Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Assemblies of pyrazine-2,3-di­carb­oxy­lic acid and CdII in the presence of bis­(1,2,4-triazol-1-yl)butane or bis­(1,2,4-triazol-1-yl)ethane under ambient con­ditions yielded two new coordination polymers, namely poly[[tetra­aqua­[μ2-1,4-bis­(1,2,4-triazol-1-yl)butane-κ2N4:N4′]bis­(μ2-pyrazine-2,3-di­carboxyl­ato-κ3N1,O2:O3)dicadmium(II)] dihydrate], {[Cd2(C6H2N2O4)2(C8H12N6)(H2O)4]·2H2O}n, (I), and poly[[di­aqua­[μ2-1,2-bis­(1,2,4-triazol-1-yl)ethane-κ2N4:N4′]bis­(μ3-pyrazine-2,3-di­carboxyl­ato-κ4N1,O2:O3:O3′)dicadmium(II)] dihydrate], {[Cd2(C6H2N2O4)2(C6H8N6)(H2O)2]·2H2O}n, (II). Complex (I) displays an inter­esting two-dimensional wave-like structure and forms a distinct extended three-dimensional supra­molecular structure with the help of O—H...N and O—H...O hydrogen bonds. Complex (II) has a three-dimensional framework structure in which hydrogen bonds of the O—H...N and O—H...O types are found.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229615016496/lf3020sup1.cif
Contains datablocks I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615016496/lf3020Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615016496/lf3020IIsup3.hkl
Contains datablock II

CCDC references: 1417792; 1060335

Introduction top

During the past decade, coordination polymers have attracted increased attention for their potential applications in the areas of magnetism, catalysis, adsorption and luminescence, as well as for the variety of their architectures and topologies (Rosi et al., 2003; Yaghi et al., 2003; Ockwig et al., 2005; Kitagawa et al., 2004). Although a great deal of effort has been devoted to coordination polymers, the rational design and synthesis of polymers with desired structures and properties is still a huge challenge for inorganic chemists because of the comprehensive effect of solvents, ligands, central metal atoms and organic anions (Ye et al., 2005). It has been shown that employing multi­carboxyl­ate ligands is an effective approach to synthesize such complexes, due to their strong coordination activity with metal ions, as well as their various coordination modes and versatile conformations (Zhao et al., 2003; Chen et al., 2011). As an example of a multi­carboxyl­ate ligand, pyrazine-2,3-di­carb­oxy­lic acid (H2pzdc) has been used widely in the preparation of coordination polymers, which have exhibited one-dimensional chains, two-dimensional networks and three-dimensional frameworks (Seo et al., 2009; Yang et al., 2004; Zheng et al., 2002). On the other hand, some auxiliary ligands have often been used in order to tune the structures and properties of the complexes formed, such as 2,2'-bi­pyridine, 4,4'-bi­pyridine and 1,10-phenanthroline (Bradshaw et al., 2005; Batten & Murray, 2003). Compared with these rigid ligands, molecules with flexible –CH2– spacers could possibly result in unpredi­cta­ble and inter­esting frameworks as they are able to bend or rotate freely to conform to the coordination geometries of metal centres (Chen et al., 1995; Li et al., 2005; Wang et al., 2005).

In this contribution, we employed bis­(1,2,4-triazol-1-yl)butane (btb) and bis­(1,2,4-triazol-1-yl)ethane (bte) as flexible auxiliary ligands to react with H2pzdc and cadmium nitrate, and two novel cadmium complexes, {[Cd2(pzdc)2(btb)(H2O)4]·2H2O}n, (I) and {[Cd2(pzdc)2(bte)(H2O)2]·2H2O}n, (II), were synthesized and structurally characterized by single-crystal X-ray analyses.

Experimental top

Synthesis and crystallization top

Synthesis of complex (I) top

A mixture of btb (0.0192 g, 0.1 mmol) and Cd(NO3)2·4H2O (0.0246 g, 0.1 mmol) was dissolved in water (5 ml) and the solution was stirring for 2 h. To this solution was added a mixture of H2pzdc (0.0168 g, 0.1 mmol) and NaOH (0.0080 g, 0.2 mmol) in water (5 ml). The solution was stirring continuously for 2 h and then filtered. The resulting colourless solution was allowed to stand at room temperature. After a week, colourless block-shaped crystals were collected and washed with di­ethyl ether three times (yield: 30%, based on Cd). Elemental analysis (%) calculated for C20H28Cd2N10O14: C 28.02, H 3.29, N 16.34%; found: C 27.92, H 3.22, N 16.25%.

Synthesis of complex (II) top

A mixture of bte (0.0164 g, 0.1 mmol) and Cd(NO3)2·4H2O (0.0246 g, 0.1 mmol) was dissolved in water (5 ml) and the solution was stirred for 2 h. To this solution was added a mixture of H2pzdc (0.0168 g, 0.1 mmol) and NaOH (0.0080 g, 0.2 mmol) in water (5 ml). The resulting solution was stirred continuously for 2 h and then filtered. The colourless solution was allowed to stand at the room temperature. After a week, colourless block-shaped crystals were collected and washed with di­ethyl ether three times (yield: 35%, based on Cd). Elemental analysis (%) calculated for C18H20Cd2N10O12: C 27.25, H 2.54, N 17.66%; found C 27.15, H 2.62, N 17.58%.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were treated as riding. C-bound H atoms were fixed geometrically and allowed to ride in their parent atom, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, or C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methyl­ene H atoms. Water H atoms were located in a difference Fourier map. Their positions were geometrically optimized and they were constrained to ride on their parent atom, with O—H = 0.85–0.90 Å and Uiso(H) = 1.2Ueq(O).

Results and discussion top

Complex (I) crystallizes in the monoclinic space group P21/c and the asymmetric unit consists of one crystallographically independent Cd2+ cation, one pzdc2- anion, half a btb ligand, two coordinated water molecules and one lattice water molecule. As shown in Fig. 1, each Cd2+ cation is coordinated by a couple of N and O atoms from one pzdc2- anion, one triazole N atom from a btb ligand, one carboxyl­ate O atom from another symmetric pzdc2- anion and two O atoms from coordinated aqua molecules, which generate a distorted CdN2O4 o­cta­hedral geometry. Two pairs of N and O atoms (N1, O1, N5 and O6) form the equatorial plane with a mean deviation of 0.142 Å, while atoms O5 and O4A (see Fig. 1 for symmetry code and Table 2 for bond lengths) are located in the axial direction, with Cd1—O bond lengths of 2.347 (2) and 2.247 (2) Å, respectively. In complex (I), each pzdc2- ligand acts as a µ2-bridge linking Cd2+ ions into an infinite one-dimensional chain with a Cd···Cd separation of 6.29 Å and weak ππ stacking inter­actions (centroid-to-centroid separation = 3.7888 Å and dihedral angle = 3.9°) are observed between adjacent pyrazine rings (Fig. 2). On the other hand, each btb ligand serves as a bidentate connector, in which two terminal triazole rings adopt a parallel trans conformation with a dihedral angle of 0.0017(?)°. With the connection of pzdc and btb ligands, complex (I) exhibits an inter­esting two-dimensional wave-like network (Fig. 2). Furthermore, extensive hydrogen-bonding inter­actions involving the coordinated water molecules, the lattice water molecules, the carboxyl­ate O atoms and the triazole N atoms result in the formation of a three-dimensional supra­molecular architecture (Fig. 3 and Table 3).

The three-dimensional cadmium coordination polymer (II) crystallizes in the triclinic space group P1 and the asymmetric unit consists of two crystallographically independent Cd2+ cations (Cd1 and Cd2 with the same occupanies of 0.50), one pzdc2- anion, half a bis­(1,2,4-triazol-1-yl)ethane (bte) ligand, one coordinated water molecule and one lattice water molecule. As shown in Fig. 4, each Cd2+ cation is located in a distorted o­cta­hedral N2O4 coordination envirnonment. Atom Cd1 is coordinated by two N atoms and four O atoms, half of which are asymmetric and from one bte ligand, one pzdc2- anion and one coordinated aqua molecule, respectively. Atoms, O3, O3A, O5 and O5A (see Fig. 4 for symmetry code) are coplanar and construct the equatorial plane of the o­cta­hedral geometry. Atoms N3 and N3A are located in the axial direction, with the same Cd—N bond length of 2.2922 (17) Å. For atom Cd2, the six coordination atoms are from four pzdc2- anions, in which half ligands provide a pair of O and N atoms and the other half provide only one carboxyl­ate O atom. As in the case of Cd1, four O atoms around Cd2 (O1, O1D, O4C and O4E; see Table 4 for symmetry codes and bond lengths) are also coplanar and form the equatorial plane of the o­cta­hedral geometry, and two N atoms (N1 and N1D) are located in the axial direction, with the same Cd—N bond length of 2.3058 (18) Å. In complex (II), each pzdc2- anion exhibits a tetra­dentate µ3-coordination mode and assembles Cd2+ cations into a two-dimensional grid-like motif (Fig. 5). While each bte molecule acts as a bidentate bridging ligand with the trans triazole conformation to extend the two-dimensional grid into a three-dimensional framework, as shown in Fig. 6. Weak ππ stacking inter­actions between pyrazine and triazole rings [centroid-to-centroid separations = 3.7388, 3.7388 and 3.8613 Å; dihedral angles = 3.4, 2.5 and 4.0°] and hydrogen-bonding inter­actions involving the coordinated water molecule, the lattice water molecule, the carboxyl­ate O atoms, the pyrazine N atoms and the triazole N atoms have been observed (Table 5).

Comparing the structures of the two title complexes, it seems that the length of the flexible bis­(1,2,4-triazol-1-yl)alkane ligand and the coordination modes of the pzdc2- anionic ligand might act as the key role in determining the structures. As a long flexible ligand generates a larger steric hindrance, this would prevent the complex extending towards higher dimensions. On the other hand, the pzdc2- anionic ligand, with a complicated coordination mode, could result in a secondary building unit with higher dimensions, which is beneficial for the formation of three-dimensional architectures. The results indicate that flexible bis­(1,2,4-triazol-1-yl)alkanes combined with multi­carboxyl­ate ligands can produce versatile structures and could be used widely in the construction of coordination polymers.

Computing details top

For both compounds, data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of complex (I), showing the atom-labelling scheme and 30% probability displacement ellipsoids. [Symmetry codes: (A) x, -y+1/2, z+1/2; (B) -x+1, -y, -z -1.]
[Figure 2] Fig. 2. The two-dimensional wave-like net of complex (I). The ππ stacking interactions are shown as red dashed lines. Water molecules and H atoms have been omitted for clarity.
[Figure 3] Fig. 3. A view of the crystal packing of complex (I). Hydrogen bonds are shown as red dashed lines.
[Figure 4] Fig. 4. The coordination environment of the Cd2+ cation in complex (II), showing the atom-labelling scheme and 30% probability displacement ellipsoids. [Symmetry codes: (A) -x+1, -y+1, -z; (B) -x, -y, -z; (C) x-1, y, z; (D) -x-1, -y+1, -z+1; (E) -x, -y+1, -z+1.]
[Figure 5] Fig. 5. The two-dimensional grid-like structure constructed by pzdc2- ligands in complex (II). Water molecules and H atoms have been omitted for clarity.
[Figure 6] Fig. 6. A view of the crystal packing of complex (II). The ππ stacking interactions are shown as red dashed lines and the hydrogen bonds are shown as yellow dashed lines.
(I) Poly[[tetraaqua[µ2-1,4-bis(1,2,4-triazol-1-yl)butane-κ2N4:N4']bis(µ2-pyrazine-2,3-dicarboxylato-κ3N1,O2:O3)dicadmium(II)] dihydrate] top
Crystal data top
[Cd2(C6H2N2O4)2(C8H12N6)(H2O)4]·2H2OF(000) = 852
Mr = 857.32Dx = 1.989 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3410 reflections
a = 7.6647 (5) Åθ = 3.7–28.7°
b = 26.6935 (14) ŵ = 1.57 mm1
c = 7.5350 (5) ÅT = 293 K
β = 111.787 (7)°Block, colourless
V = 1431.52 (15) Å30.20 × 0.15 × 0.15 mm
Z = 2
Data collection top
Agilent SuperNova Single Source at offset
diffractometer with an Eos detector
3077 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2702 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.034
ω scansθmax = 27.0°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
h = 97
Tmin = 0.744, Tmax = 0.798k = 3432
6708 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0325P)2]
where P = (Fo2 + 2Fc2)/3
3077 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.68 e Å3
6 restraintsΔρmin = 0.79 e Å3
Crystal data top
[Cd2(C6H2N2O4)2(C8H12N6)(H2O)4]·2H2OV = 1431.52 (15) Å3
Mr = 857.32Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.6647 (5) ŵ = 1.57 mm1
b = 26.6935 (14) ÅT = 293 K
c = 7.5350 (5) Å0.20 × 0.15 × 0.15 mm
β = 111.787 (7)°
Data collection top
Agilent SuperNova Single Source at offset
diffractometer with an Eos detector
3077 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
2702 reflections with I > 2σ(I)
Tmin = 0.744, Tmax = 0.798Rint = 0.034
6708 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0306 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.11Δρmax = 0.68 e Å3
3077 reflectionsΔρmin = 0.79 e Å3
208 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.36.32 (release 02-08-2013 CrysAlis171 .NET) (compiled Aug 2 2013,16:46:58) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.4857 (4)0.22808 (13)0.1467 (4)0.0114 (7)
H20.37480.21710.24120.014*
Cd11.00803 (3)0.155428 (8)0.32213 (3)0.00899 (9)
O11.0810 (3)0.23671 (8)0.4014 (3)0.0114 (5)
O51.2297 (3)0.15697 (8)0.1752 (3)0.0106 (5)
H5B1.33080.17410.23030.013*
H5A1.16850.17100.06930.013*
O30.6046 (3)0.37041 (9)0.1042 (3)0.0137 (5)
O40.8107 (3)0.37028 (9)0.0382 (3)0.0139 (5)
N20.5191 (3)0.27704 (11)0.1241 (3)0.0104 (6)
C60.7029 (4)0.34893 (12)0.0297 (4)0.0103 (7)
N50.8945 (3)0.08690 (10)0.1280 (3)0.0104 (6)
N10.7717 (3)0.20770 (10)0.1033 (3)0.0083 (5)
C40.8062 (4)0.25699 (12)0.1293 (4)0.0083 (6)
O61.2444 (3)0.12226 (10)0.5681 (3)0.0208 (6)
H6A1.35830.12800.58380.025*
H6B1.24770.11410.67950.025*
C80.8141 (4)0.04524 (13)0.1672 (4)0.0147 (7)
H80.80240.04010.28440.018*
N40.7543 (4)0.01292 (11)0.0274 (3)0.0135 (6)
C10.6105 (4)0.19295 (13)0.0343 (4)0.0108 (6)
H10.58280.15900.05400.013*
C30.6818 (4)0.29218 (12)0.0123 (4)0.0071 (6)
C70.8804 (4)0.07938 (13)0.0520 (4)0.0108 (7)
H70.92220.10140.12330.013*
N30.7975 (3)0.03573 (10)0.1133 (3)0.0096 (5)
C90.7410 (4)0.01458 (13)0.3053 (4)0.0137 (7)
H9A0.80540.01700.29930.016*
H9B0.77790.03720.38590.016*
C100.5297 (4)0.00604 (13)0.3934 (4)0.0123 (7)
H10A0.46460.03580.37740.015*
H10B0.49560.02150.32870.015*
O21.0152 (3)0.31699 (9)0.3249 (3)0.0138 (5)
O70.3471 (3)0.09068 (9)0.9408 (3)0.0196 (5)
H110.33580.05800.96420.024*
H120.32020.10811.02310.024*
C50.9835 (4)0.27155 (13)0.2982 (4)0.0088 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0088 (14)0.0142 (18)0.0090 (14)0.0038 (13)0.0007 (12)0.0004 (13)
Cd10.00909 (13)0.00583 (14)0.01046 (14)0.00041 (9)0.00177 (10)0.00066 (9)
O10.0122 (10)0.0060 (12)0.0112 (10)0.0023 (9)0.0012 (9)0.0018 (9)
O50.0114 (11)0.0078 (12)0.0101 (10)0.0017 (9)0.0011 (9)0.0005 (9)
O30.0109 (10)0.0114 (13)0.0197 (12)0.0002 (10)0.0069 (9)0.0053 (10)
O40.0167 (11)0.0120 (13)0.0156 (11)0.0016 (10)0.0093 (10)0.0018 (10)
N20.0098 (12)0.0107 (15)0.0100 (12)0.0006 (11)0.0028 (10)0.0034 (11)
C60.0076 (14)0.0113 (17)0.0074 (14)0.0004 (13)0.0028 (12)0.0006 (13)
N50.0112 (13)0.0067 (14)0.0130 (13)0.0016 (11)0.0043 (11)0.0012 (11)
N10.0096 (12)0.0074 (14)0.0086 (12)0.0004 (11)0.0043 (10)0.0001 (11)
C40.0088 (14)0.0084 (16)0.0086 (14)0.0004 (13)0.0043 (12)0.0021 (12)
O60.0106 (11)0.0370 (17)0.0149 (11)0.0041 (12)0.0049 (9)0.0122 (12)
C80.0159 (16)0.0133 (18)0.0125 (15)0.0032 (14)0.0025 (13)0.0003 (14)
N40.0158 (13)0.0097 (14)0.0142 (13)0.0027 (12)0.0048 (11)0.0013 (11)
C10.0094 (14)0.0094 (17)0.0137 (15)0.0023 (13)0.0045 (13)0.0049 (13)
C30.0083 (14)0.0071 (16)0.0071 (13)0.0009 (13)0.0044 (12)0.0026 (12)
C70.0086 (14)0.0092 (17)0.0118 (15)0.0001 (13)0.0006 (12)0.0030 (13)
N30.0080 (12)0.0077 (14)0.0107 (12)0.0006 (11)0.0008 (10)0.0028 (11)
C90.0157 (16)0.0134 (18)0.0108 (15)0.0005 (14)0.0035 (13)0.0039 (13)
C100.0130 (15)0.0093 (17)0.0118 (15)0.0019 (14)0.0014 (13)0.0041 (13)
O20.0144 (12)0.0071 (12)0.0146 (12)0.0023 (10)0.0009 (10)0.0017 (9)
O70.0343 (14)0.0106 (13)0.0182 (12)0.0003 (11)0.0147 (11)0.0024 (10)
C50.0085 (14)0.0096 (17)0.0093 (14)0.0000 (13)0.0046 (12)0.0022 (12)
Geometric parameters (Å, º) top
C2—N21.331 (4)C4—C31.394 (4)
C2—C11.382 (4)C4—C51.528 (4)
C2—H20.9300O6—H6A0.8503
Cd1—O62.238 (2)O6—H6B0.8585
Cd1—O4i2.247 (2)C8—N41.306 (4)
Cd1—O12.265 (2)C8—H80.9300
Cd1—N52.302 (3)N4—N31.366 (3)
Cd1—O52.347 (2)C1—H10.9300
Cd1—N12.394 (2)C7—N31.325 (4)
O1—C51.263 (4)C7—H70.9300
O5—H5B0.8622N3—C91.461 (3)
O5—H5A0.8475C9—C101.522 (4)
O3—C61.235 (4)C9—H9A0.9700
O4—C61.259 (4)C9—H9B0.9700
O4—Cd1ii2.247 (2)C10—C10iii1.533 (5)
N2—C31.350 (4)C10—H10A0.9700
C6—C31.524 (4)C10—H10B0.9700
N5—C71.335 (3)O2—C51.239 (4)
N5—C81.356 (4)O7—H110.9004
N1—C41.342 (4)O7—H120.8597
N1—C11.344 (4)
N2—C2—C1122.1 (3)Cd1—O6—H6A121.2
N2—C2—H2119.0Cd1—O6—H6B129.2
C1—C2—H2119.0H6A—O6—H6B104.7
O6—Cd1—O4i88.27 (8)N4—C8—N5114.7 (3)
O6—Cd1—O196.65 (8)N4—C8—H8122.7
O4i—Cd1—O1108.21 (8)N5—C8—H8122.7
O6—Cd1—N5102.17 (9)C8—N4—N3102.6 (3)
O4i—Cd1—N583.88 (8)N1—C1—C2120.2 (3)
O1—Cd1—N5157.98 (8)N1—C1—H1119.9
O6—Cd1—O583.84 (7)C2—C1—H1119.9
O4i—Cd1—O5163.18 (8)N2—C3—C4120.1 (3)
O1—Cd1—O587.50 (7)N2—C3—C6113.7 (3)
N5—Cd1—O583.29 (8)C4—C3—C6126.1 (3)
O6—Cd1—N1166.92 (9)N3—C7—N5109.5 (3)
O4i—Cd1—N191.82 (8)N3—C7—H7125.2
O1—Cd1—N170.91 (8)N5—C7—H7125.2
N5—Cd1—N190.83 (9)C7—N3—N4110.1 (2)
O5—Cd1—N199.21 (8)C7—N3—C9127.8 (3)
C5—O1—Cd1120.73 (19)N4—N3—C9121.9 (3)
Cd1—O5—H5B117.4N3—C9—C10111.4 (2)
Cd1—O5—H5A101.9N3—C9—H9A109.3
H5B—O5—H5A107.7C10—C9—H9A109.3
C6—O4—Cd1ii135.2 (2)N3—C9—H9B109.3
C2—N2—C3118.1 (3)C10—C9—H9B109.3
O3—C6—O4125.3 (3)H9A—C9—H9B108.0
O3—C6—C3116.0 (3)C9—C10—C10iii110.0 (3)
O4—C6—C3118.7 (3)C9—C10—H10A109.7
C7—N5—C8103.1 (3)C10iii—C10—H10A109.7
C7—N5—Cd1129.4 (2)C9—C10—H10B109.7
C8—N5—Cd1127.5 (2)C10iii—C10—H10B109.7
C4—N1—C1118.3 (3)H10A—C10—H10B108.2
C4—N1—Cd1114.41 (19)H11—O7—H12108.4
C1—N1—Cd1127.2 (2)O2—C5—O1125.8 (3)
N1—C4—C3121.1 (3)O2—C5—C4116.4 (3)
N1—C4—C5115.9 (3)O1—C5—C4117.8 (3)
C3—C4—C5122.9 (3)
O6—Cd1—O1—C5179.2 (2)C7—N5—C8—N40.7 (4)
O4i—Cd1—O1—C590.4 (2)Cd1—N5—C8—N4177.1 (2)
N5—Cd1—O1—C530.6 (4)N5—C8—N4—N30.8 (4)
O5—Cd1—O1—C595.7 (2)C4—N1—C1—C20.7 (4)
N1—Cd1—O1—C54.9 (2)Cd1—N1—C1—C2178.4 (2)
C1—C2—N2—C30.7 (5)N2—C2—C1—N10.1 (5)
Cd1ii—O4—C6—O3179.18 (19)C2—N2—C3—C42.2 (4)
Cd1ii—O4—C6—C33.9 (4)C2—N2—C3—C6178.3 (3)
O6—Cd1—N5—C7120.5 (3)N1—C4—C3—N23.1 (4)
O4i—Cd1—N5—C7152.6 (3)C5—C4—C3—N2174.1 (3)
O1—Cd1—N5—C727.6 (4)N1—C4—C3—C6178.6 (3)
O5—Cd1—N5—C738.3 (3)C5—C4—C3—C61.4 (5)
N1—Cd1—N5—C760.8 (3)O3—C6—C3—N273.3 (3)
O6—Cd1—N5—C864.1 (3)O4—C6—C3—N2103.9 (3)
O4i—Cd1—N5—C822.8 (2)O3—C6—C3—C4102.5 (3)
O1—Cd1—N5—C8147.8 (2)O4—C6—C3—C480.3 (4)
O5—Cd1—N5—C8146.2 (3)C8—N5—C7—N30.3 (3)
N1—Cd1—N5—C8114.6 (3)Cd1—N5—C7—N3176.62 (18)
O6—Cd1—N1—C422.4 (5)N5—C7—N3—N40.1 (4)
O4i—Cd1—N1—C4112.5 (2)N5—C7—N3—C9174.8 (3)
O1—Cd1—N1—C43.9 (2)C8—N4—N3—C70.5 (3)
N5—Cd1—N1—C4163.6 (2)C8—N4—N3—C9174.8 (3)
O5—Cd1—N1—C480.2 (2)C7—N3—C9—C10118.8 (3)
O6—Cd1—N1—C1155.4 (3)N4—N3—C9—C1055.6 (4)
O4i—Cd1—N1—C165.3 (2)N3—C9—C10—C10iii168.7 (3)
O1—Cd1—N1—C1173.9 (2)Cd1—O1—C5—O2177.2 (2)
N5—Cd1—N1—C118.6 (2)Cd1—O1—C5—C45.2 (3)
O5—Cd1—N1—C1102.0 (2)N1—C4—C5—O2179.1 (3)
C1—N1—C4—C32.3 (4)C3—C4—C5—O21.7 (4)
Cd1—N1—C4—C3179.7 (2)N1—C4—C5—O11.2 (4)
C1—N1—C4—C5175.1 (2)C3—C4—C5—O1176.1 (3)
Cd1—N1—C4—C52.9 (3)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x+1, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H12···O5iv0.862.022.870 (3)170
O7—H11···N4v0.902.022.907 (4)166
O6—H6B···O7vi0.861.932.752 (3)159
O6—H6A···O3vii0.851.842.680 (3)171
O5—H5A···O2ii0.851.812.632 (3)164
O5—H5B···N2vii0.861.952.797 (3)166
Symmetry codes: (ii) x, y+1/2, z1/2; (iv) x1, y, z+1; (v) x+1, y, z+1; (vi) x+1, y, z; (vii) x+1, y+1/2, z+1/2.
(II) Poly[[diaqua[µ2-1,2-bis(1,2,4-triazol-1-yl)ethane-κ2N4:N4']bis(µ3-pyrazine-2,3-dicarboxylato-κ4N1,O2:O3:O3')dicadmium(II)] dihydrate] top
Crystal data top
[Cd2(C6H2N2O4)2(C6H8N6)(H2O)2]·2H2OZ = 1
Mr = 793.24F(000) = 390
Triclinic, P1Dx = 2.139 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0219 (14) ÅCell parameters from 2710 reflections
b = 8.4215 (17) Åθ = 3.0–37.0°
c = 10.913 (2) ŵ = 1.81 mm1
α = 81.75 (3)°T = 293 K
β = 84.05 (3)°Block, colourless
γ = 75.12 (3)°0.20 × 0.20 × 0.20 mm
V = 615.7 (2) Å3
Data collection top
Agilent SuperNova Single Source at offset
diffractometer with an Eos detector
4808 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3444 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.031
ω scansθmax = 33.7°, θmin = 1.9°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
h = 1010
Tmin = 0.713, Tmax = 0.713k = 1312
10451 measured reflectionsl = 1715
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 0.94 w = 1/[σ2(Fo2) + (0.0356P)2]
where P = (Fo2 + 2Fc2)/3
4808 reflections(Δ/σ)max < 0.001
205 parametersΔρmax = 0.53 e Å3
6 restraintsΔρmin = 1.08 e Å3
Crystal data top
[Cd2(C6H2N2O4)2(C6H8N6)(H2O)2]·2H2Oγ = 75.12 (3)°
Mr = 793.24V = 615.7 (2) Å3
Triclinic, P1Z = 1
a = 7.0219 (14) ÅMo Kα radiation
b = 8.4215 (17) ŵ = 1.81 mm1
c = 10.913 (2) ÅT = 293 K
α = 81.75 (3)°0.20 × 0.20 × 0.20 mm
β = 84.05 (3)°
Data collection top
Agilent SuperNova Single Source at offset
diffractometer with an Eos detector
4808 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
3444 reflections with I > 2σ(I)
Tmin = 0.713, Tmax = 0.713Rint = 0.031
10451 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0296 restraints
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 0.94Δρmax = 0.53 e Å3
4808 reflectionsΔρmin = 1.08 e Å3
205 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.36.32 (release 02-08-2013 CrysAlis171 .NET) (compiled Aug 2 2013,16:46:58) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.3777 (2)0.5253 (2)0.30499 (14)0.0387 (4)
O10.2373 (2)0.32956 (19)0.40511 (15)0.0301 (3)
Cd10.50000.50000.00000.02208 (6)
Cd20.50000.50000.50000.02788 (6)
C40.1148 (3)0.5737 (2)0.36395 (16)0.0175 (3)
N10.2791 (2)0.6568 (2)0.42325 (15)0.0217 (3)
N30.1936 (2)0.1168 (2)0.00963 (15)0.0203 (3)
O20.0525 (2)0.31896 (19)0.29731 (16)0.0363 (4)
O30.2200 (2)0.58772 (18)0.13164 (13)0.0249 (3)
N50.3442 (3)0.3145 (2)0.05375 (16)0.0244 (3)
C30.0341 (3)0.6535 (2)0.31771 (16)0.0196 (3)
C50.0986 (3)0.3919 (2)0.35391 (18)0.0209 (4)
C60.2255 (3)0.5784 (2)0.24646 (18)0.0210 (4)
N20.0167 (3)0.8124 (2)0.33432 (16)0.0282 (4)
N40.3263 (3)0.0704 (2)0.10608 (16)0.0241 (3)
C80.4129 (3)0.1947 (2)0.12922 (18)0.0228 (4)
H80.51240.19940.19190.027*
C20.1467 (4)0.8919 (3)0.3932 (2)0.0312 (5)
H20.16121.00170.40510.037*
C70.2053 (3)0.2611 (3)0.0203 (2)0.0254 (4)
H70.12830.31620.08320.030*
C10.2967 (3)0.8143 (3)0.4375 (2)0.0297 (5)
H10.41090.87310.47760.036*
C90.0672 (3)0.0094 (3)0.04691 (19)0.0250 (4)
H9A0.01160.05640.11740.030*
H9B0.14820.09840.07660.030*
O50.3630 (3)0.7208 (2)0.15135 (15)0.0362 (4)
H5A0.387 (4)0.690 (3)0.2236 (13)0.043*
H5B0.377 (4)0.8195 (18)0.149 (2)0.043*
O60.3069 (3)0.0077 (3)0.3244 (2)0.0509 (5)
H6A0.246 (4)0.1098 (13)0.308 (3)0.061*
H6B0.233 (4)0.060 (3)0.322 (3)0.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0189 (7)0.0721 (12)0.0252 (7)0.0086 (8)0.0001 (6)0.0118 (8)
O10.0265 (8)0.0286 (8)0.0373 (8)0.0121 (6)0.0094 (6)0.0096 (7)
Cd10.01893 (10)0.01785 (10)0.03305 (11)0.01051 (7)0.00138 (8)0.00625 (8)
Cd20.01794 (10)0.04618 (14)0.02240 (10)0.01238 (9)0.00707 (7)0.01152 (9)
C40.0160 (8)0.0205 (8)0.0153 (7)0.0031 (6)0.0000 (6)0.0030 (6)
N10.0181 (7)0.0252 (8)0.0199 (7)0.0014 (6)0.0020 (6)0.0064 (6)
N30.0225 (8)0.0219 (8)0.0209 (7)0.0139 (6)0.0021 (6)0.0045 (6)
O20.0322 (9)0.0234 (7)0.0483 (10)0.0043 (6)0.0197 (7)0.0090 (7)
O30.0252 (7)0.0311 (8)0.0186 (6)0.0084 (6)0.0026 (5)0.0039 (6)
N50.0268 (8)0.0245 (8)0.0272 (8)0.0161 (7)0.0050 (7)0.0079 (7)
C30.0210 (8)0.0204 (9)0.0172 (8)0.0055 (7)0.0010 (6)0.0028 (7)
C50.0195 (9)0.0214 (9)0.0215 (8)0.0047 (7)0.0022 (7)0.0045 (7)
C60.0195 (8)0.0251 (9)0.0206 (8)0.0109 (7)0.0043 (7)0.0037 (7)
N20.0366 (10)0.0235 (8)0.0256 (8)0.0105 (7)0.0017 (7)0.0039 (7)
N40.0266 (8)0.0249 (8)0.0244 (8)0.0127 (7)0.0041 (7)0.0075 (7)
C80.0234 (9)0.0264 (9)0.0224 (8)0.0133 (8)0.0040 (7)0.0061 (7)
C20.0429 (13)0.0207 (10)0.0291 (10)0.0041 (9)0.0000 (9)0.0082 (8)
C70.0260 (10)0.0272 (10)0.0287 (10)0.0159 (8)0.0066 (8)0.0115 (8)
C10.0289 (11)0.0275 (10)0.0291 (10)0.0036 (8)0.0007 (8)0.0122 (9)
C90.0287 (10)0.0282 (10)0.0235 (9)0.0192 (8)0.0018 (7)0.0015 (8)
O50.0526 (11)0.0288 (8)0.0283 (8)0.0084 (8)0.0066 (8)0.0070 (7)
O60.0394 (11)0.0422 (11)0.0708 (14)0.0005 (9)0.0053 (10)0.0240 (11)
Geometric parameters (Å, º) top
O4—C61.251 (3)N3—C91.457 (2)
O4—Cd2i2.3380 (17)O2—C51.234 (2)
O1—C51.266 (2)O3—C61.248 (2)
Cd1—O32.3342 (16)N5—C71.328 (2)
Cd1—N52.2922 (17)N5—C81.355 (3)
Cd1—N5ii2.2922 (17)C3—N21.349 (2)
Cd2—O12.2817 (17)C3—C61.516 (3)
Cd2—N12.3058 (18)N2—C21.324 (3)
Cd2—N1iii2.3058 (18)N4—C81.322 (2)
Cd1—O52.3748 (19)C8—H80.9300
Cd1—O5ii2.3748 (19)C2—C11.389 (3)
Cd1—O3ii2.3342 (16)C2—H20.9300
Cd2—O1iii2.2817 (17)C7—H70.9300
Cd2—O4iv2.3380 (17)C1—H10.9300
Cd2—O4v2.3380 (17)C9—C9vi1.513 (4)
C4—N11.342 (2)C9—H9A0.9700
C4—C31.398 (2)C9—H9B0.9700
C4—C51.524 (3)O5—H5A0.854 (9)
N1—C11.330 (3)O5—H5B0.865 (9)
N3—C71.328 (2)O6—H6A0.860 (9)
N3—N41.362 (2)O6—H6B0.867 (9)
C6—O4—Cd2i143.53 (14)C7—N3—C9129.31 (17)
C5—O1—Cd2117.56 (13)N4—N3—C9119.97 (16)
N5ii—Cd1—N5180.00 (8)C6—O3—Cd1122.83 (13)
N5ii—Cd1—O393.30 (6)C7—N5—C8103.67 (16)
N5—Cd1—O386.70 (6)C7—N5—Cd1122.53 (14)
N5ii—Cd1—O3ii86.70 (6)C8—N5—Cd1129.03 (13)
N5—Cd1—O3ii93.30 (6)N2—C3—C4120.78 (18)
O3—Cd1—O3ii180.0N2—C3—C6113.06 (16)
N5ii—Cd1—O584.10 (7)C4—C3—C6126.16 (17)
N5—Cd1—O595.90 (7)O2—C5—O1126.26 (19)
O3—Cd1—O588.21 (6)O2—C5—C4115.84 (17)
O3ii—Cd1—O591.79 (6)O1—C5—C4117.90 (17)
N5ii—Cd1—O5ii95.90 (7)O3—C6—O4125.41 (19)
N5—Cd1—O5ii84.10 (7)O3—C6—C3116.34 (18)
O3—Cd1—O5ii91.79 (6)O4—C6—C3117.97 (17)
O3ii—Cd1—O5ii88.21 (6)C2—N2—C3118.36 (18)
O5—Cd1—O5ii180.00 (7)C8—N4—N3102.12 (16)
O1iii—Cd2—O1180.0N4—C8—N5114.22 (17)
O1iii—Cd2—N1106.97 (6)N4—C8—H8122.9
O1—Cd2—N173.03 (6)N5—C8—H8122.9
O1iii—Cd2—N1iii73.03 (6)N2—C2—C1121.2 (2)
O1—Cd2—N1iii106.97 (6)N2—C2—H2119.4
N1—Cd2—N1iii180.0C1—C2—H2119.4
O1iii—Cd2—O4iv98.88 (7)N3—C7—N5109.29 (18)
O1—Cd2—O4iv81.12 (7)N3—C7—H7125.4
N1—Cd2—O4iv91.82 (6)N5—C7—H7125.4
N1iii—Cd2—O4iv88.18 (6)N1—C1—C2120.8 (2)
O1iii—Cd2—O4v81.12 (7)N1—C1—H1119.6
O1—Cd2—O4v98.88 (7)C2—C1—H1119.6
N1—Cd2—O4v88.18 (6)N3—C9—C9vi110.11 (19)
N1iii—Cd2—O4v91.82 (6)N3—C9—H9A109.6
O4iv—Cd2—O4v180.000 (1)C9vi—C9—H9A109.6
N1—C4—C3119.76 (17)N3—C9—H9B109.6
N1—C4—C5117.11 (16)C9vi—C9—H9B109.6
C3—C4—C5123.10 (16)H9A—C9—H9B108.2
C1—N1—C4119.13 (18)Cd1—O5—H5A110.1 (18)
C1—N1—Cd2126.43 (14)Cd1—O5—H5B120.5 (18)
C4—N1—Cd2114.36 (12)H5A—O5—H5B113.5 (15)
C7—N3—N4110.71 (15)H6A—O6—H6B112.9 (16)
C5—O1—Cd2—O1iii157 (100)C5—C4—C3—N2176.73 (18)
C5—O1—Cd2—N11.30 (15)N1—C4—C3—C6178.53 (18)
C5—O1—Cd2—N1iii178.70 (15)C5—C4—C3—C63.3 (3)
C5—O1—Cd2—O4iv93.36 (16)Cd2—O1—C5—O2178.99 (18)
C5—O1—Cd2—O4v86.64 (16)Cd2—O1—C5—C42.2 (2)
C3—C4—N1—C10.3 (3)N1—C4—C5—O2178.93 (19)
C5—C4—N1—C1177.97 (18)C3—C4—C5—O22.8 (3)
C3—C4—N1—Cd2177.36 (14)N1—C4—C5—O12.2 (3)
C5—C4—N1—Cd20.9 (2)C3—C4—C5—O1176.08 (19)
O1iii—Cd2—N1—C13.30 (19)Cd1—O3—C6—O41.4 (3)
O1—Cd2—N1—C1176.70 (19)Cd1—O3—C6—C3175.13 (11)
N1iii—Cd2—N1—C1167 (100)Cd2i—O4—C6—O3170.68 (17)
O4iv—Cd2—N1—C1103.16 (18)Cd2i—O4—C6—C33.0 (4)
O4v—Cd2—N1—C176.84 (18)N2—C3—C6—O392.6 (2)
O1iii—Cd2—N1—C4179.92 (13)C4—C3—C6—O387.4 (2)
O1—Cd2—N1—C40.08 (13)N2—C3—C6—O481.6 (2)
N1iii—Cd2—N1—C410 (100)C4—C3—C6—O498.4 (2)
O4iv—Cd2—N1—C480.06 (14)C4—C3—N2—C21.4 (3)
O4v—Cd2—N1—C499.94 (14)C6—C3—N2—C2178.59 (19)
N5ii—Cd1—O3—C661.20 (15)C7—N3—N4—C80.1 (2)
N5—Cd1—O3—C6118.80 (15)C9—N3—N4—C8178.81 (18)
O3ii—Cd1—O3—C691 (100)N3—N4—C8—N50.3 (2)
O5—Cd1—O3—C6145.18 (15)C7—N5—C8—N40.4 (3)
O5ii—Cd1—O3—C634.82 (15)Cd1—N5—C8—N4155.05 (15)
N5ii—Cd1—N5—C725 (100)C3—N2—C2—C10.3 (3)
O3—Cd1—N5—C724.45 (18)N4—N3—C7—N50.2 (3)
O3ii—Cd1—N5—C7155.55 (18)C9—N3—C7—N5178.42 (19)
O5—Cd1—N5—C7112.31 (18)C8—N5—C7—N30.3 (2)
O5ii—Cd1—N5—C767.69 (18)Cd1—N5—C7—N3157.16 (14)
N5ii—Cd1—N5—C8127 (100)C4—N1—C1—C20.8 (3)
O3—Cd1—N5—C8175.83 (18)Cd2—N1—C1—C2175.85 (16)
O3ii—Cd1—N5—C84.17 (18)N2—C2—C1—N10.8 (4)
O5—Cd1—N5—C896.32 (18)C7—N3—C9—C9vi118.3 (3)
O5ii—Cd1—N5—C883.68 (18)N4—N3—C9—C9vi63.2 (3)
N1—C4—C3—N21.5 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x1, y+1, z+1; (iv) x1, y, z; (v) x, y+1, z+1; (vi) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O20.86 (1)1.93 (1)2.763 (3)164 (3)
O5—H5A···O4ii0.85 (1)2.33 (2)2.974 (3)133 (2)
O5—H5A···O1vii0.85 (1)2.38 (2)3.109 (2)143 (3)
O5—H5B···N4viii0.87 (1)2.16 (1)2.997 (2)162 (2)
O6—H6B···N2ix0.87 (1)2.06 (1)2.914 (3)169 (3)
Symmetry codes: (ii) x+1, y+1, z; (vii) x, y+1, z; (viii) x, y+1, z; (ix) x, y1, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[Cd2(C6H2N2O4)2(C8H12N6)(H2O)4]·2H2O[Cd2(C6H2N2O4)2(C6H8N6)(H2O)2]·2H2O
Mr857.32793.24
Crystal system, space groupMonoclinic, P21/cTriclinic, P1
Temperature (K)293293
a, b, c (Å)7.6647 (5), 26.6935 (14), 7.5350 (5)7.0219 (14), 8.4215 (17), 10.913 (2)
α, β, γ (°)90, 111.787 (7), 9081.75 (3), 84.05 (3), 75.12 (3)
V3)1431.52 (15)615.7 (2)
Z21
Radiation typeMo KαMo Kα
µ (mm1)1.571.81
Crystal size (mm)0.20 × 0.15 × 0.150.20 × 0.20 × 0.20
Data collection
DiffractometerAgilent SuperNova Single Source at offset
diffractometer with an Eos detector
Agilent SuperNova Single Source at offset
diffractometer with an Eos detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2013)
Multi-scan
(CrysAlis PRO; Agilent, 2013)
Tmin, Tmax0.744, 0.7980.713, 0.713
No. of measured, independent and
observed [I > 2σ(I)] reflections
6708, 3077, 2702 10451, 4808, 3444
Rint0.0340.031
(sin θ/λ)max1)0.6390.781
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.077, 1.11 0.029, 0.070, 0.94
No. of reflections30774808
No. of parameters208205
No. of restraints66
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.68, 0.790.53, 1.08

Computer programs: CrysAlis PRO (Agilent, 2013), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Selected bond lengths (Å) for (I) top
Cd1—O62.238 (2)Cd1—N52.302 (3)
Cd1—O4i2.247 (2)Cd1—O52.347 (2)
Cd1—O12.265 (2)Cd1—N12.394 (2)
Symmetry code: (i) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O7—H12···O5ii0.862.022.870 (3)169.5
O7—H11···N4iii0.902.022.907 (4)166.2
O6—H6B···O7iv0.861.932.752 (3)159.4
O6—H6A···O3v0.851.842.680 (3)170.5
O5—H5A···O2vi0.851.812.632 (3)163.8
O5—H5B···N2v0.861.952.797 (3)165.9
Symmetry codes: (ii) x1, y, z+1; (iii) x+1, y, z+1; (iv) x+1, y, z; (v) x+1, y+1/2, z+1/2; (vi) x, y+1/2, z1/2.
Selected bond lengths (Å) for (II) top
Cd1—O32.3342 (16)Cd1—O52.3748 (19)
Cd1—N52.2922 (17)Cd1—O5i2.3748 (19)
Cd1—N5i2.2922 (17)Cd1—O3i2.3342 (16)
Cd2—O12.2817 (17)Cd2—O1ii2.2817 (17)
Cd2—N12.3058 (18)Cd2—O4iii2.3380 (17)
Cd2—N1ii2.3058 (18)Cd2—O4iv2.3380 (17)
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y+1, z+1; (iii) x1, y, z; (iv) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O20.860 (9)1.925 (13)2.763 (3)164 (3)
O5—H5A···O4i0.854 (9)2.33 (2)2.974 (3)133 (2)
O5—H5A···O1v0.854 (9)2.382 (19)3.109 (2)143 (3)
O5—H5B···N4vi0.865 (9)2.162 (11)2.997 (2)162 (2)
O6—H6B···N2vii0.867 (9)2.058 (12)2.914 (3)169 (3)
Symmetry codes: (i) x+1, y+1, z; (v) x, y+1, z; (vi) x, y+1, z; (vii) x, y1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds