 (3)0.018 (2)0.0003 (17)0.0016 (18)0.004 (2)
C30.025 (2)0.017 (3)0.009 (2)0.0005 (18)0.0024 (18)0.0006 (19)
C40.024 (2)0.021 (3)0.014 (2)0.0005 (19)0.0027 (19)0.000 (2)
C50.023 (2)0.016 (3)0.012 (2)0.0020 (18)0.0036 (18)0.0009 (19)
C60.025 (3)0.021 (3)0.021 (3)0.000 (2)0.002 (2)0.001 (2)
C70.028 (3)0.024 (3)0.031 (3)0.005 (2)0.009 (2)0.015 (2)
C80.027 (3)0.025 (3)0.026 (3)0.004 (2)0.005 (2)0.012 (2)
C90.024 (2)0.014 (3)0.023 (3)0.0007 (19)0.004 (2)0.003 (2)
C110.019 (2)0.021 (3)0.018 (3)0.0020 (18)0.0026 (19)0.007 (2)
C120.023 (3)0.025 (3)0.021 (3)0.001 (2)0.005 (2)0.007 (2)
C140.022 (2)0.018 (3)0.023 (3)0.0022 (19)0.005 (2)0.008 (2)
C150.025 (2)0.017 (3)0.025 (3)0.0035 (19)0.006 (2)0.006 (2)
C160.019 (2)0.021 (3)0.017 (3)0.0016 (18)0.0063 (19)0.006 (2)
Br30.0642 (4)0.0289 (4)0.0136 (3)0.0024 (3)0.0029 (3)0.0060 (2)
C100.035 (3)0.030 (3)0.017 (3)0.001 (2)0.000 (2)0.007 (3)
Br40.0415 (4)0.0424 (4)0.0201 (3)0.0067 (3)0.0107 (3)0.0022 (3)
Br50.0384 (4)0.0395 (5)0.0274 (4)0.0099 (3)0.0045 (3)0.0095 (3)
C10B0.040 (11)0.035 (11)0.022 (10)0.002 (10)0.001 (10)0.007 (10)
Br4B0.063 (10)0.045 (10)0.027 (9)0.009 (8)0.004 (7)0.000 (8)
Br5B0.0384 (4)0.0395 (5)0.0274 (4)0.0099 (3)0.0045 (3)0.0095 (3)
Geometric parameters (Å, º) top
Br1—C31.960 (5)C7—H70.9500
Br2—C31.962 (5)C8—C121.394 (8)
N1—N21.259 (7)C8—H80.9500
N1—C11.428 (7)C9—H90.9500
N2—C111.420 (7)C11—C151.381 (8)
C1—C51.391 (8)C11—C141.407 (8)
C1—C91.403 (8)C12—C141.398 (8)
C3—C161.505 (8)C12—C10B1.484 (19)
C3—Br31.935 (5)C12—C101.495 (9)
C4—C161.383 (7)C14—H140.9500
C4—C61.392 (8)C15—H150.9500
C4—H40.9500C10—Br41.954 (7)
C5—C161.394 (7)C10—Br51.960 (6)
C5—H50.9500C10—H101.0000
C6—C91.381 (8)C10B—Br4B1.86 (2)
C6—H60.9500C10B—Br5B1.95 (3)
C7—C81.374 (9)C10B—H10B1.0000
C7—C151.394 (8)
N2—N1—C1113.7 (5)C15—C11—C14120.3 (5)
N1—N2—C11115.5 (5)C15—C11—N2115.8 (5)
C5—C1—C9119.9 (5)C14—C11—N2123.9 (5)
C5—C1—N1115.8 (5)C8—C12—C14120.3 (6)
C9—C1—N1124.2 (5)C8—C12—C10B116.3 (10)
C16—C3—Br3115.2 (4)C14—C12—C10B122.8 (11)
C16—C3—Br1110.3 (3)C8—C12—C10122.6 (6)
Br3—C3—Br1106.9 (3)C14—C12—C10117.1 (6)
C16—C3—Br2110.6 (3)C12—C14—C11118.7 (5)
Br3—C3—Br2107.0 (2)C12—C14—H14120.7
Br1—C3—Br2106.4 (2)C11—C14—H14120.7
C16—C4—C6120.8 (5)C11—C15—C7120.3 (6)
C16—C4—H4119.6C11—C15—H15119.9
C6—C4—H4119.6C7—C15—H15119.9
C1—C5—C16120.7 (5)C4—C16—C5118.8 (5)
C1—C5—H5119.6C4—C16—C3124.0 (5)
C16—C5—H5119.6C5—C16—C3117.1 (5)
C9—C6—C4120.7 (5)C12—C10—Br4111.1 (4)
C9—C6—H6119.7C12—C10—Br5112.4 (4)
C4—C6—H6119.7Br4—C10—Br5107.9 (3)
C8—C7—C15119.9 (6)C12—C10—H10108.4
C8—C7—H7120.0Br4—C10—H10108.4
C15—C7—H7120.0Br5—C10—H10108.4
C7—C8—C12120.4 (6)C12—C10B—Br4B110.8 (14)
C7—C8—H8119.8C12—C10B—Br5B107.0 (18)
C12—C8—H8119.8Br4B—C10B—Br5B115 (2)
C6—C9—C1119.1 (5)C12—C10B—H10B108.1
C6—C9—H9120.5Br4B—C10B—H10B108.1
C1—C9—H9120.5Br5B—C10B—H10B108.1
C1—N1—N2—C11179.5 (4)N2—C11—C15—C7179.4 (5)
N2—N1—C1—C5179.9 (4)C8—C7—C15—C110.6 (8)
N2—N1—C1—C90.3 (7)C6—C4—C16—C50.6 (8)
C9—C1—C5—C160.0 (8)C6—C4—C16—C3178.8 (5)
N1—C1—C5—C16179.8 (4)C1—C5—C16—C40.3 (8)
C16—C4—C6—C90.7 (8)C1—C5—C16—C3179.2 (4)
C15—C7—C8—C120.7 (8)Br3—C3—C16—C41.6 (7)
C4—C6—C9—C10.5 (8)Br1—C3—C16—C4119.5 (5)
C5—C1—C9—C60.1 (8)Br2—C3—C16—C4123.0 (5)
N1—C1—C9—C6179.7 (5)Br3—C3—C16—C5179.0 (4)
N1—N2—C11—C15177.1 (5)Br1—C3—C16—C559.9 (5)
N1—N2—C11—C143.4 (7)Br2—C3—C16—C557.5 (5)
C7—C8—C12—C141.6 (8)C8—C12—C10—Br458.4 (7)
C7—C8—C12—C10B173 (2)C14—C12—C10—Br4120.5 (5)
C7—C8—C12—C10177.3 (5)C8—C12—C10—Br562.7 (7)
C8—C12—C14—C111.1 (8)C14—C12—C10—Br5118.4 (5)
C10B—C12—C14—C11172 (2)C8—C12—C10B—Br4B178.3 (15)
C10—C12—C14—C11177.9 (5)C14—C12—C10B—Br4B7 (3)
C15—C11—C14—C120.3 (8)C8—C12—C10B—Br5B53 (3)
N2—C11—C14—C12179.7 (5)C14—C12—C10B—Br5B118.3 (12)
C14—C11—C15—C71.1 (8)
Lattice energies (kJ mol-1) resulting from the various calculations for compounds 59 top
56789
Mercury-UNI-135.9-157.7-147.0-165.4-165.4
AA-CLP2015 (UNI)-133.3-142.1-136.2-151.1-138.9
CLP/PIXEL/B3LYP-116.7-123.3-117.7-130.2-111.4
CLP/PIXEL/MP2-113.3-120.1-114.1-127.3-107.2
CE-B3LYP-146.7-145.4-139.7-151.8-142.1
Melting point (°C)146–148151–153120–121142–143130–132
Contact enrichment ratios in crystals of compound 5 top
di deBrHCN
Br1.510.8600
H1.350.681.991.90
C01.6000
N01.590.150.48
Contact enrichment ratios in crystals of compound 6 top
di deBrHCN
Br0.480.971.241.43
H1.550.820.731.10
C1.131.270.930
N1.231.2200
Contact enrichment ratios in crystals of compound 7 top
di deBrHCN
Br0.491.1300.97
H1.870.731.211.07
C0.031.072.480.14
N1.050.880.143.91
Contact enrichment ratios in crystals of compound 8 top
di deBrHCN
Br0.411.270.330.33
H2.030.680.950.23
C0.390.701.605.69
N0.330.185.690
Separate terms [correction factors for 6-31(d,p) basis set already included for CE-B3LYP for comparability between the methods] in the total lattice energies according to CLP/PIXEL/MP2 and CE/B3LYP (kJ mol-1) top
CE-B3LYP
elepoldispreptot
5-90.9-8.7-169.5122.4-146.7
6-87.7-6.0-180.6128.9-145.4
7-80.0-4.4-165.5110.2-139.7
8-79.5-7.6-191.3126.6-151.8
9-82.8-3.2-186.5130.4-142.1
CLP PIXEL MP2
5-92.3-29.8-198.6207.4-113.3
6-86.8-28-209200.5-123.3
7-79.7-26.9-187.8180.4-114.1
8-81.2-28.3-216.5198.6-127.3
9-84.2-27-213.5217.4-107.2
Contact enrichment ratios in crystals of compound 9 top
di deBrHCN
Br0.751.240.020.91
H1.870.620.800.40
C0.020.794.271.37
N1.020.351.375.76
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds