Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Due to their versatile coordination modes and metal-binding conformations, triazolyl ligands can provide a wide range of possibilities for the construction of supra­molecular structures. Seven mononuclear transition metal complexes with different structural forms, namely aquabis­[3-(4-methyl­phenyl)-5-(pyridin-2-yl)-1H-1,2,4-triazolato-κ2N1,N5]zinc(II), [Zn(C14H11N4)2(H2O)], (I), bis­[5-(4-methyl­phenyl)-3-(pyridin-2-yl)-1H-1,2,4-triazole-κ2N3,N4]bis(nitrato-κO)zinc(II), [Zn(NO3)2(C14H12N4)2], (II), bis(methanol-κO)bis­[3-(4-methyl­phenyl)-5-(pyridin-2-yl)-1H-1,2,4-triazolato-κ2N1,N5]zinc(II), [Zn(C14H11N4)2(CH4O)2], (III), di­io­dido­bis­[5-(4-methyl­phenyl)-3-(pyridin-2-yl)-1H-1,2,4-triazole-κ2N3,N4]cadmium(II), [CdI2(C14H12N4)2], (IV), bis­[5-(4-methyl­phenyl)-3-(pyridin-2-yl)-1H-1,2,4-triazole-κ2N3,N4]bis(nitrato-κO)cadmium(II), [Cd(NO3)2(C14H12N4)2], (V), aquabis­[3-(4-methyl­phenyl)-5-(pyridin-2-yl)-1H-1,2,4-tria­zol­ato-κ2N1,N5]co­balt(II), [Co(C14H11N4)2(H2O)], (VI), and diaquabis­[3-(4-methyl­phenyl)-5-(pyridin-2-yl)-1H-1,2,4-triazolato-κ2N1,N5]nickel(II), [Ni(C14H11N4)2(H2O)2], (VII), have been prepared by the reaction of transition metal salts (ZnII, CdII, CoII and NiII) with 3-(4-methyl­phenyl)-5-(pyridin-2-yl)-1H-1,2,4-triazole (pymphtzH) under either ambient or hydro­thermal conditions. These compounds have been characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction. All the complexes form three-dimensional supra­molecular structures through hydrogen bonds or through π–π stacking inter­actions between the centroids of the pyridyl or arene rings. The pymphtzH and pymphtz entities act as bidentate coordinating ligands in each structure. Moreover, all the pyridyl N atoms are coordinated to metal atoms (Zn, Cd, Co or Ni). The N atom in the 4-position of the triazole group is coordinated to the Zn and Cd atoms in the crystal structures of (II), (IV) and (V), while the N atom in the 1-position of the triazolate group is coordinated to the Zn, Co and Ni atoms in (I), (III), (VI) and (VII).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229617004697/lf3051sup1.cif
Contains datablocks I, II, III, IV, V, VI, VII, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617004697/lf3051Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617004697/lf3051IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617004697/lf3051IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617004697/lf3051IVsup5.hkl
Contains datablock IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617004697/lf3051Vsup6.hkl
Contains datablock V

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617004697/lf3051VIsup7.hkl
Contains datablock VI

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617004697/lf3051VIIsup8.hkl
Contains datablock VII

CCDC references: 1488086; 1488087; 1488088; 1488089; 1488090; 1488092; 1488093

Computing details top

For all compounds, data collection: CrystalStructure (Rigaku/MSC, 2006); cell refinement: CrystalStructure (Rigaku/MSC, 2006); data reduction: CrystalStructure (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXL2014/7 (Sheldrick, 2015); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: SHELXL2014/7 (Sheldrick, 2015); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015).

(I) Aquabis[5-(4-methylphenyl)-3-(pyridin-2-yl)-1H-1,2,4-triazolato-κ2N1,N5]zinc(II) top
Crystal data top
[Zn(C14H11N4)2(H2O)]F(000) = 1144
Mr = 553.94Dx = 1.473 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 28.730 (6) ÅCell parameters from 11889 reflections
b = 7.5129 (15) Åθ = 3.1–25.0°
c = 12.476 (3) ŵ = 1.02 mm1
β = 111.97 (3)°T = 293 K
V = 2497.3 (11) Å3Block, colourless
Z = 40.30 × 0.27 × 0.25 mm
Data collection top
Rigaku MM007-HF CCD (Saturn 724+)
diffractometer
1422 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.098
ω scans at fixed χ = 45°θmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
ABSCOR
h = 3434
Tmin = 0.743, Tmax = 0.774k = 88
9211 measured reflectionsl = 1414
2194 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0716P)2]
where P = (Fo2 + 2Fc2)/3
2194 reflections(Δ/σ)max < 0.001
177 parametersΔρmax = 0.42 e Å3
1 restraintΔρmin = 0.63 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. SHELXL-2014/7 (Sheldrick, 2015)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.38474 (10)0.75000.0521 (3)
N10.03174 (14)0.2829 (5)0.9088 (3)0.0512 (10)
N20.08020 (14)0.2435 (5)0.9822 (3)0.0540 (10)
N30.06436 (14)0.3620 (5)0.6965 (3)0.0485 (9)
N40.02756 (14)0.2102 (5)1.0789 (3)0.0487 (10)
O1W0.00000.6501 (6)0.75000.0698 (14)
H1WA0.0090 (15)0.721 (4)0.788 (3)0.105*
C10.00230 (17)0.2630 (6)0.9692 (4)0.0464 (11)
C20.07519 (17)0.2014 (6)1.0818 (4)0.0468 (11)
C30.05145 (17)0.2975 (6)0.5873 (4)0.0456 (11)
C40.08626 (18)0.2672 (6)0.5381 (4)0.0564 (13)
H40.07660.22290.46330.068*
C50.13637 (19)0.3045 (7)0.6031 (4)0.0660 (14)
H50.16080.28450.57240.079*
C60.14941 (19)0.3710 (7)0.7130 (4)0.0624 (13)
H60.18260.39950.75710.075*
C70.11251 (19)0.3946 (6)0.7561 (4)0.0572 (13)
H70.12170.43580.83150.069*
C80.11915 (17)0.1484 (6)1.1852 (4)0.0478 (11)
C90.11328 (18)0.0706 (6)1.2800 (4)0.0524 (12)
H90.08120.05091.27930.063*
C100.15490 (19)0.0218 (6)1.3759 (4)0.0573 (13)
H100.15010.03251.43810.069*
C110.2029 (2)0.0514 (6)1.3816 (4)0.0569 (13)
C120.20898 (19)0.1295 (7)1.2867 (4)0.0629 (13)
H120.24110.15031.28810.076*
C130.16755 (19)0.1769 (6)1.1899 (4)0.0568 (13)
H130.17230.22861.12710.068*
C140.2483 (2)0.0004 (7)1.4868 (4)0.0767 (17)
H14A0.23750.05161.54390.115*
H14B0.26800.10461.51830.115*
H14C0.26820.08421.46500.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0514 (6)0.0692 (5)0.0403 (5)0.0000.0225 (4)0.000
N10.046 (3)0.070 (2)0.043 (2)0.000 (2)0.022 (2)0.0003 (18)
N20.046 (3)0.075 (3)0.046 (2)0.004 (2)0.022 (2)0.0030 (19)
N30.049 (3)0.057 (2)0.038 (2)0.0004 (19)0.0139 (18)0.0031 (17)
N40.049 (3)0.060 (2)0.042 (2)0.0015 (18)0.0230 (19)0.0022 (17)
O1W0.106 (4)0.062 (3)0.065 (3)0.0000.060 (3)0.000
C10.045 (3)0.057 (3)0.043 (3)0.003 (2)0.022 (2)0.006 (2)
C20.047 (3)0.057 (3)0.041 (3)0.000 (2)0.021 (2)0.004 (2)
C30.046 (3)0.050 (3)0.043 (3)0.002 (2)0.020 (2)0.003 (2)
C40.047 (3)0.079 (3)0.048 (3)0.001 (3)0.023 (2)0.007 (2)
C50.049 (3)0.089 (4)0.070 (4)0.005 (3)0.034 (3)0.001 (3)
C60.047 (3)0.085 (4)0.053 (3)0.003 (3)0.015 (3)0.003 (3)
C70.058 (4)0.074 (3)0.039 (3)0.001 (3)0.019 (3)0.003 (2)
C80.050 (3)0.057 (3)0.041 (3)0.002 (2)0.022 (2)0.003 (2)
C90.047 (3)0.064 (3)0.050 (3)0.001 (2)0.022 (2)0.001 (2)
C100.060 (4)0.064 (3)0.047 (3)0.004 (3)0.018 (3)0.003 (2)
C110.056 (3)0.058 (3)0.051 (3)0.006 (2)0.013 (3)0.002 (2)
C120.044 (3)0.088 (4)0.059 (3)0.003 (3)0.021 (3)0.002 (3)
C130.059 (3)0.070 (3)0.046 (3)0.002 (3)0.025 (3)0.001 (2)
C140.070 (4)0.078 (4)0.069 (4)0.006 (3)0.010 (3)0.009 (3)
Geometric parameters (Å, º) top
Zn1—O1W1.994 (5)C5—C61.373 (6)
Zn1—N11.997 (4)C5—H50.9300
Zn1—N1i1.997 (4)C6—C71.368 (7)
Zn1—N3i2.195 (4)C6—H60.9300
Zn1—N32.195 (4)C7—H70.9300
N1—C11.335 (5)C8—C91.385 (6)
N1—N21.382 (5)C8—C131.386 (6)
N2—C21.341 (5)C9—C101.388 (6)
N3—C71.325 (6)C9—H90.9300
N3—C31.360 (5)C10—C111.372 (7)
N4—C11.347 (5)C10—H100.9300
N4—C21.357 (6)C11—C121.390 (7)
O1W—H1WA0.8200 (11)C11—C141.514 (6)
C1—C3i1.461 (6)C12—C131.388 (6)
C2—C81.483 (6)C12—H120.9300
C3—C41.374 (6)C13—H130.9300
C3—C1i1.461 (6)C14—H14A0.9600
C4—C51.391 (6)C14—H14B0.9600
C4—H40.9300C14—H14C0.9600
O1W—Zn1—N1112.52 (11)C6—C5—H5120.3
O1W—Zn1—N1i112.52 (11)C4—C5—H5120.3
N1—Zn1—N1i135.0 (2)C7—C6—C5118.5 (5)
O1W—Zn1—N3i94.47 (9)C7—C6—H6120.7
N1—Zn1—N3i78.01 (15)C5—C6—H6120.7
N1i—Zn1—N3i98.51 (14)N3—C7—C6123.7 (4)
O1W—Zn1—N394.47 (9)N3—C7—H7118.1
N1—Zn1—N398.51 (14)C6—C7—H7118.1
N1i—Zn1—N378.02 (14)C9—C8—C13118.0 (4)
N3i—Zn1—N3171.06 (19)C9—C8—C2121.3 (4)
C1—N1—N2107.2 (3)C13—C8—C2120.6 (4)
C1—N1—Zn1116.9 (3)C8—C9—C10120.5 (5)
N2—N1—Zn1135.4 (3)C8—C9—H9119.8
C2—N2—N1103.5 (4)C10—C9—H9119.8
C7—N3—C3117.7 (4)C11—C10—C9121.8 (5)
C7—N3—Zn1129.5 (3)C11—C10—H10119.1
C3—N3—Zn1112.8 (3)C9—C10—H10119.1
C1—N4—C2101.3 (4)C10—C11—C12118.0 (4)
Zn1—O1W—H1WA131 (3)C10—C11—C14121.8 (5)
N1—C1—N4113.1 (4)C12—C11—C14120.2 (5)
N1—C1—C3i119.1 (4)C13—C12—C11120.6 (5)
N4—C1—C3i127.8 (4)C13—C12—H12119.7
N2—C2—N4114.9 (4)C11—C12—H12119.7
N2—C2—C8121.2 (4)C8—C13—C12121.2 (4)
N4—C2—C8123.9 (4)C8—C13—H13119.4
N3—C3—C4122.3 (4)C12—C13—H13119.4
N3—C3—C1i112.9 (4)C11—C14—H14A109.5
C4—C3—C1i124.7 (4)C11—C14—H14B109.5
C3—C4—C5118.3 (4)H14A—C14—H14B109.5
C3—C4—H4120.9C11—C14—H14C109.5
C5—C4—H4120.9H14A—C14—H14C109.5
C6—C5—C4119.4 (5)H14B—C14—H14C109.5
C1—N1—N2—C20.4 (5)C4—C5—C6—C71.5 (8)
Zn1—N1—N2—C2171.6 (3)C3—N3—C7—C61.6 (7)
N2—N1—C1—N40.8 (5)Zn1—N3—C7—C6178.5 (4)
Zn1—N1—C1—N4173.9 (3)C5—C6—C7—N32.2 (8)
N2—N1—C1—C3i179.6 (4)N2—C2—C8—C9166.7 (4)
Zn1—N1—C1—C3i6.5 (5)N4—C2—C8—C912.8 (7)
C2—N4—C1—N10.8 (5)N2—C2—C8—C1313.8 (6)
C2—N4—C1—C3i179.7 (4)N4—C2—C8—C13166.7 (4)
N1—N2—C2—N40.0 (5)C13—C8—C9—C100.5 (7)
N1—N2—C2—C8179.5 (4)C2—C8—C9—C10179.9 (4)
C1—N4—C2—N20.5 (5)C8—C9—C10—C111.3 (7)
C1—N4—C2—C8180.0 (4)C9—C10—C11—C121.2 (7)
C7—N3—C3—C40.5 (6)C9—C10—C11—C14179.2 (4)
Zn1—N3—C3—C4177.8 (3)C10—C11—C12—C130.4 (7)
C7—N3—C3—C1i178.8 (4)C14—C11—C12—C13179.9 (4)
Zn1—N3—C3—C1i1.4 (4)C9—C8—C13—C120.2 (7)
N3—C3—C4—C50.1 (7)C2—C8—C13—C12179.3 (4)
C1i—C3—C4—C5179.2 (4)C11—C12—C13—C80.3 (7)
C3—C4—C5—C60.5 (7)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···N4ii0.82 (1)1.99 (2)2.748 (4)153 (4)
Symmetry code: (ii) x, y+1, z+2.
(II) Bis[5-(4-methylphenyl)-3-(pyridin-2-yl)-1H-1,2,4-triazole-κ2N3,N4]bis(nitrato-κO)zinc(II) top
Crystal data top
[Zn(NO3)2(C14H12N4)2]F(000) = 1360
Mr = 661.94Dx = 1.574 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 16.869 (3) ÅCell parameters from 12787 reflections
b = 12.488 (3) Åθ = 3.1–25.0°
c = 14.626 (3) ŵ = 0.94 mm1
β = 114.98 (3)°T = 293 K
V = 2792.9 (11) Å3Block, colourless
Z = 40.29 × 0.25 × 0.23 mm
Data collection top
Rigaku MM007-HF CCD (Saturn 724+)
diffractometer
2247 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.031
ω scans at fixed χ = 45°θmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
ABSCOR
h = 2019
Tmin = 0.761, Tmax = 0.805k = 1414
10060 measured reflectionsl = 1517
2451 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.041P)2 + 1.7059P]
where P = (Fo2 + 2Fc2)/3
2451 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.26 e Å3
1 restraintΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. SHELXL-2014/7 (Sheldrick, 2015)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.88204 (2)0.75000.03176 (12)
N10.61243 (10)1.15005 (13)0.66917 (12)0.0386 (4)
N20.53227 (10)1.17340 (13)0.59492 (12)0.0378 (4)
H20.5261 (14)1.2282 (12)0.5558 (14)0.045*
N30.63825 (10)0.89979 (12)0.80187 (11)0.0314 (3)
N40.51444 (9)1.02035 (12)0.65421 (11)0.0298 (3)
N50.52104 (10)0.69679 (12)0.62964 (12)0.0362 (4)
O10.47666 (9)0.78093 (10)0.62533 (10)0.0403 (3)
O20.57618 (11)0.66514 (14)0.71065 (12)0.0625 (5)
O30.50665 (10)0.65091 (12)0.54813 (11)0.0464 (3)
C10.59807 (11)1.05699 (14)0.70195 (13)0.0306 (4)
C20.66656 (11)0.99222 (14)0.77859 (13)0.0319 (4)
C30.75421 (12)1.02048 (17)0.81933 (15)0.0404 (5)
H3A0.77181.08510.80210.049*
C40.81500 (12)0.95106 (18)0.88586 (15)0.0442 (5)
H40.87400.96930.91610.053*
C50.78687 (13)0.85418 (18)0.90685 (16)0.0445 (5)
H50.82680.80470.94910.053*
C60.69831 (12)0.83199 (16)0.86391 (15)0.0379 (4)
H60.67960.76700.87880.046*
C70.47423 (12)1.09556 (14)0.58526 (13)0.0312 (4)
C80.38316 (12)1.09571 (15)0.51027 (14)0.0337 (4)
C90.34081 (13)1.19056 (17)0.46581 (17)0.0469 (5)
H90.37121.25510.48140.056*
C100.25363 (13)1.18846 (19)0.39845 (18)0.0529 (6)
H100.22611.25210.36890.063*
C110.20634 (13)1.09440 (18)0.37388 (16)0.0454 (5)
C120.25005 (13)1.00015 (18)0.41521 (15)0.0442 (5)
H120.22010.93550.39760.053*
C130.33736 (12)1.00033 (16)0.48215 (14)0.0378 (4)
H130.36550.93600.50850.045*
C140.10968 (15)1.0948 (2)0.3065 (2)0.0658 (7)
H14A0.07761.08520.34670.099*
H14B0.09611.03750.25850.099*
H14C0.09381.16190.27140.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02389 (17)0.03534 (19)0.03164 (18)0.0000.00743 (13)0.000
N10.0295 (8)0.0411 (9)0.0378 (9)0.0020 (7)0.0070 (7)0.0059 (7)
N20.0311 (8)0.0387 (9)0.0373 (9)0.0002 (7)0.0084 (7)0.0096 (7)
N30.0251 (7)0.0358 (8)0.0311 (8)0.0037 (6)0.0098 (7)0.0026 (6)
N40.0251 (7)0.0341 (8)0.0287 (8)0.0013 (6)0.0099 (6)0.0024 (6)
N50.0324 (8)0.0338 (8)0.0380 (9)0.0018 (7)0.0107 (7)0.0016 (7)
O10.0390 (7)0.0374 (7)0.0385 (7)0.0096 (6)0.0104 (6)0.0019 (6)
O20.0639 (10)0.0598 (10)0.0432 (9)0.0252 (8)0.0025 (8)0.0055 (8)
O30.0497 (8)0.0418 (8)0.0433 (8)0.0016 (6)0.0154 (7)0.0107 (7)
C10.0276 (9)0.0348 (10)0.0287 (9)0.0007 (7)0.0113 (8)0.0002 (7)
C20.0277 (9)0.0370 (10)0.0290 (9)0.0018 (7)0.0100 (8)0.0015 (8)
C30.0291 (9)0.0485 (12)0.0402 (11)0.0037 (8)0.0113 (9)0.0022 (9)
C40.0241 (9)0.0617 (14)0.0410 (11)0.0019 (9)0.0081 (9)0.0001 (10)
C50.0326 (10)0.0567 (13)0.0392 (11)0.0141 (9)0.0104 (9)0.0060 (10)
C60.0322 (10)0.0391 (10)0.0385 (10)0.0082 (8)0.0110 (9)0.0067 (8)
C70.0281 (9)0.0350 (10)0.0298 (9)0.0026 (7)0.0115 (8)0.0010 (7)
C80.0285 (9)0.0408 (10)0.0303 (9)0.0040 (8)0.0109 (8)0.0036 (8)
C90.0309 (10)0.0425 (12)0.0587 (14)0.0020 (9)0.0105 (10)0.0088 (10)
C100.0338 (11)0.0496 (13)0.0627 (15)0.0096 (9)0.0083 (11)0.0143 (11)
C110.0302 (10)0.0603 (14)0.0396 (11)0.0019 (9)0.0088 (9)0.0015 (10)
C120.0382 (11)0.0483 (12)0.0375 (11)0.0083 (9)0.0077 (9)0.0026 (9)
C130.0373 (10)0.0400 (11)0.0308 (10)0.0018 (8)0.0091 (9)0.0028 (8)
C140.0329 (12)0.0810 (18)0.0656 (17)0.0003 (11)0.0033 (12)0.0021 (13)
Geometric parameters (Å, º) top
Zn1—O12.1138 (13)C4—C51.381 (3)
Zn1—O1i2.1138 (13)C4—H40.9300
Zn1—N3i2.1376 (16)C5—C61.382 (3)
Zn1—N32.1376 (16)C5—H50.9300
Zn1—N4i2.3007 (15)C6—H60.9300
Zn1—N42.3007 (15)C7—C81.463 (3)
N1—C11.318 (2)C8—C131.384 (3)
N1—N21.361 (2)C8—C91.394 (3)
N2—C71.344 (2)C9—C101.382 (3)
N2—H20.870 (10)C9—H90.9300
N3—C61.338 (2)C10—C111.380 (3)
N3—C21.347 (2)C10—H100.9300
N4—C71.335 (2)C11—C121.385 (3)
N4—C11.362 (2)C11—C141.508 (3)
N5—O21.223 (2)C12—C131.382 (3)
N5—O31.251 (2)C12—H120.9300
N5—O11.276 (2)C13—H130.9300
C1—C21.467 (3)C14—H14A0.9600
C2—C31.386 (3)C14—H14B0.9600
C3—C41.381 (3)C14—H14C0.9600
C3—H3A0.9300
O1—Zn1—O1i106.64 (8)C2—C3—H3A120.6
O1—Zn1—N3i88.73 (6)C5—C4—C3118.95 (18)
O1i—Zn1—N3i98.39 (6)C5—C4—H4120.5
O1—Zn1—N398.39 (6)C3—C4—H4120.5
O1i—Zn1—N388.73 (6)C4—C5—C6118.79 (19)
N3i—Zn1—N3168.10 (8)C4—C5—H5120.6
O1—Zn1—N4i160.86 (5)C6—C5—H5120.6
O1i—Zn1—N4i87.26 (5)N3—C6—C5123.02 (19)
N3i—Zn1—N4i76.00 (6)N3—C6—H6118.5
N3—Zn1—N4i94.95 (6)C5—C6—H6118.5
O1—Zn1—N487.26 (5)N4—C7—N2108.32 (16)
O1i—Zn1—N4160.86 (5)N4—C7—C8127.23 (17)
N3i—Zn1—N494.95 (6)N2—C7—C8124.45 (16)
N3—Zn1—N476.00 (6)C13—C8—C9118.73 (18)
N4i—Zn1—N482.70 (7)C13—C8—C7119.95 (17)
C1—N1—N2101.88 (15)C9—C8—C7121.32 (18)
C7—N2—N1111.29 (15)C10—C9—C8119.8 (2)
C7—N2—H2128.3 (15)C10—C9—H9120.1
N1—N2—H2119.8 (15)C8—C9—H9120.1
C6—N3—C2117.78 (16)C11—C10—C9121.7 (2)
C6—N3—Zn1125.12 (13)C11—C10—H10119.1
C2—N3—Zn1116.70 (11)C9—C10—H10119.1
C7—N4—C1103.70 (15)C10—C11—C12117.85 (19)
C7—N4—Zn1146.90 (12)C10—C11—C14121.0 (2)
C1—N4—Zn1107.04 (11)C12—C11—C14121.2 (2)
O2—N5—O3122.53 (16)C13—C12—C11121.3 (2)
O2—N5—O1120.29 (16)C13—C12—H12119.4
O3—N5—O1117.16 (15)C11—C12—H12119.4
N5—O1—Zn1123.89 (11)C12—C13—C8120.40 (19)
N1—C1—N4114.79 (16)C12—C13—H13119.8
N1—C1—C2123.90 (16)C8—C13—H13119.8
N4—C1—C2121.17 (16)C11—C14—H14A109.5
N3—C2—C3122.50 (17)C11—C14—H14B109.5
N3—C2—C1114.64 (15)H14A—C14—H14B109.5
C3—C2—C1122.75 (17)C11—C14—H14C109.5
C4—C3—C2118.88 (19)H14A—C14—H14C109.5
C4—C3—H3A120.6H14B—C14—H14C109.5
C1—N1—N2—C70.5 (2)Zn1—N3—C6—C5170.49 (15)
O2—N5—O1—Zn16.3 (2)C4—C5—C6—N30.7 (3)
O3—N5—O1—Zn1172.31 (12)C1—N4—C7—N21.39 (19)
N2—N1—C1—N40.5 (2)Zn1—N4—C7—N2156.45 (17)
N2—N1—C1—C2175.30 (17)C1—N4—C7—C8178.10 (17)
C7—N4—C1—N11.2 (2)Zn1—N4—C7—C824.1 (3)
Zn1—N4—C1—N1166.37 (13)N1—N2—C7—N41.2 (2)
C7—N4—C1—C2174.71 (16)N1—N2—C7—C8178.28 (17)
Zn1—N4—C1—C217.74 (19)N4—C7—C8—C1321.6 (3)
C6—N3—C2—C32.5 (3)N2—C7—C8—C13157.78 (18)
Zn1—N3—C2—C3170.59 (14)N4—C7—C8—C9158.42 (19)
C6—N3—C2—C1173.69 (16)N2—C7—C8—C922.2 (3)
Zn1—N3—C2—C113.21 (19)C13—C8—C9—C102.8 (3)
N1—C1—C2—N3179.79 (17)C7—C8—C9—C10177.2 (2)
N4—C1—C2—N34.7 (2)C8—C9—C10—C110.4 (4)
N1—C1—C2—C34.0 (3)C9—C10—C11—C123.1 (4)
N4—C1—C2—C3171.49 (17)C9—C10—C11—C14175.3 (2)
N3—C2—C3—C40.4 (3)C10—C11—C12—C132.6 (3)
C1—C2—C3—C4175.49 (18)C14—C11—C12—C13175.8 (2)
C2—C3—C4—C52.3 (3)C11—C12—C13—C80.6 (3)
C3—C4—C5—C62.8 (3)C9—C8—C13—C123.3 (3)
C2—N3—C6—C52.0 (3)C7—C8—C13—C12176.73 (18)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N5ii0.87 (1)2.65 (1)3.425 (2)148 (2)
N2—H2···O1ii0.87 (1)2.63 (2)3.212 (2)125 (2)
N2—H2···O3ii0.87 (1)2.05 (1)2.909 (2)172 (2)
C6—H6···O1i0.932.623.088 (2)112
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1, y+2, z+1.
(III) Bis(methanol-κO)bis[5-(4-methylphenyl)-3-(pyridin-2-yl)-1H-1,2,4-triazolato-κ2N1,N5]zinc(II) top
Crystal data top
[Zn(C14H11N4)2(CH4O)2]F(000) = 624
Mr = 599.99Dx = 1.377 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.297 (3) ÅCell parameters from 14234 reflections
b = 12.663 (3) Åθ = 3.2–25.0°
c = 9.990 (2) ŵ = 0.89 mm1
β = 111.58 (3)°T = 293 K
V = 1446.6 (6) Å3Block, colourless
Z = 20.31 × 0.28 × 0.26 mm
Data collection top
Rigaku MM007-HF CCD (Saturn 724+)
diffractometer
1625 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.083
ω scans at fixed χ = 45°θmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan
ABSCOR
h = 1414
Tmin = 0.759, Tmax = 0.793k = 1514
11056 measured reflectionsl = 1111
2526 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0582P)2]
where P = (Fo2 + 2Fc2)/3
2526 reflections(Δ/σ)max = 0.003
197 parametersΔρmax = 0.35 e Å3
2 restraintsΔρmin = 0.69 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. SHELXL-2014/7 (Sheldrick, 2015)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn11.00000.00000.50000.0377 (2)
N10.9038 (2)0.0748 (2)0.3088 (3)0.0371 (7)
N20.8097 (2)0.0535 (2)0.1852 (3)0.0380 (7)
N31.0890 (2)0.1492 (2)0.5249 (3)0.0350 (7)
N40.8768 (2)0.2179 (2)0.1694 (3)0.0336 (7)
O10.8864 (2)0.07444 (18)0.6045 (3)0.0446 (6)
H10.885 (3)0.1387 (4)0.613 (4)0.067*
C10.9404 (3)0.1715 (2)0.2957 (3)0.0327 (8)
C21.0392 (3)0.2174 (2)0.4146 (3)0.0328 (8)
C31.0791 (3)0.3191 (3)0.4186 (4)0.0450 (9)
H31.04400.36500.34210.054*
C41.1724 (3)0.3520 (3)0.5380 (4)0.0544 (11)
H41.20030.42080.54300.065*
C51.2239 (3)0.2828 (3)0.6498 (4)0.0499 (10)
H51.28740.30360.73040.060*
C61.1793 (3)0.1819 (3)0.6394 (4)0.0425 (9)
H61.21340.13500.71490.051*
C70.7965 (3)0.1408 (2)0.1050 (3)0.0337 (8)
C80.7024 (3)0.1505 (3)0.0373 (3)0.0380 (8)
C90.6950 (3)0.2383 (3)0.1237 (4)0.0458 (9)
H90.74820.29330.08950.055*
C100.6090 (3)0.2449 (3)0.2610 (4)0.0548 (11)
H100.60510.30470.31660.066*
C110.5295 (3)0.1644 (4)0.3161 (4)0.0560 (11)
C120.5339 (3)0.0787 (4)0.2280 (4)0.0600 (11)
H20.47960.02450.26190.072*
C130.6182 (3)0.0723 (3)0.0896 (4)0.0501 (10)
H130.61810.01490.03160.060*
C140.4431 (4)0.1677 (4)0.4705 (4)0.0841 (16)
H14A0.43050.23960.50280.126*
H14B0.37030.13700.47560.126*
H14C0.47390.12840.53080.126*
C150.8322 (10)0.0210 (7)0.6900 (13)0.064 (2)0.637 (15)
H15A0.80490.04690.64870.096*0.637 (15)
H15B0.76730.06210.69240.096*0.637 (15)
H15C0.88800.01220.78610.096*0.637 (15)
C15B0.7833 (12)0.0312 (15)0.616 (2)0.064 (2)0.363 (15)
H15D0.71740.04630.52980.096*0.363 (15)
H15E0.77100.06200.69710.096*0.363 (15)
H15F0.79190.04390.62890.096*0.363 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0479 (4)0.0262 (3)0.0298 (3)0.0032 (3)0.0033 (2)0.0033 (2)
N10.0448 (16)0.0292 (16)0.0309 (16)0.0026 (13)0.0065 (13)0.0028 (12)
N20.0452 (17)0.0313 (16)0.0285 (15)0.0032 (13)0.0031 (13)0.0012 (13)
N30.0407 (16)0.0340 (16)0.0262 (15)0.0002 (13)0.0074 (12)0.0025 (12)
N40.0400 (16)0.0282 (15)0.0266 (15)0.0024 (13)0.0052 (12)0.0042 (12)
O10.0561 (15)0.0317 (14)0.0464 (15)0.0001 (13)0.0193 (12)0.0029 (12)
C10.0406 (19)0.0262 (18)0.0290 (18)0.0006 (15)0.0102 (15)0.0006 (15)
C20.0371 (18)0.0294 (18)0.0286 (18)0.0020 (15)0.0084 (15)0.0000 (15)
C30.058 (2)0.033 (2)0.036 (2)0.0034 (18)0.0081 (18)0.0067 (16)
C40.070 (3)0.038 (2)0.046 (2)0.019 (2)0.010 (2)0.0013 (18)
C50.055 (2)0.045 (2)0.034 (2)0.0153 (19)0.0022 (17)0.0003 (18)
C60.051 (2)0.041 (2)0.0290 (19)0.0002 (18)0.0067 (17)0.0025 (16)
C70.0393 (19)0.0289 (19)0.0295 (18)0.0036 (16)0.0087 (15)0.0017 (15)
C80.0382 (19)0.041 (2)0.0307 (19)0.0015 (17)0.0079 (15)0.0037 (16)
C90.047 (2)0.050 (2)0.037 (2)0.0026 (18)0.0107 (17)0.0053 (18)
C100.048 (2)0.075 (3)0.035 (2)0.004 (2)0.0082 (18)0.016 (2)
C110.045 (2)0.085 (3)0.031 (2)0.008 (2)0.0052 (17)0.002 (2)
C120.047 (2)0.071 (3)0.049 (3)0.012 (2)0.0015 (19)0.015 (2)
C130.047 (2)0.049 (2)0.045 (2)0.0021 (19)0.0059 (18)0.0008 (19)
C140.062 (3)0.136 (5)0.035 (2)0.004 (3)0.005 (2)0.000 (3)
C150.063 (6)0.056 (4)0.081 (7)0.012 (5)0.037 (5)0.008 (5)
C15B0.063 (6)0.056 (4)0.081 (7)0.012 (5)0.037 (5)0.008 (5)
Geometric parameters (Å, º) top
Zn1—N1i2.070 (3)C5—H50.9300
Zn1—N12.070 (3)C6—H60.9300
Zn1—N3i2.151 (3)C7—C81.472 (4)
Zn1—N32.151 (3)C8—C131.389 (5)
Zn1—O12.236 (2)C8—C91.390 (5)
Zn1—O1i2.236 (2)C9—C101.393 (5)
N1—C11.328 (4)C9—H90.9300
N1—N21.373 (3)C10—C111.379 (5)
N2—C71.340 (4)C10—H100.9300
N3—C61.333 (4)C11—C121.386 (6)
N3—C21.356 (4)C11—C141.518 (5)
N4—C11.350 (4)C12—C131.392 (5)
N4—C71.368 (4)C12—H20.9300
O1—C15B1.425 (8)C13—H130.9300
O1—C151.432 (6)C14—H14A0.9600
O1—H10.8200 (11)C14—H14B0.9600
C1—C21.471 (4)C14—H14C0.9600
C2—C31.374 (4)C15—H15A0.9600
C3—C41.381 (5)C15—H15B0.9600
C3—H30.9300C15—H15C0.9600
C4—C51.377 (5)C15B—H15D0.9600
C4—H40.9300C15B—H15E0.9600
C5—C61.379 (5)C15B—H15F0.9600
N1i—Zn1—N1180.00 (15)N3—C6—C5122.3 (3)
N1i—Zn1—N3i78.40 (10)N3—C6—H6118.8
N1—Zn1—N3i101.60 (10)C5—C6—H6118.8
N1i—Zn1—N3101.60 (10)N2—C7—N4113.6 (3)
N1—Zn1—N378.40 (10)N2—C7—C8121.7 (3)
N3i—Zn1—N3180.0N4—C7—C8124.7 (3)
N1i—Zn1—O190.31 (10)C13—C8—C9117.9 (3)
N1—Zn1—O189.69 (10)C13—C8—C7121.1 (3)
N3i—Zn1—O192.61 (10)C9—C8—C7121.0 (3)
N3—Zn1—O187.39 (10)C8—C9—C10120.8 (4)
N1i—Zn1—O1i89.69 (10)C8—C9—H9119.6
N1—Zn1—O1i90.31 (10)C10—C9—H9119.6
N3i—Zn1—O1i87.39 (10)C11—C10—C9121.3 (4)
N3—Zn1—O1i92.61 (10)C11—C10—H10119.3
O1—Zn1—O1i180.0C9—C10—H10119.3
C1—N1—N2107.3 (3)C10—C11—C12117.9 (3)
C1—N1—Zn1114.4 (2)C10—C11—C14120.9 (4)
N2—N1—Zn1138.3 (2)C12—C11—C14121.1 (4)
C7—N2—N1104.6 (2)C11—C12—C13121.2 (4)
C6—N3—C2118.9 (3)C11—C12—H2119.4
C6—N3—Zn1126.8 (2)C13—C12—H2119.4
C2—N3—Zn1114.0 (2)C8—C13—C12120.8 (4)
C1—N4—C7101.5 (3)C8—C13—H13119.6
C15B—O1—Zn1127.1 (8)C12—C13—H13119.6
C15—O1—Zn1126.0 (4)C11—C14—H14A109.5
C15B—O1—H1108 (3)C11—C14—H14B109.5
C15—O1—H1112 (3)H14A—C14—H14B109.5
Zn1—O1—H1121 (3)C11—C14—H14C109.5
N1—C1—N4113.1 (3)H14A—C14—H14C109.5
N1—C1—C2119.6 (3)H14B—C14—H14C109.5
N4—C1—C2127.2 (3)O1—C15—H15A109.5
N3—C2—C3121.6 (3)O1—C15—H15B109.5
N3—C2—C1113.3 (3)H15A—C15—H15B109.5
C3—C2—C1125.1 (3)O1—C15—H15C109.5
C2—C3—C4118.9 (3)H15A—C15—H15C109.5
C2—C3—H3120.6H15B—C15—H15C109.5
C4—C3—H3120.6O1—C15B—H15D109.5
C5—C4—C3119.8 (3)O1—C15B—H15E109.5
C5—C4—H4120.1H15D—C15B—H15E109.5
C3—C4—H4120.1O1—C15B—H15F109.5
C4—C5—C6118.5 (3)H15D—C15B—H15F109.5
C4—C5—H5120.7H15E—C15B—H15F109.5
C6—C5—H5120.7
C1—N1—N2—C70.1 (4)Zn1—N3—C6—C5174.2 (3)
Zn1—N1—N2—C7179.3 (3)C4—C5—C6—N30.5 (6)
N2—N1—C1—N40.2 (4)N1—N2—C7—N40.0 (4)
Zn1—N1—C1—N4179.4 (2)N1—N2—C7—C8179.1 (3)
N2—N1—C1—C2178.3 (3)C1—N4—C7—N20.1 (4)
Zn1—N1—C1—C22.1 (4)C1—N4—C7—C8178.9 (3)
C7—N4—C1—N10.2 (4)N2—C7—C8—C134.8 (5)
C7—N4—C1—C2178.2 (3)N4—C7—C8—C13174.2 (3)
C6—N3—C2—C30.3 (5)N2—C7—C8—C9175.2 (3)
Zn1—N3—C2—C3174.7 (3)N4—C7—C8—C95.8 (5)
C6—N3—C2—C1179.8 (3)C13—C8—C9—C102.9 (5)
Zn1—N3—C2—C14.8 (4)C7—C8—C9—C10177.0 (3)
N1—C1—C2—N34.8 (5)C8—C9—C10—C110.7 (6)
N4—C1—C2—N3177.0 (3)C9—C10—C11—C123.1 (6)
N1—C1—C2—C3174.7 (3)C9—C10—C11—C14174.4 (4)
N4—C1—C2—C33.5 (6)C10—C11—C12—C131.9 (6)
N3—C2—C3—C40.0 (6)C14—C11—C12—C13175.6 (4)
C1—C2—C3—C4179.5 (3)C9—C8—C13—C124.1 (5)
C2—C3—C4—C50.5 (6)C7—C8—C13—C12175.8 (3)
C3—C4—C5—C60.8 (6)C11—C12—C13—C81.8 (6)
C2—N3—C6—C50.0 (5)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N4ii0.82 (1)1.91 (1)2.722 (3)169 (4)
C3—H3···O1iii0.932.573.437 (4)156
C6—H6···N2i0.932.643.435 (5)144
Symmetry codes: (i) x+2, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2.
(IV) Diiodidobis[5-(4-methylphenyl)-3-(pyridin-2-yl)-1H-1,2,4-triazole-κ2N3,N4]cadmium(II) top
Crystal data top
[CdI2(C14H12N4)2]F(000) = 1608
Mr = 838.75Dx = 1.920 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 18.848 (4) ÅCell parameters from 14086 reflections
b = 11.254 (2) Åθ = 3.2–25.0°
c = 15.707 (3) ŵ = 2.91 mm1
β = 119.44 (3)°T = 293 K
V = 2901.4 (13) Å3Block, colourless
Z = 40.27 × 0.26 × 0.24 mm
Data collection top
Rigaku MM007-HF CCD (Saturn 724+)
diffractometer
2414 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.061
ω scans at fixed χ = 45°θmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan
ABSCOR
h = 2222
Tmin = 0.474, Tmax = 0.497k = 1313
10864 measured reflectionsl = 1818
2528 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0693P)2 + 1.7102P]
where P = (Fo2 + 2Fc2)/3
2528 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 1.10 e Å3
1 restraintΔρmin = 1.67 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. SHELXL-2014/7 (Sheldrick, 2015)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.67530 (4)0.25000.03911 (16)
I10.48448 (2)0.85102 (2)0.10686 (2)0.04451 (16)
N10.5146 (2)0.3485 (3)0.0663 (3)0.0452 (8)
H10.501 (3)0.301 (3)0.0169 (17)0.054*
N20.59155 (19)0.3833 (4)0.1292 (3)0.0483 (8)
N30.36863 (17)0.6357 (3)0.2137 (2)0.0376 (7)
N40.49983 (16)0.4984 (3)0.14289 (19)0.0360 (7)
C10.5804 (2)0.4726 (3)0.1743 (2)0.0360 (7)
C20.4599 (2)0.4178 (3)0.0730 (2)0.0343 (7)
C30.3720 (2)0.4008 (3)0.0105 (2)0.0371 (8)
C40.3408 (2)0.2979 (4)0.0444 (3)0.0448 (9)
H40.37630.23790.04030.054*
C50.2574 (2)0.2831 (4)0.1052 (3)0.0497 (10)
H50.23800.21350.14140.060*
C60.2029 (2)0.3708 (4)0.1126 (3)0.0436 (9)
C70.2339 (2)0.4724 (4)0.0566 (3)0.0467 (9)
H70.19830.53100.05870.056*
C80.3169 (2)0.4883 (4)0.0024 (3)0.0439 (9)
H80.33620.55870.03730.053*
C90.35142 (19)0.5430 (3)0.2527 (2)0.0360 (8)
C100.2705 (2)0.5147 (4)0.2278 (3)0.0485 (10)
H100.25910.44940.25540.058*
C110.2095 (2)0.5857 (5)0.1623 (3)0.0557 (12)
H110.15550.56670.14230.067*
C120.2273 (2)0.6860 (5)0.1251 (3)0.0548 (11)
H120.18620.73710.08300.066*
C130.3078 (2)0.7078 (4)0.1525 (3)0.0486 (9)
H130.32040.77470.12780.058*
C140.1119 (3)0.3549 (4)0.1785 (4)0.0619 (13)
H14A0.08470.36450.14080.093*
H14B0.10120.27690.20680.093*
H14C0.09220.41340.22960.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0264 (2)0.0459 (3)0.0431 (3)0.0000.01552 (18)0.000
I10.0496 (2)0.0469 (2)0.0385 (2)0.00765 (10)0.02279 (16)0.00098 (9)
N10.0426 (18)0.048 (2)0.0496 (19)0.0016 (13)0.0258 (16)0.0142 (14)
N20.0402 (17)0.053 (2)0.0542 (18)0.0058 (15)0.0255 (15)0.0035 (17)
N30.0271 (14)0.0418 (18)0.0423 (16)0.0025 (11)0.0158 (13)0.0034 (13)
N40.0338 (14)0.0409 (19)0.0355 (15)0.0043 (12)0.0187 (12)0.0025 (13)
C10.0368 (17)0.038 (2)0.0374 (16)0.0057 (14)0.0215 (15)0.0069 (15)
C20.0388 (17)0.0335 (19)0.0337 (16)0.0045 (14)0.0202 (15)0.0018 (14)
C30.0420 (18)0.038 (2)0.0356 (16)0.0010 (15)0.0223 (15)0.0005 (15)
C40.045 (2)0.038 (2)0.050 (2)0.0017 (16)0.0229 (18)0.0044 (17)
C50.049 (2)0.046 (2)0.050 (2)0.0048 (18)0.0206 (18)0.0107 (18)
C60.041 (2)0.050 (2)0.0386 (18)0.0026 (16)0.0191 (17)0.0024 (16)
C70.043 (2)0.045 (2)0.048 (2)0.0066 (16)0.0187 (18)0.0000 (18)
C80.046 (2)0.039 (2)0.0418 (18)0.0053 (16)0.0177 (16)0.0061 (16)
C90.0336 (17)0.040 (2)0.0374 (17)0.0046 (14)0.0199 (15)0.0099 (15)
C100.0390 (19)0.061 (3)0.053 (2)0.0077 (18)0.0280 (18)0.0104 (19)
C110.0307 (19)0.082 (3)0.056 (2)0.003 (2)0.0225 (18)0.017 (2)
C120.035 (2)0.067 (3)0.059 (2)0.0131 (19)0.0197 (19)0.003 (2)
C130.0365 (19)0.049 (2)0.055 (2)0.0077 (17)0.0181 (17)0.0006 (18)
C140.049 (3)0.065 (3)0.056 (3)0.000 (2)0.014 (2)0.005 (2)
Geometric parameters (Å, º) top
Cd1—N3i2.295 (3)C5—C61.388 (6)
Cd1—N32.295 (3)C5—H50.9300
Cd1—N4i2.605 (3)C6—C71.385 (6)
Cd1—N42.605 (3)C6—C141.517 (6)
Cd1—I1i2.8990 (6)C7—C81.382 (5)
Cd1—I12.8990 (6)C7—H70.9300
N1—C21.337 (5)C8—H80.9300
N1—N21.351 (5)C9—C101.413 (5)
N1—H10.8700 (11)C9—C1i1.465 (5)
N2—C11.305 (5)C10—C111.362 (7)
N3—C91.329 (5)C10—H100.9300
N3—C131.347 (5)C11—C121.385 (7)
N4—C21.334 (5)C11—H110.9300
N4—C11.377 (4)C12—C131.381 (6)
C1—C9i1.465 (5)C12—H120.9300
C2—C31.465 (5)C13—H130.9300
C3—C41.390 (6)C14—H14A0.9600
C3—C81.391 (5)C14—H14B0.9600
C4—C51.391 (6)C14—H14C0.9600
C4—H40.9300
N3i—Cd1—N3157.63 (16)C3—C4—H4119.5
N3i—Cd1—N4i91.87 (10)C5—C4—H4119.5
N3—Cd1—N4i70.79 (10)C6—C5—C4120.8 (4)
N3i—Cd1—N470.79 (10)C6—C5—H5119.6
N3—Cd1—N491.87 (10)C4—C5—H5119.6
N4i—Cd1—N480.36 (13)C7—C6—C5118.0 (4)
N3i—Cd1—I1i104.74 (9)C7—C6—C14120.9 (4)
N3—Cd1—I1i90.59 (8)C5—C6—C14121.0 (4)
N4i—Cd1—I1i93.02 (6)C8—C7—C6121.2 (4)
N4—Cd1—I1i171.74 (6)C8—C7—H7119.4
N3i—Cd1—I190.59 (8)C6—C7—H7119.4
N3—Cd1—I1104.74 (9)C7—C8—C3121.2 (4)
N4i—Cd1—I1171.74 (6)C7—C8—H8119.4
N4—Cd1—I193.02 (6)C3—C8—H8119.4
I1i—Cd1—I193.98 (2)N3—C9—C10121.6 (3)
C2—N1—N2111.4 (3)N3—C9—C1i117.8 (3)
C2—N1—H1121 (3)C10—C9—C1i120.5 (4)
N2—N1—H1125 (3)C11—C10—C9118.2 (4)
C1—N2—N1102.6 (3)C11—C10—H10120.9
C9—N3—C13119.1 (3)C9—C10—H10120.9
C9—N3—Cd1121.1 (2)C10—C11—C12120.4 (4)
C13—N3—Cd1119.8 (3)C10—C11—H11119.8
C2—N4—C1103.2 (3)C12—C11—H11119.8
C2—N4—Cd1150.6 (2)C13—C12—C11118.1 (4)
C1—N4—Cd1106.2 (2)C13—C12—H12121.0
N2—C1—N4114.3 (3)C11—C12—H12121.0
N2—C1—C9i121.8 (3)N3—C13—C12122.3 (4)
N4—C1—C9i123.7 (3)N3—C13—H13118.8
N4—C2—N1108.5 (3)C12—C13—H13118.8
N4—C2—C3129.4 (3)C6—C14—H14A109.5
N1—C2—C3122.1 (3)C6—C14—H14B109.5
C4—C3—C8117.6 (3)H14A—C14—H14B109.5
C4—C3—C2121.2 (3)C6—C14—H14C109.5
C8—C3—C2121.1 (3)H14A—C14—H14C109.5
C3—C4—C5121.1 (4)H14B—C14—H14C109.5
C2—N1—N2—C11.5 (5)C3—C4—C5—C60.2 (6)
N1—N2—C1—N40.7 (4)C4—C5—C6—C70.9 (6)
N1—N2—C1—C9i176.9 (3)C4—C5—C6—C14179.7 (4)
C2—N4—C1—N20.3 (4)C5—C6—C7—C82.3 (6)
Cd1—N4—C1—N2178.6 (3)C14—C6—C7—C8178.9 (4)
C2—N4—C1—C9i175.8 (3)C6—C7—C8—C32.5 (7)
Cd1—N4—C1—C9i5.3 (4)C4—C3—C8—C71.2 (6)
C1—N4—C2—N11.2 (4)C2—C3—C8—C7180.0 (4)
Cd1—N4—C2—N1176.5 (4)C13—N3—C9—C103.3 (5)
C1—N4—C2—C3178.7 (4)Cd1—N3—C9—C10177.2 (3)
Cd1—N4—C2—C33.5 (7)C13—N3—C9—C1i174.6 (3)
N2—N1—C2—N41.8 (5)Cd1—N3—C9—C1i4.9 (4)
N2—N1—C2—C3178.2 (3)N3—C9—C10—C110.3 (6)
N4—C2—C3—C4166.5 (4)C1i—C9—C10—C11177.5 (3)
N1—C2—C3—C413.5 (6)C9—C10—C11—C123.1 (6)
N4—C2—C3—C814.8 (6)C10—C11—C12—C133.3 (7)
N1—C2—C3—C8165.2 (4)C9—N3—C13—C123.0 (6)
C8—C3—C4—C50.1 (6)Cd1—N3—C13—C12177.5 (3)
C2—C3—C4—C5178.7 (4)C11—C12—C13—N30.3 (7)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···I1ii0.87 (1)2.71 (2)3.534 (3)159 (4)
C12—H12···I1iii0.933.293.884 (5)124
Symmetry codes: (ii) x+1, y+1, z; (iii) x+1/2, y+3/2, z.
(V) Bis[5-(4-methylphenyl)-3-(pyridin-2-yl)-1H-1,2,4-triazole-κ2N3,N4]bis(nitrato-κO)cadmium(II) top
Crystal data top
[Cd(NO3)2(C14H12N4)2]F(000) = 1432
Mr = 708.98Dx = 1.649 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 17.113 (3) ÅCell parameters from 12693 reflections
b = 12.603 (3) Åθ = 3.1–25.0°
c = 14.708 (3) ŵ = 0.83 mm1
β = 115.80 (3)°T = 293 K
V = 2855.9 (12) Å3Block, colourless
Z = 40.31 × 0.28 × 0.26 mm
Data collection top
Rigaku MM007-HF CCD (Saturn 724+)
diffractometer
2336 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.048
ω scans at fixed χ = 45°θmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
ABSCOR
h = 2020
Tmin = 0.774, Tmax = 0.807k = 1414
9965 measured reflectionsl = 1717
2495 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0348P)2 + 0.6811P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2495 reflectionsΔρmax = 0.40 e Å3
209 parametersΔρmin = 0.48 e Å3
1 restraintExtinction correction: SHELXL-2014/7 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0019 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. SHELXL-2014/7 (Sheldrick, 2015)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.37028 (2)0.25000.02761 (12)
N10.53288 (14)0.67516 (17)0.10020 (15)0.0379 (5)
H10.5261 (19)0.7278 (13)0.0592 (15)0.057*
N20.61303 (14)0.65221 (17)0.17397 (16)0.0392 (5)
N30.64694 (12)0.40041 (15)0.30256 (14)0.0303 (4)
N40.51837 (12)0.51949 (15)0.15311 (13)0.0282 (4)
N50.51830 (12)0.19354 (16)0.12028 (15)0.0354 (5)
O10.46517 (11)0.26928 (13)0.10618 (12)0.0412 (4)
O20.51257 (13)0.14472 (14)0.04362 (15)0.0476 (5)
O30.57316 (14)0.17370 (18)0.20563 (15)0.0623 (6)
C10.47705 (15)0.59533 (19)0.08706 (16)0.0298 (5)
C20.60083 (14)0.55744 (18)0.20319 (16)0.0297 (5)
C30.67073 (14)0.49398 (18)0.27933 (16)0.0291 (5)
C40.75733 (15)0.5262 (2)0.32137 (18)0.0379 (6)
H4A0.77260.59180.30490.045*
C50.81950 (15)0.4598 (2)0.38722 (19)0.0420 (6)
H50.87750.48040.41700.050*
C60.79557 (17)0.3622 (2)0.4091 (2)0.0412 (6)
H60.83710.31520.45200.049*
C70.70863 (16)0.3359 (2)0.36583 (19)0.0380 (6)
H70.69230.27050.38140.046*
C80.38581 (15)0.5943 (2)0.01227 (16)0.0319 (5)
C90.34220 (16)0.6877 (2)0.0315 (2)0.0461 (7)
H90.37150.75220.01580.055*
C100.25472 (17)0.6842 (2)0.0988 (2)0.0527 (7)
H100.22620.74690.12800.063*
C110.20923 (17)0.5900 (2)0.1233 (2)0.0435 (6)
C120.25412 (16)0.4973 (2)0.08254 (19)0.0431 (6)
H120.22510.43270.10020.052*
C130.34168 (16)0.49901 (19)0.01579 (17)0.0362 (5)
H130.37080.43570.01020.043*
C140.11312 (19)0.5877 (3)0.1908 (2)0.0637 (9)
H14A0.08330.55840.15450.095*
H14B0.10210.54470.24900.095*
H14C0.09280.65860.21200.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02055 (15)0.02801 (17)0.02983 (17)0.0000.00685 (11)0.000
N10.0343 (11)0.0332 (12)0.0385 (12)0.0011 (9)0.0087 (10)0.0090 (9)
N20.0316 (11)0.0372 (12)0.0405 (13)0.0031 (9)0.0079 (10)0.0069 (9)
N30.0224 (9)0.0304 (11)0.0342 (11)0.0016 (8)0.0088 (8)0.0018 (8)
N40.0239 (9)0.0301 (11)0.0284 (10)0.0006 (8)0.0093 (8)0.0025 (7)
N50.0298 (10)0.0294 (11)0.0407 (12)0.0010 (8)0.0096 (10)0.0034 (9)
O10.0407 (9)0.0346 (10)0.0411 (10)0.0096 (8)0.0110 (8)0.0058 (7)
O20.0464 (11)0.0398 (11)0.0542 (13)0.0022 (8)0.0196 (10)0.0151 (8)
O30.0526 (12)0.0643 (14)0.0485 (13)0.0177 (11)0.0019 (10)0.0046 (10)
C10.0289 (12)0.0306 (12)0.0306 (12)0.0016 (10)0.0136 (10)0.0010 (9)
C20.0287 (12)0.0285 (12)0.0319 (12)0.0004 (9)0.0134 (10)0.0002 (9)
C30.0252 (11)0.0310 (13)0.0289 (12)0.0008 (9)0.0096 (10)0.0014 (9)
C40.0271 (12)0.0390 (14)0.0435 (14)0.0057 (10)0.0115 (11)0.0022 (10)
C50.0213 (11)0.0554 (17)0.0429 (15)0.0014 (11)0.0081 (11)0.0005 (11)
C60.0246 (12)0.0467 (17)0.0431 (16)0.0090 (10)0.0061 (12)0.0038 (10)
C70.0288 (12)0.0351 (14)0.0446 (15)0.0047 (10)0.0109 (11)0.0074 (11)
C80.0289 (12)0.0370 (13)0.0280 (13)0.0038 (10)0.0106 (10)0.0042 (9)
C90.0322 (13)0.0365 (15)0.0610 (18)0.0039 (11)0.0122 (13)0.0102 (12)
C100.0340 (14)0.0458 (18)0.0644 (19)0.0121 (12)0.0085 (13)0.0163 (13)
C110.0303 (13)0.0557 (17)0.0378 (14)0.0024 (12)0.0085 (11)0.0024 (12)
C120.0382 (14)0.0454 (16)0.0362 (14)0.0055 (11)0.0072 (12)0.0017 (11)
C130.0368 (13)0.0350 (14)0.0291 (13)0.0055 (10)0.0073 (11)0.0031 (9)
C140.0323 (15)0.077 (2)0.064 (2)0.0014 (15)0.0048 (14)0.0021 (17)
Geometric parameters (Å, º) top
Cd1—O1i2.3135 (17)C4—H4A0.9300
Cd1—O12.3136 (17)C5—C61.377 (4)
Cd1—N32.3179 (19)C5—H50.9300
Cd1—N3i2.3180 (19)C6—C71.380 (4)
Cd1—N4i2.4609 (18)C6—H60.9300
Cd1—N42.4609 (18)C7—H70.9300
N1—C11.342 (3)C8—C131.383 (3)
N1—N21.359 (3)C8—C91.392 (3)
N1—H10.8700 (11)C9—C101.390 (4)
N2—C21.316 (3)C9—H90.9300
N3—C71.336 (3)C10—C111.379 (4)
N3—C31.339 (3)C10—H100.9300
N4—C11.326 (3)C11—C121.383 (4)
N4—C21.363 (3)C11—C141.507 (4)
N5—O31.222 (3)C12—C131.389 (3)
N5—O21.250 (3)C12—H120.9300
N5—O11.271 (3)C13—H130.9300
C1—C81.467 (3)C14—H14A0.9600
C2—C31.469 (3)C14—H14B0.9600
C3—C41.395 (3)C14—H14C0.9600
C4—C51.369 (4)
O1i—Cd1—O1113.24 (9)C4—C3—C2122.3 (2)
O1i—Cd1—N388.56 (7)C5—C4—C3119.0 (2)
O1—Cd1—N3101.86 (7)C5—C4—H4A120.5
O1i—Cd1—N3i101.86 (7)C3—C4—H4A120.5
O1—Cd1—N3i88.56 (7)C4—C5—C6119.5 (2)
N3—Cd1—N3i161.14 (10)C4—C5—H5120.3
O1i—Cd1—N4i86.44 (6)C6—C5—H5120.3
O1—Cd1—N4i154.54 (6)C5—C6—C7118.5 (2)
N3—Cd1—N4i94.31 (7)C5—C6—H6120.7
N3i—Cd1—N4i71.00 (7)C7—C6—H6120.7
O1i—Cd1—N4154.54 (6)N3—C7—C6122.7 (2)
O1—Cd1—N486.44 (6)N3—C7—H7118.6
N3—Cd1—N471.00 (7)C6—C7—H7118.6
N3i—Cd1—N494.31 (7)C13—C8—C9118.9 (2)
N4i—Cd1—N480.34 (9)C13—C8—C1119.7 (2)
C1—N1—N2111.30 (19)C9—C8—C1121.4 (2)
C1—N1—H1126.9 (19)C10—C9—C8119.8 (3)
N2—N1—H1120 (2)C10—C9—H9120.1
C2—N2—N1101.85 (19)C8—C9—H9120.1
C7—N3—C3118.5 (2)C11—C10—C9121.6 (3)
C7—N3—Cd1123.10 (16)C11—C10—H10119.2
C3—N3—Cd1117.72 (14)C9—C10—H10119.2
C1—N4—C2103.85 (19)C10—C11—C12118.0 (2)
C1—N4—Cd1144.39 (15)C10—C11—C14121.2 (3)
C2—N4—Cd1108.56 (14)C12—C11—C14120.7 (3)
O3—N5—O2123.3 (2)C11—C12—C13121.2 (2)
O3—N5—O1119.7 (2)C11—C12—H12119.4
O2—N5—O1116.91 (19)C13—C12—H12119.4
N5—O1—Cd1112.49 (13)C8—C13—C12120.3 (2)
N4—C1—N1108.4 (2)C8—C13—H13119.8
N4—C1—C8126.7 (2)C12—C13—H13119.8
N1—C1—C8124.9 (2)C11—C14—H14A109.5
N2—C2—N4114.6 (2)C11—C14—H14B109.5
N2—C2—C3123.4 (2)H14A—C14—H14B109.5
N4—C2—C3121.9 (2)C11—C14—H14C109.5
N3—C3—C4121.7 (2)H14A—C14—H14C109.5
N3—C3—C2115.89 (19)H14B—C14—H14C109.5
C1—N1—N2—C20.7 (3)N4—C2—C3—C4171.4 (2)
O3—N5—O1—Cd18.5 (3)N3—C3—C4—C50.7 (4)
O2—N5—O1—Cd1169.48 (15)C2—C3—C4—C5176.0 (2)
C2—N4—C1—N11.5 (2)C3—C4—C5—C61.2 (4)
Cd1—N4—C1—N1153.7 (2)C4—C5—C6—C72.0 (4)
C2—N4—C1—C8179.0 (2)C3—N3—C7—C60.8 (4)
Cd1—N4—C1—C825.9 (4)Cd1—N3—C7—C6169.7 (2)
N2—N1—C1—N41.4 (3)C5—C6—C7—N31.0 (4)
N2—N1—C1—C8179.0 (2)N4—C1—C8—C1319.8 (4)
N1—N2—C2—N40.3 (3)N1—C1—C8—C13160.8 (2)
N1—N2—C2—C3176.3 (2)N4—C1—C8—C9160.2 (2)
C1—N4—C2—N21.1 (3)N1—C1—C8—C919.2 (4)
Cd1—N4—C2—N2163.91 (16)C13—C8—C9—C102.8 (4)
C1—N4—C2—C3175.6 (2)C1—C8—C9—C10177.2 (2)
Cd1—N4—C2—C319.4 (2)C8—C9—C10—C110.4 (4)
C7—N3—C3—C41.7 (3)C9—C10—C11—C123.0 (4)
Cd1—N3—C3—C4169.32 (17)C9—C10—C11—C14175.9 (3)
C7—N3—C3—C2175.2 (2)C10—C11—C12—C132.4 (4)
Cd1—N3—C3—C213.8 (3)C14—C11—C12—C13176.4 (3)
N2—C2—C3—N3178.2 (2)C9—C8—C13—C123.3 (4)
N4—C2—C3—N35.4 (3)C1—C8—C13—C12176.7 (2)
N2—C2—C3—C45.0 (4)C11—C12—C13—C80.7 (4)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N5ii0.87 (1)2.60 (1)3.398 (3)152 (2)
N1—H1···O1ii0.87 (1)2.50 (2)3.129 (3)130 (2)
N1—H1···O2ii0.87 (1)2.11 (1)2.967 (3)170 (3)
C6—H6···O1iii0.932.603.500 (3)164
Symmetry codes: (ii) x+1, y+1, z; (iii) x+1/2, y+1/2, z+1/2.
(VI) Aquabis[5-(4-methylphenyl)-3-(pyridin-2-yl)-1H-1,2,4-triazolato-κ2N1,N5]cobalt(II) top
Crystal data top
[Co(C14H11N4)2(H2O)]F(000) = 1132
Mr = 547.48Dx = 1.471 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 28.735 (6) ÅCell parameters from 12169 reflections
b = 7.4617 (15) Åθ = 3.1–25.0°
c = 12.421 (3) ŵ = 0.73 mm1
β = 111.79 (3)°T = 293 K
V = 2472.9 (10) Å3Block, red
Z = 40.31 × 0.27 × 0.25 mm
Data collection top
Rigaku MM007-HF CCD (Saturn 724+)
diffractometer
1866 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.032
ω scans at fixed χ = 45°θmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
ABSCOR
h = 3434
Tmin = 0.796, Tmax = 0.832k = 88
9301 measured reflectionsl = 1414
2177 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0315P)2 + 1.7253P]
where P = (Fo2 + 2Fc2)/3
2177 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. SHELXL-2014/7 (Sheldrick, 2015)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00000.88006 (5)0.25000.03214 (13)
O1W0.00001.1468 (3)0.25000.0430 (5)
H10.00881.20410.20450.065*
N10.03312 (6)0.7797 (2)0.08970 (12)0.0342 (4)
N20.08111 (6)0.7396 (2)0.01684 (13)0.0365 (4)
N30.06247 (6)0.8606 (2)0.19489 (13)0.0322 (4)
N40.02919 (6)0.7113 (2)0.08164 (12)0.0306 (4)
C10.07690 (7)0.6996 (3)0.08404 (15)0.0302 (4)
C20.00365 (7)0.7615 (2)0.02813 (14)0.0291 (4)
C30.04983 (7)0.7986 (3)0.08521 (15)0.0297 (4)
C40.08522 (7)0.7711 (3)0.03616 (17)0.0393 (5)
H40.07580.72820.03930.047*
C50.13471 (8)0.8083 (3)0.10114 (19)0.0465 (5)
H50.15920.79100.06980.056*
C60.14772 (8)0.8712 (3)0.21247 (18)0.0439 (5)
H60.18090.89720.25740.053*
C70.11054 (7)0.8950 (3)0.25617 (17)0.0390 (5)
H70.11940.93690.33170.047*
C80.12048 (7)0.6482 (3)0.18666 (15)0.0319 (4)
C90.11495 (8)0.5704 (3)0.28298 (16)0.0367 (5)
H90.08300.55040.28300.044*
C100.15641 (8)0.5224 (3)0.37867 (17)0.0403 (5)
H100.15180.47030.44200.048*
C110.20464 (8)0.5500 (3)0.38274 (17)0.0401 (5)
C120.21000 (8)0.6271 (3)0.28589 (18)0.0451 (5)
H120.24200.64650.28590.054*
C130.16890 (8)0.6752 (3)0.19002 (17)0.0412 (5)
H130.17360.72660.12660.049*
C140.24995 (9)0.4998 (3)0.4882 (2)0.0572 (6)
H14A0.23920.44640.54530.086*
H14B0.26930.60540.51990.086*
H14C0.27020.41590.46630.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0335 (2)0.0426 (2)0.02309 (19)0.0000.01376 (16)0.000
O1W0.0610 (14)0.0456 (12)0.0366 (10)0.0000.0344 (10)0.000
N10.0304 (9)0.0483 (10)0.0271 (8)0.0022 (8)0.0145 (7)0.0019 (7)
N20.0317 (9)0.0521 (11)0.0282 (8)0.0058 (8)0.0141 (7)0.0039 (8)
N30.0314 (9)0.0391 (9)0.0271 (7)0.0019 (7)0.0121 (7)0.0006 (7)
N40.0326 (9)0.0373 (9)0.0253 (7)0.0001 (7)0.0147 (7)0.0016 (7)
C10.0320 (10)0.0341 (10)0.0269 (9)0.0006 (8)0.0137 (8)0.0035 (8)
C20.0312 (10)0.0336 (10)0.0256 (9)0.0023 (8)0.0143 (8)0.0032 (8)
C30.0333 (10)0.0323 (10)0.0261 (9)0.0027 (8)0.0138 (8)0.0040 (8)
C40.0359 (11)0.0535 (13)0.0325 (10)0.0005 (10)0.0174 (9)0.0034 (9)
C50.0341 (12)0.0631 (15)0.0494 (12)0.0008 (11)0.0237 (11)0.0002 (11)
C60.0298 (11)0.0554 (14)0.0453 (12)0.0026 (10)0.0125 (10)0.0011 (11)
C70.0349 (12)0.0481 (13)0.0317 (10)0.0013 (10)0.0095 (9)0.0032 (9)
C80.0344 (11)0.0344 (11)0.0286 (9)0.0017 (9)0.0137 (9)0.0044 (8)
C90.0354 (11)0.0433 (12)0.0340 (10)0.0002 (9)0.0161 (9)0.0005 (9)
C100.0458 (13)0.0428 (12)0.0321 (10)0.0008 (10)0.0141 (10)0.0049 (9)
C110.0396 (12)0.0388 (11)0.0354 (10)0.0019 (10)0.0063 (9)0.0030 (9)
C120.0302 (11)0.0587 (14)0.0460 (12)0.0020 (10)0.0139 (10)0.0006 (11)
C130.0399 (12)0.0538 (13)0.0338 (10)0.0009 (10)0.0181 (10)0.0020 (10)
C140.0498 (14)0.0558 (16)0.0522 (13)0.0024 (12)0.0031 (12)0.0059 (12)
Geometric parameters (Å, º) top
Co1—O1W1.990 (2)C5—H50.9300
Co1—N12.0061 (16)C6—C71.378 (3)
Co1—N1i2.0062 (16)C6—H60.9300
Co1—N3i2.1504 (15)C7—H70.9300
Co1—N32.1505 (15)C8—C91.391 (3)
O1W—H10.8199C8—C131.391 (3)
N1—C21.342 (2)C9—C101.382 (3)
N1—N21.372 (2)C9—H90.9300
N2—C11.337 (2)C10—C111.383 (3)
N3—C71.331 (3)C10—H100.9300
N3—C31.355 (2)C11—C121.393 (3)
N4—C21.340 (2)C11—C141.511 (3)
N4—C11.363 (2)C12—C131.378 (3)
C1—C81.468 (3)C12—H120.9300
C2—C31.460 (3)C13—H130.9300
C3—C41.381 (3)C14—H14A0.9600
C4—C51.378 (3)C14—H14B0.9600
C4—H40.9300C14—H14C0.9600
C5—C61.374 (3)
O1W—Co1—N1111.93 (5)C6—C5—H5120.2
O1W—Co1—N1i111.93 (5)C4—C5—H5120.2
N1—Co1—N1i136.14 (10)C5—C6—C7118.65 (19)
O1W—Co1—N3i93.86 (4)C5—C6—H6120.7
N1—Co1—N3i98.41 (6)C7—C6—H6120.7
N1i—Co1—N3i78.66 (6)N3—C7—C6122.79 (18)
O1W—Co1—N393.86 (4)N3—C7—H7118.6
N1—Co1—N378.66 (6)C6—C7—H7118.6
N1i—Co1—N398.41 (6)C9—C8—C13117.85 (18)
N3i—Co1—N3172.28 (9)C9—C8—C1121.54 (17)
Co1—O1W—H1121.4C13—C8—C1120.62 (16)
C2—N1—N2107.11 (14)C10—C9—C8120.71 (18)
C2—N1—Co1115.86 (12)C10—C9—H9119.6
N2—N1—Co1136.57 (12)C8—C9—H9119.6
C1—N2—N1104.38 (15)C9—C10—C11121.69 (18)
C7—N3—C3118.35 (16)C9—C10—H10119.2
C7—N3—Co1128.06 (13)C11—C10—H10119.2
C3—N3—Co1113.53 (12)C10—C11—C12117.41 (19)
C2—N4—C1101.93 (14)C10—C11—C14121.61 (19)
N2—C1—N4113.92 (16)C12—C11—C14121.0 (2)
N2—C1—C8121.84 (16)C13—C12—C11121.3 (2)
N4—C1—C8124.24 (15)C13—C12—H12119.3
N4—C2—N1112.66 (16)C11—C12—H12119.3
N4—C2—C3128.84 (15)C12—C13—C8120.99 (18)
N1—C2—C3118.50 (15)C12—C13—H13119.5
N3—C3—C4121.87 (17)C8—C13—H13119.5
N3—C3—C2113.22 (15)C11—C14—H14A109.5
C4—C3—C2124.90 (17)C11—C14—H14B109.5
C5—C4—C3118.71 (18)H14A—C14—H14B109.5
C5—C4—H4120.6C11—C14—H14C109.5
C3—C4—H4120.6H14A—C14—H14C109.5
C6—C5—C4119.63 (19)H14B—C14—H14C109.5
C2—N1—N2—C10.1 (2)C2—C3—C4—C5178.56 (19)
Co1—N1—N2—C1171.60 (15)C3—C4—C5—C60.1 (3)
N1—N2—C1—N40.1 (2)C4—C5—C6—C70.1 (3)
N1—N2—C1—C8179.93 (17)C3—N3—C7—C60.4 (3)
C2—N4—C1—N20.1 (2)Co1—N3—C7—C6177.52 (15)
C2—N4—C1—C8179.97 (18)C5—C6—C7—N30.4 (3)
C1—N4—C2—N10.0 (2)N2—C1—C8—C9166.02 (19)
C1—N4—C2—C3179.29 (19)N4—C1—C8—C914.0 (3)
N2—N1—C2—N40.1 (2)N2—C1—C8—C1313.6 (3)
Co1—N1—C2—N4173.59 (12)N4—C1—C8—C13166.38 (18)
N2—N1—C2—C3179.31 (16)C13—C8—C9—C100.2 (3)
Co1—N1—C2—C35.8 (2)C1—C8—C9—C10179.83 (18)
C7—N3—C3—C40.2 (3)C8—C9—C10—C110.2 (3)
Co1—N3—C3—C4177.68 (15)C9—C10—C11—C120.5 (3)
C7—N3—C3—C2178.45 (17)C9—C10—C11—C14179.1 (2)
Co1—N3—C3—C21.0 (2)C10—C11—C12—C130.4 (3)
N4—C2—C3—N3174.89 (18)C14—C11—C12—C13179.2 (2)
N1—C2—C3—N34.4 (3)C11—C12—C13—C80.1 (3)
N4—C2—C3—C46.5 (3)C9—C8—C13—C120.3 (3)
N1—C2—C3—C4174.20 (18)C1—C8—C13—C12179.89 (19)
N3—C3—C4—C50.1 (3)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1···N4ii0.821.932.7386 (17)167
Symmetry code: (ii) x, y+2, z.
(VII) Diaquabis[5-(4-methylphenyl)-3-(pyridin-2-yl)-1H-1,2,4-triazolato-κ2N1,N5]nickel(II) top
Crystal data top
[Ni(C14H11N4)2(H2O)2]F(000) = 1176
Mr = 565.28Dx = 1.504 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 26.778 (5) ÅCell parameters from 12342 reflections
b = 7.4858 (15) Åθ = 3.1–25.0°
c = 12.472 (3) ŵ = 0.82 mm1
β = 92.91 (3)°T = 293 K
V = 2496.8 (9) Å3Block, purple
Z = 40.32 × 0.28 × 0.26 mm
Data collection top
Rigaku MM007-HF CCD (Saturn 724+)
diffractometer
2016 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.023
ω scans at fixed χ = 45°θmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
ABSCOR
h = 3131
Tmin = 0.769, Tmax = 0.808k = 88
9388 measured reflectionsl = 1314
2186 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0409P)2 + 1.0824P]
where P = (Fo2 + 2Fc2)/3
2186 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. SHELXL-2014/7 (Sheldrick, 2015)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.25000.03344 (4)0.00000.02241 (11)
N10.21155 (5)0.01668 (17)0.13760 (10)0.0262 (3)
N20.16365 (5)0.01555 (18)0.16472 (11)0.0287 (3)
N30.19172 (5)0.04746 (16)0.11687 (10)0.0250 (3)
N40.21437 (5)0.02969 (17)0.31469 (10)0.0269 (3)
O10.25000.3149 (2)0.00000.0385 (4)
H1WA0.2384 (9)0.372 (3)0.0472 (17)0.058*
O20.25000.2501 (2)0.00000.0351 (4)
H2WA0.2441 (9)0.306 (3)0.0535 (16)0.053*
C10.16687 (6)0.0426 (2)0.27055 (12)0.0255 (3)
C20.24037 (6)0.0064 (2)0.22750 (12)0.0244 (3)
C30.20562 (6)0.0326 (2)0.21889 (12)0.0251 (3)
C40.17112 (7)0.0449 (3)0.30512 (13)0.0390 (4)
H40.18110.03280.37510.047*
C50.12170 (7)0.0755 (3)0.28513 (15)0.0454 (5)
H50.09790.08390.34190.055*
C60.10769 (6)0.0936 (3)0.18138 (14)0.0393 (4)
H60.07450.11570.16690.047*
C70.14384 (6)0.0783 (2)0.09896 (13)0.0316 (4)
H70.13450.08990.02850.038*
C80.12222 (6)0.0883 (2)0.32949 (12)0.0271 (3)
C90.12556 (6)0.1509 (2)0.43446 (12)0.0337 (4)
H90.15660.15750.47110.040*
C100.08310 (6)0.2036 (2)0.48518 (13)0.0370 (4)
H100.08630.24410.55570.044*
C110.03630 (6)0.1978 (2)0.43428 (14)0.0355 (4)
C120.03294 (7)0.1337 (3)0.32928 (15)0.0446 (5)
H120.00180.12730.29290.054*
C130.07497 (7)0.0794 (3)0.27817 (13)0.0395 (4)
H130.07160.03630.20830.047*
C140.00982 (7)0.2557 (3)0.49021 (17)0.0494 (5)
H14A0.00010.30850.55820.074*
H14B0.03070.15370.50140.074*
H14C0.02800.34160.44650.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02456 (17)0.02787 (17)0.01480 (15)0.0000.00105 (11)0.000
N10.0261 (7)0.0337 (7)0.0187 (7)0.0002 (5)0.0015 (5)0.0007 (5)
N20.0253 (7)0.0401 (8)0.0209 (7)0.0005 (6)0.0025 (5)0.0017 (5)
N30.0273 (7)0.0278 (7)0.0198 (6)0.0006 (5)0.0017 (5)0.0002 (5)
N40.0270 (7)0.0358 (7)0.0179 (6)0.0015 (5)0.0012 (5)0.0001 (5)
O10.0656 (13)0.0273 (9)0.0215 (8)0.0000.0073 (8)0.000
O20.0497 (10)0.0274 (9)0.0269 (8)0.0000.0100 (8)0.000
C10.0281 (8)0.0278 (8)0.0207 (7)0.0003 (6)0.0016 (6)0.0018 (6)
C20.0271 (8)0.0271 (8)0.0189 (8)0.0005 (6)0.0014 (6)0.0008 (6)
C30.0282 (8)0.0272 (8)0.0199 (7)0.0002 (6)0.0022 (6)0.0000 (6)
C40.0332 (10)0.0640 (12)0.0197 (8)0.0039 (8)0.0002 (7)0.0002 (8)
C50.0302 (9)0.0745 (13)0.0307 (9)0.0064 (9)0.0069 (7)0.0029 (9)
C60.0259 (9)0.0563 (11)0.0357 (9)0.0070 (8)0.0025 (7)0.0009 (8)
C70.0299 (9)0.0412 (9)0.0242 (8)0.0038 (7)0.0051 (6)0.0000 (7)
C80.0285 (8)0.0304 (8)0.0225 (7)0.0003 (7)0.0039 (6)0.0025 (6)
C90.0285 (9)0.0463 (10)0.0263 (8)0.0006 (7)0.0009 (7)0.0031 (7)
C100.0373 (10)0.0451 (10)0.0291 (8)0.0014 (8)0.0077 (7)0.0065 (7)
C110.0319 (9)0.0363 (9)0.0391 (9)0.0009 (7)0.0110 (7)0.0014 (7)
C120.0254 (9)0.0689 (13)0.0393 (10)0.0000 (9)0.0016 (7)0.0010 (9)
C130.0340 (9)0.0595 (11)0.0246 (8)0.0018 (9)0.0004 (7)0.0040 (8)
C140.0371 (10)0.0518 (11)0.0608 (12)0.0021 (9)0.0172 (9)0.0043 (10)
Geometric parameters (Å, º) top
Ni1—N1i2.0495 (14)C4—H40.9300
Ni1—N12.0495 (14)C5—C61.372 (3)
Ni1—N32.0834 (14)C5—H50.9300
Ni1—N3i2.0834 (14)C6—C71.380 (2)
Ni1—O12.1066 (17)C6—H60.9300
Ni1—O22.1223 (17)C7—H70.9300
N1—C21.331 (2)C8—C91.389 (2)
N1—N21.365 (2)C8—C131.390 (2)
N2—C11.334 (2)C9—C101.386 (2)
N3—C71.333 (2)C9—H90.9300
N3—C31.348 (2)C10—C111.376 (2)
N4—C21.348 (2)C10—H100.9300
N4—C11.363 (2)C11—C121.393 (3)
O1—H1WA0.78 (2)C11—C141.512 (2)
O2—H2WA0.80 (2)C12—C131.382 (3)
C1—C81.475 (2)C12—H120.9300
C2—C3i1.469 (2)C13—H130.9300
C3—C41.385 (2)C14—H14A0.9600
C3—C2i1.469 (2)C14—H14B0.9600
C4—C51.378 (3)C14—H14C0.9600
N1i—Ni1—N1172.98 (7)C5—C4—H4120.7
N1i—Ni1—N378.90 (5)C3—C4—H4120.7
N1—Ni1—N3101.45 (5)C6—C5—C4119.87 (16)
N1i—Ni1—N3i101.46 (5)C6—C5—H5120.1
N1—Ni1—N3i78.91 (5)C4—C5—H5120.1
N3—Ni1—N3i174.22 (7)C5—C6—C7118.62 (16)
N1i—Ni1—O193.51 (4)C5—C6—H6120.7
N1—Ni1—O193.51 (4)C7—C6—H6120.7
N3—Ni1—O187.11 (3)N3—C7—C6122.26 (15)
N3i—Ni1—O187.11 (3)N3—C7—H7118.9
N1i—Ni1—O286.49 (4)C6—C7—H7118.9
N1—Ni1—O286.49 (4)C9—C8—C13117.60 (15)
N3—Ni1—O292.89 (3)C9—C8—C1122.20 (15)
N3i—Ni1—O292.89 (3)C13—C8—C1120.09 (14)
O1—Ni1—O2180.0C10—C9—C8120.74 (16)
C2—N1—N2107.05 (13)C10—C9—H9119.6
C2—N1—Ni1114.50 (11)C8—C9—H9119.6
N2—N1—Ni1137.47 (10)C11—C10—C9121.96 (15)
C1—N2—N1104.93 (13)C11—C10—H10119.0
C7—N3—C3119.12 (13)C9—C10—H10119.0
C7—N3—Ni1125.76 (11)C10—C11—C12117.27 (15)
C3—N3—Ni1115.03 (11)C10—C11—C14121.60 (16)
C2—N4—C1101.42 (13)C12—C11—C14121.13 (17)
Ni1—O1—H1WA123.2 (17)C13—C12—C11121.29 (16)
Ni1—O2—H2WA121.7 (16)C13—C12—H12119.4
N2—C1—N4113.65 (14)C11—C12—H12119.4
N2—C1—C8120.99 (14)C12—C13—C8121.14 (16)
N4—C1—C8125.33 (14)C12—C13—H13119.4
N1—C2—N4112.96 (14)C8—C13—H13119.4
N1—C2—C3i117.50 (14)C11—C14—H14A109.5
N4—C2—C3i129.54 (14)C11—C14—H14B109.5
N3—C3—C4121.46 (15)H14A—C14—H14B109.5
N3—C3—C2i113.59 (13)C11—C14—H14C109.5
C4—C3—C2i124.94 (15)H14A—C14—H14C109.5
C5—C4—C3118.65 (16)H14B—C14—H14C109.5
C2—N1—N2—C10.27 (16)C4—C5—C6—C70.8 (3)
Ni1—N1—N2—C1167.63 (12)C3—N3—C7—C60.8 (2)
N1—N2—C1—N40.07 (17)Ni1—N3—C7—C6177.00 (13)
N1—N2—C1—C8177.85 (13)C5—C6—C7—N30.3 (3)
C2—N4—C1—N20.37 (17)N2—C1—C8—C9167.16 (16)
C2—N4—C1—C8177.44 (15)N4—C1—C8—C910.5 (2)
N2—N1—C2—N40.54 (17)N2—C1—C8—C139.0 (2)
Ni1—N1—C2—N4171.18 (10)N4—C1—C8—C13173.35 (16)
N2—N1—C2—C3i178.69 (13)C13—C8—C9—C100.5 (3)
Ni1—N1—C2—C3i8.05 (17)C1—C8—C9—C10175.77 (15)
C1—N4—C2—N10.55 (16)C8—C9—C10—C110.5 (3)
C1—N4—C2—C3i178.56 (15)C9—C10—C11—C121.0 (3)
C7—N3—C3—C41.4 (2)C9—C10—C11—C14179.97 (18)
Ni1—N3—C3—C4178.00 (13)C10—C11—C12—C130.5 (3)
C7—N3—C3—C2i177.52 (14)C14—C11—C12—C13179.52 (19)
Ni1—N3—C3—C2i0.88 (16)C11—C12—C13—C80.5 (3)
N3—C3—C4—C50.9 (3)C9—C8—C13—C121.0 (3)
C2i—C3—C4—C5177.87 (17)C1—C8—C13—C12175.34 (17)
C3—C4—C5—C60.2 (3)
Symmetry code: (i) x+1/2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1WA···N4ii0.78 (2)2.16 (2)2.9351 (17)174 (3)
O2—H2WA···N4iii0.80 (2)2.17 (2)2.9575 (17)169 (2)
C7—H7···N20.932.623.378 (2)139
Symmetry codes: (ii) x, y1/2, z1/2; (iii) x, y+1/2, z1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds