Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229615016496/lf3020sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229615016496/lf3020Isup2.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229615016496/lf3020IIsup3.hkl |
CCDC references: 1417792; 1060335
During the past decade, coordination polymers have attracted increased attention for their potential applications in the areas of magnetism, catalysis, adsorption and luminescence, as well as for the variety of their architectures and topologies (Rosi et al., 2003; Yaghi et al., 2003; Ockwig et al., 2005; Kitagawa et al., 2004). Although a great deal of effort has been devoted to coordination polymers, the rational design and synthesis of polymers with desired structures and properties is still a huge challenge for inorganic chemists because of the comprehensive effect of solvents, ligands, central metal atoms and organic anions (Ye et al., 2005). It has been shown that employing multicarboxylate ligands is an effective approach to synthesize such complexes, due to their strong coordination activity with metal ions, as well as their various coordination modes and versatile conformations (Zhao et al., 2003; Chen et al., 2011). As an example of a multicarboxylate ligand, pyrazine-2,3-dicarboxylic acid (H2pzdc) has been used widely in the preparation of coordination polymers, which have exhibited one-dimensional chains, two-dimensional networks and three-dimensional frameworks (Seo et al., 2009; Yang et al., 2004; Zheng et al., 2002). On the other hand, some auxiliary ligands have often been used in order to tune the structures and properties of the complexes formed, such as 2,2'-bipyridine, 4,4'-bipyridine and 1,10-phenanthroline (Bradshaw et al., 2005; Batten & Murray, 2003). Compared with these rigid ligands, molecules with flexible –CH2– spacers could possibly result in unpredictable and interesting frameworks as they are able to bend or rotate freely to conform to the coordination geometries of metal centres (Chen et al., 1995; Li et al., 2005; Wang et al., 2005).
In this contribution, we employed bis(1,2,4-triazol-1-yl)butane (btb) and bis(1,2,4-triazol-1-yl)ethane (bte) as flexible auxiliary ligands to react with H2pzdc and cadmium nitrate, and two novel cadmium complexes, {[Cd2(pzdc)2(btb)(H2O)4]·2H2O}n, (I) and {[Cd2(pzdc)2(bte)(H2O)2]·2H2O}n, (II), were synthesized and structurally characterized by single-crystal X-ray analyses.
A mixture of btb (0.0192 g, 0.1 mmol) and Cd(NO3)2·4H2O (0.0246 g, 0.1 mmol) was dissolved in water (5 ml) and the solution was stirring for 2 h. To this solution was added a mixture of H2pzdc (0.0168 g, 0.1 mmol) and NaOH (0.0080 g, 0.2 mmol) in water (5 ml). The solution was stirring continuously for 2 h and then filtered. The resulting colourless solution was allowed to stand at room temperature. After a week, colourless block-shaped crystals were collected and washed with diethyl ether three times (yield: 30%, based on Cd). Elemental analysis (%) calculated for C20H28Cd2N10O14: C 28.02, H 3.29, N 16.34%; found: C 27.92, H 3.22, N 16.25%.
A mixture of bte (0.0164 g, 0.1 mmol) and Cd(NO3)2·4H2O (0.0246 g, 0.1 mmol) was dissolved in water (5 ml) and the solution was stirred for 2 h. To this solution was added a mixture of H2pzdc (0.0168 g, 0.1 mmol) and NaOH (0.0080 g, 0.2 mmol) in water (5 ml). The resulting solution was stirred continuously for 2 h and then filtered. The colourless solution was allowed to stand at the room temperature. After a week, colourless block-shaped crystals were collected and washed with diethyl ether three times (yield: 35%, based on Cd). Elemental analysis (%) calculated for C18H20Cd2N10O12: C 27.25, H 2.54, N 17.66%; found C 27.15, H 2.62, N 17.58%.
Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were treated as riding. C-bound H atoms were fixed geometrically and allowed to ride in their parent atom, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, or C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene H atoms. Water H atoms were located in a difference Fourier map. Their positions were geometrically optimized and they were constrained to ride on their parent atom, with O—H = 0.85–0.90 Å and Uiso(H) = 1.2Ueq(O).
Complex (I) crystallizes in the monoclinic space group P21/c and the asymmetric unit consists of one crystallographically independent Cd2+ cation, one pzdc2- anion, half a btb ligand, two coordinated water molecules and one lattice water molecule. As shown in Fig. 1, each Cd2+ cation is coordinated by a couple of N and O atoms from one pzdc2- anion, one triazole N atom from a btb ligand, one carboxylate O atom from another symmetric pzdc2- anion and two O atoms from coordinated aqua molecules, which generate a distorted CdN2O4 octahedral geometry. Two pairs of N and O atoms (N1, O1, N5 and O6) form the equatorial plane with a mean deviation of 0.142 Å, while atoms O5 and O4A (see Fig. 1 for symmetry code and Table 2 for bond lengths) are located in the axial direction, with Cd1—O bond lengths of 2.347 (2) and 2.247 (2) Å, respectively. In complex (I), each pzdc2- ligand acts as a µ2-bridge linking Cd2+ ions into an infinite one-dimensional chain with a Cd···Cd separation of 6.29 Å and weak π–π stacking interactions (centroid-to-centroid separation = 3.7888 Å and dihedral angle = 3.9°) are observed between adjacent pyrazine rings (Fig. 2). On the other hand, each btb ligand serves as a bidentate connector, in which two terminal triazole rings adopt a parallel trans conformation with a dihedral angle of 0.0017(?)°. With the connection of pzdc and btb ligands, complex (I) exhibits an interesting two-dimensional wave-like network (Fig. 2). Furthermore, extensive hydrogen-bonding interactions involving the coordinated water molecules, the lattice water molecules, the carboxylate O atoms and the triazole N atoms result in the formation of a three-dimensional supramolecular architecture (Fig. 3 and Table 3).
The three-dimensional cadmium coordination polymer (II) crystallizes in the triclinic space group P1 and the asymmetric unit consists of two crystallographically independent Cd2+ cations (Cd1 and Cd2 with the same occupanies of 0.50), one pzdc2- anion, half a bis(1,2,4-triazol-1-yl)ethane (bte) ligand, one coordinated water molecule and one lattice water molecule. As shown in Fig. 4, each Cd2+ cation is located in a distorted octahedral N2O4 coordination envirnonment. Atom Cd1 is coordinated by two N atoms and four O atoms, half of which are asymmetric and from one bte ligand, one pzdc2- anion and one coordinated aqua molecule, respectively. Atoms, O3, O3A, O5 and O5A (see Fig. 4 for symmetry code) are coplanar and construct the equatorial plane of the octahedral geometry. Atoms N3 and N3A are located in the axial direction, with the same Cd—N bond length of 2.2922 (17) Å. For atom Cd2, the six coordination atoms are from four pzdc2- anions, in which half ligands provide a pair of O and N atoms and the other half provide only one carboxylate O atom. As in the case of Cd1, four O atoms around Cd2 (O1, O1D, O4C and O4E; see Table 4 for symmetry codes and bond lengths) are also coplanar and form the equatorial plane of the octahedral geometry, and two N atoms (N1 and N1D) are located in the axial direction, with the same Cd—N bond length of 2.3058 (18) Å. In complex (II), each pzdc2- anion exhibits a tetradentate µ3-coordination mode and assembles Cd2+ cations into a two-dimensional grid-like motif (Fig. 5). While each bte molecule acts as a bidentate bridging ligand with the trans triazole conformation to extend the two-dimensional grid into a three-dimensional framework, as shown in Fig. 6. Weak π–π stacking interactions between pyrazine and triazole rings [centroid-to-centroid separations = 3.7388, 3.7388 and 3.8613 Å; dihedral angles = 3.4, 2.5 and 4.0°] and hydrogen-bonding interactions involving the coordinated water molecule, the lattice water molecule, the carboxylate O atoms, the pyrazine N atoms and the triazole N atoms have been observed (Table 5).
Comparing the structures of the two title complexes, it seems that the length of the flexible bis(1,2,4-triazol-1-yl)alkane ligand and the coordination modes of the pzdc2- anionic ligand might act as the key role in determining the structures. As a long flexible ligand generates a larger steric hindrance, this would prevent the complex extending towards higher dimensions. On the other hand, the pzdc2- anionic ligand, with a complicated coordination mode, could result in a secondary building unit with higher dimensions, which is beneficial for the formation of three-dimensional architectures. The results indicate that flexible bis(1,2,4-triazol-1-yl)alkanes combined with multicarboxylate ligands can produce versatile structures and could be used widely in the construction of coordination polymers.
For both compounds, data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).
[Cd2(C6H2N2O4)2(C8H12N6)(H2O)4]·2H2O | F(000) = 852 |
Mr = 857.32 | Dx = 1.989 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3410 reflections |
a = 7.6647 (5) Å | θ = 3.7–28.7° |
b = 26.6935 (14) Å | µ = 1.57 mm−1 |
c = 7.5350 (5) Å | T = 293 K |
β = 111.787 (7)° | Block, colourless |
V = 1431.52 (15) Å3 | 0.20 × 0.15 × 0.15 mm |
Z = 2 |
Agilent SuperNova Single Source at offset diffractometer with an Eos detector | 3077 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 2702 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.034 |
ω scans | θmax = 27.0°, θmin = 2.9° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) | h = −9→7 |
Tmin = 0.744, Tmax = 0.798 | k = −34→32 |
6708 measured reflections | l = −9→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.077 | H-atom parameters constrained |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0325P)2] where P = (Fo2 + 2Fc2)/3 |
3077 reflections | (Δ/σ)max < 0.001 |
208 parameters | Δρmax = 0.68 e Å−3 |
6 restraints | Δρmin = −0.79 e Å−3 |
[Cd2(C6H2N2O4)2(C8H12N6)(H2O)4]·2H2O | V = 1431.52 (15) Å3 |
Mr = 857.32 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.6647 (5) Å | µ = 1.57 mm−1 |
b = 26.6935 (14) Å | T = 293 K |
c = 7.5350 (5) Å | 0.20 × 0.15 × 0.15 mm |
β = 111.787 (7)° |
Agilent SuperNova Single Source at offset diffractometer with an Eos detector | 3077 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) | 2702 reflections with I > 2σ(I) |
Tmin = 0.744, Tmax = 0.798 | Rint = 0.034 |
6708 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 6 restraints |
wR(F2) = 0.077 | H-atom parameters constrained |
S = 1.11 | Δρmax = 0.68 e Å−3 |
3077 reflections | Δρmin = −0.79 e Å−3 |
208 parameters |
Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.36.32 (release 02-08-2013 CrysAlis171 .NET) (compiled Aug 2 2013,16:46:58) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C2 | 0.4857 (4) | 0.22808 (13) | −0.1467 (4) | 0.0114 (7) | |
H2 | 0.3748 | 0.2171 | −0.2412 | 0.014* | |
Cd1 | 1.00803 (3) | 0.155428 (8) | 0.32213 (3) | 0.00899 (9) | |
O1 | 1.0810 (3) | 0.23671 (8) | 0.4014 (3) | 0.0114 (5) | |
O5 | 1.2297 (3) | 0.15697 (8) | 0.1752 (3) | 0.0106 (5) | |
H5B | 1.3308 | 0.1741 | 0.2303 | 0.013* | |
H5A | 1.1685 | 0.1710 | 0.0693 | 0.013* | |
O3 | 0.6046 (3) | 0.37041 (9) | 0.1042 (3) | 0.0137 (5) | |
O4 | 0.8107 (3) | 0.37028 (9) | −0.0382 (3) | 0.0139 (5) | |
N2 | 0.5191 (3) | 0.27704 (11) | −0.1241 (3) | 0.0104 (6) | |
C6 | 0.7029 (4) | 0.34893 (12) | 0.0297 (4) | 0.0103 (7) | |
N5 | 0.8945 (3) | 0.08690 (10) | 0.1280 (3) | 0.0104 (6) | |
N1 | 0.7717 (3) | 0.20770 (10) | 0.1033 (3) | 0.0083 (5) | |
C4 | 0.8062 (4) | 0.25699 (12) | 0.1293 (4) | 0.0083 (6) | |
O6 | 1.2444 (3) | 0.12226 (10) | 0.5681 (3) | 0.0208 (6) | |
H6A | 1.3583 | 0.1280 | 0.5838 | 0.025* | |
H6B | 1.2477 | 0.1141 | 0.6795 | 0.025* | |
C8 | 0.8141 (4) | 0.04524 (13) | 0.1672 (4) | 0.0147 (7) | |
H8 | 0.8024 | 0.0401 | 0.2844 | 0.018* | |
N4 | 0.7543 (4) | 0.01292 (11) | 0.0274 (3) | 0.0135 (6) | |
C1 | 0.6105 (4) | 0.19295 (13) | −0.0343 (4) | 0.0108 (6) | |
H1 | 0.5828 | 0.1590 | −0.0540 | 0.013* | |
C3 | 0.6818 (4) | 0.29218 (12) | 0.0123 (4) | 0.0071 (6) | |
C7 | 0.8804 (4) | 0.07938 (13) | −0.0520 (4) | 0.0108 (7) | |
H7 | 0.9222 | 0.1014 | −0.1233 | 0.013* | |
N3 | 0.7975 (3) | 0.03573 (10) | −0.1133 (3) | 0.0096 (5) | |
C9 | 0.7410 (4) | 0.01458 (13) | −0.3053 (4) | 0.0137 (7) | |
H9A | 0.8054 | −0.0170 | −0.2993 | 0.016* | |
H9B | 0.7779 | 0.0372 | −0.3859 | 0.016* | |
C10 | 0.5297 (4) | 0.00604 (13) | −0.3934 (4) | 0.0123 (7) | |
H10A | 0.4646 | 0.0358 | −0.3774 | 0.015* | |
H10B | 0.4956 | −0.0215 | −0.3287 | 0.015* | |
O2 | 1.0152 (3) | 0.31699 (9) | 0.3249 (3) | 0.0138 (5) | |
O7 | 0.3471 (3) | 0.09068 (9) | 0.9408 (3) | 0.0196 (5) | |
H11 | 0.3358 | 0.0580 | 0.9642 | 0.024* | |
H12 | 0.3202 | 0.1081 | 1.0231 | 0.024* | |
C5 | 0.9835 (4) | 0.27155 (13) | 0.2982 (4) | 0.0088 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C2 | 0.0088 (14) | 0.0142 (18) | 0.0090 (14) | −0.0038 (13) | 0.0007 (12) | −0.0004 (13) |
Cd1 | 0.00909 (13) | 0.00583 (14) | 0.01046 (14) | 0.00041 (9) | 0.00177 (10) | −0.00066 (9) |
O1 | 0.0122 (10) | 0.0060 (12) | 0.0112 (10) | 0.0023 (9) | −0.0012 (9) | 0.0018 (9) |
O5 | 0.0114 (11) | 0.0078 (12) | 0.0101 (10) | −0.0017 (9) | 0.0011 (9) | −0.0005 (9) |
O3 | 0.0109 (10) | 0.0114 (13) | 0.0197 (12) | −0.0002 (10) | 0.0069 (9) | −0.0053 (10) |
O4 | 0.0167 (11) | 0.0120 (13) | 0.0156 (11) | −0.0016 (10) | 0.0093 (10) | 0.0018 (10) |
N2 | 0.0098 (12) | 0.0107 (15) | 0.0100 (12) | −0.0006 (11) | 0.0028 (10) | −0.0034 (11) |
C6 | 0.0076 (14) | 0.0113 (17) | 0.0074 (14) | 0.0004 (13) | −0.0028 (12) | 0.0006 (13) |
N5 | 0.0112 (13) | 0.0067 (14) | 0.0130 (13) | −0.0016 (11) | 0.0043 (11) | −0.0012 (11) |
N1 | 0.0096 (12) | 0.0074 (14) | 0.0086 (12) | −0.0004 (11) | 0.0043 (10) | 0.0001 (11) |
C4 | 0.0088 (14) | 0.0084 (16) | 0.0086 (14) | 0.0004 (13) | 0.0043 (12) | −0.0021 (12) |
O6 | 0.0106 (11) | 0.0370 (17) | 0.0149 (11) | 0.0041 (12) | 0.0049 (9) | 0.0122 (12) |
C8 | 0.0159 (16) | 0.0133 (18) | 0.0125 (15) | −0.0032 (14) | 0.0025 (13) | −0.0003 (14) |
N4 | 0.0158 (13) | 0.0097 (14) | 0.0142 (13) | −0.0027 (12) | 0.0048 (11) | 0.0013 (11) |
C1 | 0.0094 (14) | 0.0094 (17) | 0.0137 (15) | −0.0023 (13) | 0.0045 (13) | −0.0049 (13) |
C3 | 0.0083 (14) | 0.0071 (16) | 0.0071 (13) | −0.0009 (13) | 0.0044 (12) | −0.0026 (12) |
C7 | 0.0086 (14) | 0.0092 (17) | 0.0118 (15) | −0.0001 (13) | 0.0006 (12) | 0.0030 (13) |
N3 | 0.0080 (12) | 0.0077 (14) | 0.0107 (12) | −0.0006 (11) | 0.0008 (10) | −0.0028 (11) |
C9 | 0.0157 (16) | 0.0134 (18) | 0.0108 (15) | −0.0005 (14) | 0.0035 (13) | −0.0039 (13) |
C10 | 0.0130 (15) | 0.0093 (17) | 0.0118 (15) | −0.0019 (14) | 0.0014 (13) | −0.0041 (13) |
O2 | 0.0144 (12) | 0.0071 (12) | 0.0146 (12) | −0.0023 (10) | −0.0009 (10) | −0.0017 (9) |
O7 | 0.0343 (14) | 0.0106 (13) | 0.0182 (12) | 0.0003 (11) | 0.0147 (11) | 0.0024 (10) |
C5 | 0.0085 (14) | 0.0096 (17) | 0.0093 (14) | 0.0000 (13) | 0.0046 (12) | −0.0022 (12) |
C2—N2 | 1.331 (4) | C4—C3 | 1.394 (4) |
C2—C1 | 1.382 (4) | C4—C5 | 1.528 (4) |
C2—H2 | 0.9300 | O6—H6A | 0.8503 |
Cd1—O6 | 2.238 (2) | O6—H6B | 0.8585 |
Cd1—O4i | 2.247 (2) | C8—N4 | 1.306 (4) |
Cd1—O1 | 2.265 (2) | C8—H8 | 0.9300 |
Cd1—N5 | 2.302 (3) | N4—N3 | 1.366 (3) |
Cd1—O5 | 2.347 (2) | C1—H1 | 0.9300 |
Cd1—N1 | 2.394 (2) | C7—N3 | 1.325 (4) |
O1—C5 | 1.263 (4) | C7—H7 | 0.9300 |
O5—H5B | 0.8622 | N3—C9 | 1.461 (3) |
O5—H5A | 0.8475 | C9—C10 | 1.522 (4) |
O3—C6 | 1.235 (4) | C9—H9A | 0.9700 |
O4—C6 | 1.259 (4) | C9—H9B | 0.9700 |
O4—Cd1ii | 2.247 (2) | C10—C10iii | 1.533 (5) |
N2—C3 | 1.350 (4) | C10—H10A | 0.9700 |
C6—C3 | 1.524 (4) | C10—H10B | 0.9700 |
N5—C7 | 1.335 (3) | O2—C5 | 1.239 (4) |
N5—C8 | 1.356 (4) | O7—H11 | 0.9004 |
N1—C4 | 1.342 (4) | O7—H12 | 0.8597 |
N1—C1 | 1.344 (4) | ||
N2—C2—C1 | 122.1 (3) | Cd1—O6—H6A | 121.2 |
N2—C2—H2 | 119.0 | Cd1—O6—H6B | 129.2 |
C1—C2—H2 | 119.0 | H6A—O6—H6B | 104.7 |
O6—Cd1—O4i | 88.27 (8) | N4—C8—N5 | 114.7 (3) |
O6—Cd1—O1 | 96.65 (8) | N4—C8—H8 | 122.7 |
O4i—Cd1—O1 | 108.21 (8) | N5—C8—H8 | 122.7 |
O6—Cd1—N5 | 102.17 (9) | C8—N4—N3 | 102.6 (3) |
O4i—Cd1—N5 | 83.88 (8) | N1—C1—C2 | 120.2 (3) |
O1—Cd1—N5 | 157.98 (8) | N1—C1—H1 | 119.9 |
O6—Cd1—O5 | 83.84 (7) | C2—C1—H1 | 119.9 |
O4i—Cd1—O5 | 163.18 (8) | N2—C3—C4 | 120.1 (3) |
O1—Cd1—O5 | 87.50 (7) | N2—C3—C6 | 113.7 (3) |
N5—Cd1—O5 | 83.29 (8) | C4—C3—C6 | 126.1 (3) |
O6—Cd1—N1 | 166.92 (9) | N3—C7—N5 | 109.5 (3) |
O4i—Cd1—N1 | 91.82 (8) | N3—C7—H7 | 125.2 |
O1—Cd1—N1 | 70.91 (8) | N5—C7—H7 | 125.2 |
N5—Cd1—N1 | 90.83 (9) | C7—N3—N4 | 110.1 (2) |
O5—Cd1—N1 | 99.21 (8) | C7—N3—C9 | 127.8 (3) |
C5—O1—Cd1 | 120.73 (19) | N4—N3—C9 | 121.9 (3) |
Cd1—O5—H5B | 117.4 | N3—C9—C10 | 111.4 (2) |
Cd1—O5—H5A | 101.9 | N3—C9—H9A | 109.3 |
H5B—O5—H5A | 107.7 | C10—C9—H9A | 109.3 |
C6—O4—Cd1ii | 135.2 (2) | N3—C9—H9B | 109.3 |
C2—N2—C3 | 118.1 (3) | C10—C9—H9B | 109.3 |
O3—C6—O4 | 125.3 (3) | H9A—C9—H9B | 108.0 |
O3—C6—C3 | 116.0 (3) | C9—C10—C10iii | 110.0 (3) |
O4—C6—C3 | 118.7 (3) | C9—C10—H10A | 109.7 |
C7—N5—C8 | 103.1 (3) | C10iii—C10—H10A | 109.7 |
C7—N5—Cd1 | 129.4 (2) | C9—C10—H10B | 109.7 |
C8—N5—Cd1 | 127.5 (2) | C10iii—C10—H10B | 109.7 |
C4—N1—C1 | 118.3 (3) | H10A—C10—H10B | 108.2 |
C4—N1—Cd1 | 114.41 (19) | H11—O7—H12 | 108.4 |
C1—N1—Cd1 | 127.2 (2) | O2—C5—O1 | 125.8 (3) |
N1—C4—C3 | 121.1 (3) | O2—C5—C4 | 116.4 (3) |
N1—C4—C5 | 115.9 (3) | O1—C5—C4 | 117.8 (3) |
C3—C4—C5 | 122.9 (3) | ||
O6—Cd1—O1—C5 | 179.2 (2) | C7—N5—C8—N4 | 0.7 (4) |
O4i—Cd1—O1—C5 | −90.4 (2) | Cd1—N5—C8—N4 | 177.1 (2) |
N5—Cd1—O1—C5 | 30.6 (4) | N5—C8—N4—N3 | −0.8 (4) |
O5—Cd1—O1—C5 | 95.7 (2) | C4—N1—C1—C2 | 0.7 (4) |
N1—Cd1—O1—C5 | −4.9 (2) | Cd1—N1—C1—C2 | 178.4 (2) |
C1—C2—N2—C3 | 0.7 (5) | N2—C2—C1—N1 | 0.1 (5) |
Cd1ii—O4—C6—O3 | 179.18 (19) | C2—N2—C3—C4 | −2.2 (4) |
Cd1ii—O4—C6—C3 | −3.9 (4) | C2—N2—C3—C6 | −178.3 (3) |
O6—Cd1—N5—C7 | −120.5 (3) | N1—C4—C3—N2 | 3.1 (4) |
O4i—Cd1—N5—C7 | 152.6 (3) | C5—C4—C3—N2 | −174.1 (3) |
O1—Cd1—N5—C7 | 27.6 (4) | N1—C4—C3—C6 | 178.6 (3) |
O5—Cd1—N5—C7 | −38.3 (3) | C5—C4—C3—C6 | 1.4 (5) |
N1—Cd1—N5—C7 | 60.8 (3) | O3—C6—C3—N2 | 73.3 (3) |
O6—Cd1—N5—C8 | 64.1 (3) | O4—C6—C3—N2 | −103.9 (3) |
O4i—Cd1—N5—C8 | −22.8 (2) | O3—C6—C3—C4 | −102.5 (3) |
O1—Cd1—N5—C8 | −147.8 (2) | O4—C6—C3—C4 | 80.3 (4) |
O5—Cd1—N5—C8 | 146.2 (3) | C8—N5—C7—N3 | −0.3 (3) |
N1—Cd1—N5—C8 | −114.6 (3) | Cd1—N5—C7—N3 | −176.62 (18) |
O6—Cd1—N1—C4 | 22.4 (5) | N5—C7—N3—N4 | −0.1 (4) |
O4i—Cd1—N1—C4 | 112.5 (2) | N5—C7—N3—C9 | 174.8 (3) |
O1—Cd1—N1—C4 | 3.9 (2) | C8—N4—N3—C7 | 0.5 (3) |
N5—Cd1—N1—C4 | −163.6 (2) | C8—N4—N3—C9 | −174.8 (3) |
O5—Cd1—N1—C4 | −80.2 (2) | C7—N3—C9—C10 | −118.8 (3) |
O6—Cd1—N1—C1 | −155.4 (3) | N4—N3—C9—C10 | 55.6 (4) |
O4i—Cd1—N1—C1 | −65.3 (2) | N3—C9—C10—C10iii | 168.7 (3) |
O1—Cd1—N1—C1 | −173.9 (2) | Cd1—O1—C5—O2 | −177.2 (2) |
N5—Cd1—N1—C1 | 18.6 (2) | Cd1—O1—C5—C4 | 5.2 (3) |
O5—Cd1—N1—C1 | 102.0 (2) | N1—C4—C5—O2 | −179.1 (3) |
C1—N1—C4—C3 | −2.3 (4) | C3—C4—C5—O2 | −1.7 (4) |
Cd1—N1—C4—C3 | 179.7 (2) | N1—C4—C5—O1 | −1.2 (4) |
C1—N1—C4—C5 | 175.1 (2) | C3—C4—C5—O1 | 176.1 (3) |
Cd1—N1—C4—C5 | −2.9 (3) |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, −y+1/2, z−1/2; (iii) −x+1, −y, −z−1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H12···O5iv | 0.86 | 2.02 | 2.870 (3) | 170 |
O7—H11···N4v | 0.90 | 2.02 | 2.907 (4) | 166 |
O6—H6B···O7vi | 0.86 | 1.93 | 2.752 (3) | 159 |
O6—H6A···O3vii | 0.85 | 1.84 | 2.680 (3) | 171 |
O5—H5A···O2ii | 0.85 | 1.81 | 2.632 (3) | 164 |
O5—H5B···N2vii | 0.86 | 1.95 | 2.797 (3) | 166 |
Symmetry codes: (ii) x, −y+1/2, z−1/2; (iv) x−1, y, z+1; (v) −x+1, −y, −z+1; (vi) x+1, y, z; (vii) x+1, −y+1/2, z+1/2. |
[Cd2(C6H2N2O4)2(C6H8N6)(H2O)2]·2H2O | Z = 1 |
Mr = 793.24 | F(000) = 390 |
Triclinic, P1 | Dx = 2.139 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.0219 (14) Å | Cell parameters from 2710 reflections |
b = 8.4215 (17) Å | θ = 3.0–37.0° |
c = 10.913 (2) Å | µ = 1.81 mm−1 |
α = 81.75 (3)° | T = 293 K |
β = 84.05 (3)° | Block, colourless |
γ = 75.12 (3)° | 0.20 × 0.20 × 0.20 mm |
V = 615.7 (2) Å3 |
Agilent SuperNova Single Source at offset diffractometer with an Eos detector | 4808 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 3444 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.031 |
ω scans | θmax = 33.7°, θmin = 1.9° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) | h = −10→10 |
Tmin = 0.713, Tmax = 0.713 | k = −13→12 |
10451 measured reflections | l = −17→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.070 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.94 | w = 1/[σ2(Fo2) + (0.0356P)2] where P = (Fo2 + 2Fc2)/3 |
4808 reflections | (Δ/σ)max < 0.001 |
205 parameters | Δρmax = 0.53 e Å−3 |
6 restraints | Δρmin = −1.08 e Å−3 |
[Cd2(C6H2N2O4)2(C6H8N6)(H2O)2]·2H2O | γ = 75.12 (3)° |
Mr = 793.24 | V = 615.7 (2) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.0219 (14) Å | Mo Kα radiation |
b = 8.4215 (17) Å | µ = 1.81 mm−1 |
c = 10.913 (2) Å | T = 293 K |
α = 81.75 (3)° | 0.20 × 0.20 × 0.20 mm |
β = 84.05 (3)° |
Agilent SuperNova Single Source at offset diffractometer with an Eos detector | 4808 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) | 3444 reflections with I > 2σ(I) |
Tmin = 0.713, Tmax = 0.713 | Rint = 0.031 |
10451 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 6 restraints |
wR(F2) = 0.070 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.94 | Δρmax = 0.53 e Å−3 |
4808 reflections | Δρmin = −1.08 e Å−3 |
205 parameters |
Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.36.32 (release 02-08-2013 CrysAlis171 .NET) (compiled Aug 2 2013,16:46:58) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O4 | 0.3777 (2) | 0.5253 (2) | 0.30499 (14) | 0.0387 (4) | |
O1 | −0.2373 (2) | 0.32956 (19) | 0.40511 (15) | 0.0301 (3) | |
Cd1 | 0.5000 | 0.5000 | 0.0000 | 0.02208 (6) | |
Cd2 | −0.5000 | 0.5000 | 0.5000 | 0.02788 (6) | |
C4 | −0.1148 (3) | 0.5737 (2) | 0.36395 (16) | 0.0175 (3) | |
N1 | −0.2791 (2) | 0.6568 (2) | 0.42325 (15) | 0.0217 (3) | |
N3 | 0.1936 (2) | 0.1168 (2) | −0.00963 (15) | 0.0203 (3) | |
O2 | 0.0525 (2) | 0.31896 (19) | 0.29731 (16) | 0.0363 (4) | |
O3 | 0.2200 (2) | 0.58772 (18) | 0.13164 (13) | 0.0249 (3) | |
N5 | 0.3442 (3) | 0.3145 (2) | −0.05375 (16) | 0.0244 (3) | |
C3 | 0.0341 (3) | 0.6535 (2) | 0.31771 (16) | 0.0196 (3) | |
C5 | −0.0986 (3) | 0.3919 (2) | 0.35391 (18) | 0.0209 (4) | |
C6 | 0.2255 (3) | 0.5784 (2) | 0.24646 (18) | 0.0210 (4) | |
N2 | 0.0167 (3) | 0.8124 (2) | 0.33432 (16) | 0.0282 (4) | |
N4 | 0.3263 (3) | 0.0704 (2) | −0.10608 (16) | 0.0241 (3) | |
C8 | 0.4129 (3) | 0.1947 (2) | −0.12922 (18) | 0.0228 (4) | |
H8 | 0.5124 | 0.1994 | −0.1919 | 0.027* | |
C2 | −0.1467 (4) | 0.8919 (3) | 0.3932 (2) | 0.0312 (5) | |
H2 | −0.1612 | 1.0017 | 0.4051 | 0.037* | |
C7 | 0.2053 (3) | 0.2611 (3) | 0.0203 (2) | 0.0254 (4) | |
H7 | 0.1283 | 0.3162 | 0.0832 | 0.030* | |
C1 | −0.2967 (3) | 0.8143 (3) | 0.4375 (2) | 0.0297 (5) | |
H1 | −0.4109 | 0.8731 | 0.4776 | 0.036* | |
C9 | 0.0672 (3) | 0.0094 (3) | 0.04691 (19) | 0.0250 (4) | |
H9A | −0.0116 | 0.0564 | 0.1174 | 0.030* | |
H9B | 0.1482 | −0.0984 | 0.0766 | 0.030* | |
O5 | 0.3630 (3) | 0.7208 (2) | −0.15135 (15) | 0.0362 (4) | |
H5A | 0.387 (4) | 0.690 (3) | −0.2236 (13) | 0.043* | |
H5B | 0.377 (4) | 0.8195 (18) | −0.149 (2) | 0.043* | |
O6 | 0.3069 (3) | 0.0077 (3) | 0.3244 (2) | 0.0509 (5) | |
H6A | 0.246 (4) | 0.1098 (13) | 0.308 (3) | 0.061* | |
H6B | 0.233 (4) | −0.060 (3) | 0.322 (3) | 0.061* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O4 | 0.0189 (7) | 0.0721 (12) | 0.0252 (7) | −0.0086 (8) | −0.0001 (6) | −0.0118 (8) |
O1 | 0.0265 (8) | 0.0286 (8) | 0.0373 (8) | −0.0121 (6) | 0.0094 (6) | −0.0096 (7) |
Cd1 | 0.01893 (10) | 0.01785 (10) | 0.03305 (11) | −0.01051 (7) | 0.00138 (8) | −0.00625 (8) |
Cd2 | 0.01794 (10) | 0.04618 (14) | 0.02240 (10) | −0.01238 (9) | 0.00707 (7) | −0.01152 (9) |
C4 | 0.0160 (8) | 0.0205 (8) | 0.0153 (7) | −0.0031 (6) | 0.0000 (6) | −0.0030 (6) |
N1 | 0.0181 (7) | 0.0252 (8) | 0.0199 (7) | −0.0014 (6) | 0.0020 (6) | −0.0064 (6) |
N3 | 0.0225 (8) | 0.0219 (8) | 0.0209 (7) | −0.0139 (6) | 0.0021 (6) | −0.0045 (6) |
O2 | 0.0322 (9) | 0.0234 (7) | 0.0483 (10) | −0.0043 (6) | 0.0197 (7) | −0.0090 (7) |
O3 | 0.0252 (7) | 0.0311 (8) | 0.0186 (6) | −0.0084 (6) | 0.0026 (5) | −0.0039 (6) |
N5 | 0.0268 (8) | 0.0245 (8) | 0.0272 (8) | −0.0161 (7) | 0.0050 (7) | −0.0079 (7) |
C3 | 0.0210 (8) | 0.0204 (9) | 0.0172 (8) | −0.0055 (7) | 0.0010 (6) | −0.0028 (7) |
C5 | 0.0195 (9) | 0.0214 (9) | 0.0215 (8) | −0.0047 (7) | 0.0022 (7) | −0.0045 (7) |
C6 | 0.0195 (8) | 0.0251 (9) | 0.0206 (8) | −0.0109 (7) | 0.0043 (7) | −0.0037 (7) |
N2 | 0.0366 (10) | 0.0235 (8) | 0.0256 (8) | −0.0105 (7) | 0.0017 (7) | −0.0039 (7) |
N4 | 0.0266 (8) | 0.0249 (8) | 0.0244 (8) | −0.0127 (7) | 0.0041 (7) | −0.0075 (7) |
C8 | 0.0234 (9) | 0.0264 (9) | 0.0224 (8) | −0.0133 (8) | 0.0040 (7) | −0.0061 (7) |
C2 | 0.0429 (13) | 0.0207 (10) | 0.0291 (10) | −0.0041 (9) | 0.0000 (9) | −0.0082 (8) |
C7 | 0.0260 (10) | 0.0272 (10) | 0.0287 (10) | −0.0159 (8) | 0.0066 (8) | −0.0115 (8) |
C1 | 0.0289 (11) | 0.0275 (10) | 0.0291 (10) | 0.0036 (8) | 0.0007 (8) | −0.0122 (9) |
C9 | 0.0287 (10) | 0.0282 (10) | 0.0235 (9) | −0.0192 (8) | −0.0018 (7) | 0.0015 (8) |
O5 | 0.0526 (11) | 0.0288 (8) | 0.0283 (8) | −0.0084 (8) | −0.0066 (8) | −0.0070 (7) |
O6 | 0.0394 (11) | 0.0422 (11) | 0.0708 (14) | 0.0005 (9) | −0.0053 (10) | −0.0240 (11) |
O4—C6 | 1.251 (3) | N3—C9 | 1.457 (2) |
O4—Cd2i | 2.3380 (17) | O2—C5 | 1.234 (2) |
O1—C5 | 1.266 (2) | O3—C6 | 1.248 (2) |
Cd1—O3 | 2.3342 (16) | N5—C7 | 1.328 (2) |
Cd1—N5 | 2.2922 (17) | N5—C8 | 1.355 (3) |
Cd1—N5ii | 2.2922 (17) | C3—N2 | 1.349 (2) |
Cd2—O1 | 2.2817 (17) | C3—C6 | 1.516 (3) |
Cd2—N1 | 2.3058 (18) | N2—C2 | 1.324 (3) |
Cd2—N1iii | 2.3058 (18) | N4—C8 | 1.322 (2) |
Cd1—O5 | 2.3748 (19) | C8—H8 | 0.9300 |
Cd1—O5ii | 2.3748 (19) | C2—C1 | 1.389 (3) |
Cd1—O3ii | 2.3342 (16) | C2—H2 | 0.9300 |
Cd2—O1iii | 2.2817 (17) | C7—H7 | 0.9300 |
Cd2—O4iv | 2.3380 (17) | C1—H1 | 0.9300 |
Cd2—O4v | 2.3380 (17) | C9—C9vi | 1.513 (4) |
C4—N1 | 1.342 (2) | C9—H9A | 0.9700 |
C4—C3 | 1.398 (2) | C9—H9B | 0.9700 |
C4—C5 | 1.524 (3) | O5—H5A | 0.854 (9) |
N1—C1 | 1.330 (3) | O5—H5B | 0.865 (9) |
N3—C7 | 1.328 (2) | O6—H6A | 0.860 (9) |
N3—N4 | 1.362 (2) | O6—H6B | 0.867 (9) |
C6—O4—Cd2i | 143.53 (14) | C7—N3—C9 | 129.31 (17) |
C5—O1—Cd2 | 117.56 (13) | N4—N3—C9 | 119.97 (16) |
N5ii—Cd1—N5 | 180.00 (8) | C6—O3—Cd1 | 122.83 (13) |
N5ii—Cd1—O3 | 93.30 (6) | C7—N5—C8 | 103.67 (16) |
N5—Cd1—O3 | 86.70 (6) | C7—N5—Cd1 | 122.53 (14) |
N5ii—Cd1—O3ii | 86.70 (6) | C8—N5—Cd1 | 129.03 (13) |
N5—Cd1—O3ii | 93.30 (6) | N2—C3—C4 | 120.78 (18) |
O3—Cd1—O3ii | 180.0 | N2—C3—C6 | 113.06 (16) |
N5ii—Cd1—O5 | 84.10 (7) | C4—C3—C6 | 126.16 (17) |
N5—Cd1—O5 | 95.90 (7) | O2—C5—O1 | 126.26 (19) |
O3—Cd1—O5 | 88.21 (6) | O2—C5—C4 | 115.84 (17) |
O3ii—Cd1—O5 | 91.79 (6) | O1—C5—C4 | 117.90 (17) |
N5ii—Cd1—O5ii | 95.90 (7) | O3—C6—O4 | 125.41 (19) |
N5—Cd1—O5ii | 84.10 (7) | O3—C6—C3 | 116.34 (18) |
O3—Cd1—O5ii | 91.79 (6) | O4—C6—C3 | 117.97 (17) |
O3ii—Cd1—O5ii | 88.21 (6) | C2—N2—C3 | 118.36 (18) |
O5—Cd1—O5ii | 180.00 (7) | C8—N4—N3 | 102.12 (16) |
O1iii—Cd2—O1 | 180.0 | N4—C8—N5 | 114.22 (17) |
O1iii—Cd2—N1 | 106.97 (6) | N4—C8—H8 | 122.9 |
O1—Cd2—N1 | 73.03 (6) | N5—C8—H8 | 122.9 |
O1iii—Cd2—N1iii | 73.03 (6) | N2—C2—C1 | 121.2 (2) |
O1—Cd2—N1iii | 106.97 (6) | N2—C2—H2 | 119.4 |
N1—Cd2—N1iii | 180.0 | C1—C2—H2 | 119.4 |
O1iii—Cd2—O4iv | 98.88 (7) | N3—C7—N5 | 109.29 (18) |
O1—Cd2—O4iv | 81.12 (7) | N3—C7—H7 | 125.4 |
N1—Cd2—O4iv | 91.82 (6) | N5—C7—H7 | 125.4 |
N1iii—Cd2—O4iv | 88.18 (6) | N1—C1—C2 | 120.8 (2) |
O1iii—Cd2—O4v | 81.12 (7) | N1—C1—H1 | 119.6 |
O1—Cd2—O4v | 98.88 (7) | C2—C1—H1 | 119.6 |
N1—Cd2—O4v | 88.18 (6) | N3—C9—C9vi | 110.11 (19) |
N1iii—Cd2—O4v | 91.82 (6) | N3—C9—H9A | 109.6 |
O4iv—Cd2—O4v | 180.000 (1) | C9vi—C9—H9A | 109.6 |
N1—C4—C3 | 119.76 (17) | N3—C9—H9B | 109.6 |
N1—C4—C5 | 117.11 (16) | C9vi—C9—H9B | 109.6 |
C3—C4—C5 | 123.10 (16) | H9A—C9—H9B | 108.2 |
C1—N1—C4 | 119.13 (18) | Cd1—O5—H5A | 110.1 (18) |
C1—N1—Cd2 | 126.43 (14) | Cd1—O5—H5B | 120.5 (18) |
C4—N1—Cd2 | 114.36 (12) | H5A—O5—H5B | 113.5 (15) |
C7—N3—N4 | 110.71 (15) | H6A—O6—H6B | 112.9 (16) |
C5—O1—Cd2—O1iii | −157 (100) | C5—C4—C3—N2 | −176.73 (18) |
C5—O1—Cd2—N1 | −1.30 (15) | N1—C4—C3—C6 | −178.53 (18) |
C5—O1—Cd2—N1iii | 178.70 (15) | C5—C4—C3—C6 | 3.3 (3) |
C5—O1—Cd2—O4iv | 93.36 (16) | Cd2—O1—C5—O2 | −178.99 (18) |
C5—O1—Cd2—O4v | −86.64 (16) | Cd2—O1—C5—C4 | 2.2 (2) |
C3—C4—N1—C1 | −0.3 (3) | N1—C4—C5—O2 | 178.93 (19) |
C5—C4—N1—C1 | 177.97 (18) | C3—C4—C5—O2 | −2.8 (3) |
C3—C4—N1—Cd2 | −177.36 (14) | N1—C4—C5—O1 | −2.2 (3) |
C5—C4—N1—Cd2 | 0.9 (2) | C3—C4—C5—O1 | 176.08 (19) |
O1iii—Cd2—N1—C1 | 3.30 (19) | Cd1—O3—C6—O4 | 1.4 (3) |
O1—Cd2—N1—C1 | −176.70 (19) | Cd1—O3—C6—C3 | 175.13 (11) |
N1iii—Cd2—N1—C1 | −167 (100) | Cd2i—O4—C6—O3 | 170.68 (17) |
O4iv—Cd2—N1—C1 | 103.16 (18) | Cd2i—O4—C6—C3 | −3.0 (4) |
O4v—Cd2—N1—C1 | −76.84 (18) | N2—C3—C6—O3 | −92.6 (2) |
O1iii—Cd2—N1—C4 | −179.92 (13) | C4—C3—C6—O3 | 87.4 (2) |
O1—Cd2—N1—C4 | 0.08 (13) | N2—C3—C6—O4 | 81.6 (2) |
N1iii—Cd2—N1—C4 | 10 (100) | C4—C3—C6—O4 | −98.4 (2) |
O4iv—Cd2—N1—C4 | −80.06 (14) | C4—C3—N2—C2 | −1.4 (3) |
O4v—Cd2—N1—C4 | 99.94 (14) | C6—C3—N2—C2 | 178.59 (19) |
N5ii—Cd1—O3—C6 | −61.20 (15) | C7—N3—N4—C8 | −0.1 (2) |
N5—Cd1—O3—C6 | 118.80 (15) | C9—N3—N4—C8 | −178.81 (18) |
O3ii—Cd1—O3—C6 | 91 (100) | N3—N4—C8—N5 | 0.3 (2) |
O5—Cd1—O3—C6 | −145.18 (15) | C7—N5—C8—N4 | −0.4 (3) |
O5ii—Cd1—O3—C6 | 34.82 (15) | Cd1—N5—C8—N4 | 155.05 (15) |
N5ii—Cd1—N5—C7 | 25 (100) | C3—N2—C2—C1 | 0.3 (3) |
O3—Cd1—N5—C7 | −24.45 (18) | N4—N3—C7—N5 | −0.2 (3) |
O3ii—Cd1—N5—C7 | 155.55 (18) | C9—N3—C7—N5 | 178.42 (19) |
O5—Cd1—N5—C7 | −112.31 (18) | C8—N5—C7—N3 | 0.3 (2) |
O5ii—Cd1—N5—C7 | 67.69 (18) | Cd1—N5—C7—N3 | −157.16 (14) |
N5ii—Cd1—N5—C8 | −127 (100) | C4—N1—C1—C2 | −0.8 (3) |
O3—Cd1—N5—C8 | −175.83 (18) | Cd2—N1—C1—C2 | 175.85 (16) |
O3ii—Cd1—N5—C8 | 4.17 (18) | N2—C2—C1—N1 | 0.8 (4) |
O5—Cd1—N5—C8 | 96.32 (18) | C7—N3—C9—C9vi | 118.3 (3) |
O5ii—Cd1—N5—C8 | −83.68 (18) | N4—N3—C9—C9vi | −63.2 (3) |
N1—C4—C3—N2 | 1.5 (3) |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+1, −z; (iii) −x−1, −y+1, −z+1; (iv) x−1, y, z; (v) −x, −y+1, −z+1; (vi) −x, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H6A···O2 | 0.86 (1) | 1.93 (1) | 2.763 (3) | 164 (3) |
O5—H5A···O4ii | 0.85 (1) | 2.33 (2) | 2.974 (3) | 133 (2) |
O5—H5A···O1vii | 0.85 (1) | 2.38 (2) | 3.109 (2) | 143 (3) |
O5—H5B···N4viii | 0.87 (1) | 2.16 (1) | 2.997 (2) | 162 (2) |
O6—H6B···N2ix | 0.87 (1) | 2.06 (1) | 2.914 (3) | 169 (3) |
Symmetry codes: (ii) −x+1, −y+1, −z; (vii) −x, −y+1, −z; (viii) x, y+1, z; (ix) x, y−1, z. |
Experimental details
(I) | (II) | |
Crystal data | ||
Chemical formula | [Cd2(C6H2N2O4)2(C8H12N6)(H2O)4]·2H2O | [Cd2(C6H2N2O4)2(C6H8N6)(H2O)2]·2H2O |
Mr | 857.32 | 793.24 |
Crystal system, space group | Monoclinic, P21/c | Triclinic, P1 |
Temperature (K) | 293 | 293 |
a, b, c (Å) | 7.6647 (5), 26.6935 (14), 7.5350 (5) | 7.0219 (14), 8.4215 (17), 10.913 (2) |
α, β, γ (°) | 90, 111.787 (7), 90 | 81.75 (3), 84.05 (3), 75.12 (3) |
V (Å3) | 1431.52 (15) | 615.7 (2) |
Z | 2 | 1 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 1.57 | 1.81 |
Crystal size (mm) | 0.20 × 0.15 × 0.15 | 0.20 × 0.20 × 0.20 |
Data collection | ||
Diffractometer | Agilent SuperNova Single Source at offset diffractometer with an Eos detector | Agilent SuperNova Single Source at offset diffractometer with an Eos detector |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2013) | Multi-scan (CrysAlis PRO; Agilent, 2013) |
Tmin, Tmax | 0.744, 0.798 | 0.713, 0.713 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6708, 3077, 2702 | 10451, 4808, 3444 |
Rint | 0.034 | 0.031 |
(sin θ/λ)max (Å−1) | 0.639 | 0.781 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.077, 1.11 | 0.029, 0.070, 0.94 |
No. of reflections | 3077 | 4808 |
No. of parameters | 208 | 205 |
No. of restraints | 6 | 6 |
H-atom treatment | H-atom parameters constrained | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.68, −0.79 | 0.53, −1.08 |
Computer programs: CrysAlis PRO (Agilent, 2013), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).
Cd1—O6 | 2.238 (2) | Cd1—N5 | 2.302 (3) |
Cd1—O4i | 2.247 (2) | Cd1—O5 | 2.347 (2) |
Cd1—O1 | 2.265 (2) | Cd1—N1 | 2.394 (2) |
Symmetry code: (i) x, −y+1/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H12···O5ii | 0.86 | 2.02 | 2.870 (3) | 169.5 |
O7—H11···N4iii | 0.90 | 2.02 | 2.907 (4) | 166.2 |
O6—H6B···O7iv | 0.86 | 1.93 | 2.752 (3) | 159.4 |
O6—H6A···O3v | 0.85 | 1.84 | 2.680 (3) | 170.5 |
O5—H5A···O2vi | 0.85 | 1.81 | 2.632 (3) | 163.8 |
O5—H5B···N2v | 0.86 | 1.95 | 2.797 (3) | 165.9 |
Symmetry codes: (ii) x−1, y, z+1; (iii) −x+1, −y, −z+1; (iv) x+1, y, z; (v) x+1, −y+1/2, z+1/2; (vi) x, −y+1/2, z−1/2. |
Cd1—O3 | 2.3342 (16) | Cd1—O5 | 2.3748 (19) |
Cd1—N5 | 2.2922 (17) | Cd1—O5i | 2.3748 (19) |
Cd1—N5i | 2.2922 (17) | Cd1—O3i | 2.3342 (16) |
Cd2—O1 | 2.2817 (17) | Cd2—O1ii | 2.2817 (17) |
Cd2—N1 | 2.3058 (18) | Cd2—O4iii | 2.3380 (17) |
Cd2—N1ii | 2.3058 (18) | Cd2—O4iv | 2.3380 (17) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x−1, −y+1, −z+1; (iii) x−1, y, z; (iv) −x, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H6A···O2 | 0.860 (9) | 1.925 (13) | 2.763 (3) | 164 (3) |
O5—H5A···O4i | 0.854 (9) | 2.33 (2) | 2.974 (3) | 133 (2) |
O5—H5A···O1v | 0.854 (9) | 2.382 (19) | 3.109 (2) | 143 (3) |
O5—H5B···N4vi | 0.865 (9) | 2.162 (11) | 2.997 (2) | 162 (2) |
O6—H6B···N2vii | 0.867 (9) | 2.058 (12) | 2.914 (3) | 169 (3) |
Symmetry codes: (i) −x+1, −y+1, −z; (v) −x, −y+1, −z; (vi) x, y+1, z; (vii) x, y−1, z. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register