Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Aryl­diazenyl derivatives of salicylic acid and their salts are used as dyes. In these structures, the carboxyl­ate groups are engaged in short contacts with the cations and in hydrogen bonds with water mol­ecules, if present. If both O atoms of the carboxyl­ate group take part in such inter­actions, the negative charge is delocalized over the two atoms. In the absence of hydrogen bonds and contacts with cations, the negative charge is localized on one of the O atoms. In the crystal structures of tetra­methyl­ammonium 2-hy­droxy-5-[(E)-(4-nitro­phen­yl)diazen­yl]benzoate and tetra­methyl­ammonium 2-hy­droxy-5-[(E)-(2-nitro­phen­yl)diazen­yl]benzoate, both C4H12N+·C13H8N3O5, all the inter­actions between the cations and anions are weak, and their effect on the geometry of the anions is negligible. Under these conditions, the 2-nitro-substituted anion is an almost pure phenol–carboxyl­ate tautomer, whereas in the 4-nitro-substituted anion, the phenolic H atom is shifted towards the carboxyl­ate group, and thus the structure of this anion is inter­mediate between the phenol–carboxyl­ate and phenolate–carb­oxy­lic acid tautomeric forms. The probable formation of such an inter­mediate form is supported by quantum chemical calculations. Being the characteristic feature of this form, a short distance between the phenolic and carboxyl­ate O atoms is observed in the 4-nitro-substituted anion, as well as in the structures of some 3,5-di­nitro­salicylates reported in the literature.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229616003193/lg3183sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229616003193/lg3183Isup4.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229616003193/lg3183IIsup5.hkl
Contains datablock II

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229616003193/lg3183Isup4.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229616003193/lg3183IIsup5.cml
Supplementary material

CCDC references: 1455497; 1455496

Computing details top

For both compounds, data collection: X-AREA (Stoe & Cie, 2012); cell refinement: X-AREA (Stoe & Cie, 2012); data reduction: X-RED32 (Stoe & Cie, 2012); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(I) Tetramethylammonium 2-hydroxy-5-[(E)-(4-nitrophenyl)diazenyl]benzoate top
Crystal data top
C4H12N+·C13H8N3O5F(000) = 1520
Mr = 360.37Dx = 1.335 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 36.5539 (17) ÅCell parameters from 6560 reflections
b = 6.0781 (2) Åθ = 3.0–28.2°
c = 16.5167 (7) ŵ = 0.10 mm1
β = 102.228 (4)°T = 295 K
V = 3586.4 (3) Å3Block, dark red
Z = 80.40 × 0.35 × 0.25 mm
Data collection top
Stoe STADI VARI
diffractometer
3337 independent reflections
Radiation source: fine-focus sealed tube2015 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Detector resolution: 5.81 pixels mm-1θmax = 25.5°, θmin = 2.3°
rotation method scansh = 4344
Absorption correction: multi-scan
(Blessing, 1995)
k = 57
Tmin = 0.928, Tmax = 0.974l = 1720
6523 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 0.94 w = 1/[σ2(Fo2) + (0.0454P)2]
where P = (Fo2 + 2Fc2)/3
3337 reflections(Δ/σ)max < 0.001
243 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.12 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.06557 (4)0.7830 (2)0.33914 (7)0.0754 (4)
H10.0456 (7)0.661 (5)0.3479 (16)0.159 (10)*
O20.02960 (3)0.4775 (2)0.37447 (7)0.0666 (3)
O30.05522 (3)0.2235 (2)0.46551 (8)0.0772 (4)
O40.33013 (4)0.2619 (3)0.76842 (9)0.0948 (5)
O50.35761 (4)0.0489 (3)0.77191 (13)0.1437 (8)
N10.19620 (4)0.4663 (3)0.53536 (9)0.0707 (4)
N20.19540 (4)0.2708 (2)0.55609 (8)0.0637 (4)
N30.33039 (4)0.0679 (3)0.75103 (10)0.0775 (5)
C10.09442 (4)0.5020 (2)0.42998 (8)0.0447 (3)
C20.09601 (5)0.7030 (3)0.38885 (9)0.0544 (4)
C30.12944 (5)0.8188 (3)0.40191 (11)0.0761 (5)
H30.13030.95460.37640.091*
C40.16088 (5)0.7370 (3)0.45123 (11)0.0758 (5)
H40.18290.81860.46050.091*
C50.16039 (4)0.5296 (3)0.48844 (10)0.0640 (5)
C60.12681 (4)0.4152 (3)0.47819 (9)0.0504 (4)
H60.12610.27960.50390.060*
C70.23139 (5)0.2075 (3)0.60282 (10)0.0686 (5)
C80.23265 (5)0.0006 (3)0.63663 (10)0.0670 (5)
H80.21090.08450.62660.080*
C90.26464 (4)0.0898 (3)0.68449 (10)0.0570 (4)
H90.26440.23100.70610.068*
C100.29667 (4)0.0312 (3)0.69979 (10)0.0610 (4)
C110.29731 (5)0.2437 (3)0.66709 (12)0.0754 (5)
H110.31900.32820.67720.090*
C120.26383 (6)0.3227 (3)0.61852 (11)0.0715 (5)
H120.26380.46260.59570.086*
C130.05769 (4)0.3875 (3)0.42416 (9)0.0490 (4)
N40.05441 (3)0.09897 (19)0.14545 (7)0.0441 (3)
C410.05286 (4)0.2389 (3)0.21893 (9)0.0595 (4)
H41A0.07290.34370.22710.089*
H41B0.05530.14760.26720.089*
H41C0.02930.31520.20970.089*
C420.02309 (4)0.0620 (3)0.13261 (11)0.0618 (4)
H42A0.00030.01540.12330.093*
H42B0.02530.15320.18090.093*
H42C0.02400.15230.08540.093*
C430.05044 (5)0.2411 (3)0.07027 (10)0.0684 (5)
H43A0.05150.15120.02300.103*
H43B0.07040.34670.07840.103*
H43C0.02680.31650.06110.103*
C440.09044 (4)0.0228 (3)0.15858 (11)0.0687 (5)
H44A0.09050.11720.11200.103*
H44B0.09330.11000.20800.103*
H44C0.11080.08000.16420.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0851 (9)0.0706 (9)0.0668 (8)0.0105 (7)0.0074 (7)0.0223 (7)
O20.0501 (6)0.0831 (9)0.0628 (7)0.0007 (6)0.0033 (5)0.0005 (6)
O30.0719 (8)0.0781 (9)0.0790 (8)0.0247 (7)0.0100 (6)0.0177 (7)
O40.0667 (9)0.1093 (12)0.1050 (11)0.0258 (9)0.0105 (7)0.0230 (10)
O50.0561 (9)0.1506 (16)0.204 (2)0.0213 (10)0.0185 (10)0.0364 (14)
N10.0786 (10)0.0676 (10)0.0636 (9)0.0036 (8)0.0099 (7)0.0041 (8)
N20.0652 (9)0.0644 (10)0.0607 (8)0.0007 (7)0.0117 (7)0.0003 (8)
N30.0412 (8)0.0999 (13)0.0883 (12)0.0014 (9)0.0066 (7)0.0147 (11)
C10.0479 (8)0.0509 (9)0.0370 (8)0.0005 (7)0.0130 (6)0.0043 (7)
C20.0693 (10)0.0533 (10)0.0438 (8)0.0004 (9)0.0193 (8)0.0049 (8)
C30.0870 (14)0.0705 (12)0.0721 (12)0.0263 (11)0.0196 (10)0.0098 (10)
C40.0629 (11)0.0921 (15)0.0717 (12)0.0345 (11)0.0124 (9)0.0082 (11)
C50.0578 (10)0.0836 (13)0.0527 (10)0.0129 (10)0.0165 (8)0.0172 (9)
C60.0545 (9)0.0536 (9)0.0436 (8)0.0003 (8)0.0118 (7)0.0028 (7)
C70.0666 (11)0.0785 (13)0.0621 (11)0.0129 (11)0.0168 (9)0.0028 (10)
C80.0549 (10)0.0774 (13)0.0638 (11)0.0091 (9)0.0014 (8)0.0093 (10)
C90.0566 (10)0.0515 (9)0.0611 (10)0.0014 (8)0.0087 (8)0.0004 (8)
C100.0515 (9)0.0678 (11)0.0654 (11)0.0001 (9)0.0164 (8)0.0119 (9)
C110.0665 (12)0.0727 (13)0.0924 (13)0.0256 (10)0.0291 (10)0.0174 (11)
C120.0973 (14)0.0527 (11)0.0713 (12)0.0013 (11)0.0329 (11)0.0003 (9)
C130.0502 (9)0.0559 (10)0.0408 (8)0.0036 (8)0.0095 (7)0.0034 (8)
N40.0409 (6)0.0495 (7)0.0409 (6)0.0016 (6)0.0061 (5)0.0000 (6)
C410.0657 (10)0.0623 (10)0.0511 (9)0.0084 (8)0.0135 (7)0.0073 (8)
C420.0527 (9)0.0634 (11)0.0676 (10)0.0107 (8)0.0090 (7)0.0024 (9)
C430.0824 (11)0.0712 (12)0.0533 (9)0.0038 (9)0.0182 (8)0.0141 (9)
C440.0491 (9)0.0803 (12)0.0740 (11)0.0150 (9)0.0066 (8)0.0091 (10)
Geometric parameters (Å, º) top
O1—C21.3273 (18)C8—H80.9300
O1—H11.07 (3)C9—C101.360 (2)
O2—C131.2923 (17)C9—H90.9300
O2—H11.37 (3)C10—C111.402 (2)
O3—C131.2225 (18)C11—C121.399 (2)
O4—N31.2141 (19)C11—H110.9300
O5—N31.2118 (19)C12—H120.9300
N1—N21.2388 (18)N4—C441.4860 (17)
N1—C51.426 (2)N4—C421.4870 (17)
N2—C71.430 (2)N4—C411.4929 (18)
N3—C101.469 (2)N4—C431.4941 (18)
C1—C61.3836 (19)C41—H41A0.9600
C1—C21.405 (2)C41—H41B0.9600
C1—C131.4971 (19)C41—H41C0.9600
C2—C31.387 (2)C42—H42A0.9600
C3—C41.355 (2)C42—H42B0.9600
C3—H30.9300C42—H42C0.9600
C4—C51.404 (2)C43—H43A0.9600
C4—H40.9300C43—H43B0.9600
C5—C61.390 (2)C43—H43C0.9600
C6—H60.9300C44—H44A0.9600
C7—C121.354 (2)C44—H44B0.9600
C7—C81.380 (2)C44—H44C0.9600
C8—C91.376 (2)
C2—O1—H199.7 (14)C12—C11—H11121.5
C13—O2—H1102.2 (11)C10—C11—H11121.5
N2—N1—C5109.66 (15)C7—C12—C11123.81 (17)
N1—N2—C7109.54 (15)C7—C12—H12118.1
O5—N3—O4123.30 (18)C11—C12—H12118.1
O5—N3—C10117.5 (2)O3—C13—O2123.85 (14)
O4—N3—C10119.15 (16)O3—C13—C1120.96 (14)
C6—C1—C2119.46 (14)O2—C13—C1115.17 (14)
C6—C1—C13120.41 (14)C44—N4—C42108.96 (12)
C2—C1—C13120.09 (13)C44—N4—C41110.51 (11)
O1—C2—C3120.40 (15)C42—N4—C41109.26 (11)
O1—C2—C1120.17 (14)C44—N4—C43109.67 (12)
C3—C2—C1119.41 (15)C42—N4—C43108.99 (12)
C4—C3—C2120.99 (17)C41—N4—C43109.43 (12)
C4—C3—H3119.5N4—C41—H41A109.5
C2—C3—H3119.5N4—C41—H41B109.5
C3—C4—C5120.31 (16)H41A—C41—H41B109.5
C3—C4—H4119.8N4—C41—H41C109.5
C5—C4—H4119.8H41A—C41—H41C109.5
C6—C5—C4119.27 (16)H41B—C41—H41C109.5
C6—C5—N1128.10 (17)N4—C42—H42A109.5
C4—C5—N1112.62 (15)N4—C42—H42B109.5
C1—C6—C5120.36 (15)H42A—C42—H42B109.5
C1—C6—H6119.8N4—C42—H42C109.5
C5—C6—H6119.8H42A—C42—H42C109.5
C12—C7—C8116.36 (17)H42B—C42—H42C109.5
C12—C7—N2129.24 (18)N4—C43—H43A109.5
C8—C7—N2114.40 (17)N4—C43—H43B109.5
C9—C8—C7123.03 (17)H43A—C43—H43B109.5
C9—C8—H8118.5N4—C43—H43C109.5
C7—C8—H8118.5H43A—C43—H43C109.5
C10—C9—C8119.12 (17)H43B—C43—H43C109.5
C10—C9—H9120.4N4—C44—H44A109.5
C8—C9—H9120.4N4—C44—H44B109.5
C9—C10—C11120.71 (16)H44A—C44—H44B109.5
C9—C10—N3118.01 (16)N4—C44—H44C109.5
C11—C10—N3121.29 (16)H44A—C44—H44C109.5
C12—C11—C10116.96 (16)H44B—C44—H44C109.5
C5—N1—N2—C7179.75 (12)C12—C7—C8—C90.5 (2)
C6—C1—C2—O1176.67 (13)N2—C7—C8—C9179.13 (14)
C13—C1—C2—O15.7 (2)C7—C8—C9—C100.1 (2)
C6—C1—C2—C34.5 (2)C8—C9—C10—C110.3 (2)
C13—C1—C2—C3173.12 (14)C8—C9—C10—N3180.00 (14)
O1—C2—C3—C4178.72 (16)O5—N3—C10—C9172.07 (17)
C1—C2—C3—C42.5 (3)O4—N3—C10—C910.0 (2)
C2—C3—C4—C51.7 (3)O5—N3—C10—C118.2 (2)
C3—C4—C5—C63.9 (3)O4—N3—C10—C11169.74 (17)
C3—C4—C5—N1177.61 (16)C9—C10—C11—C120.2 (2)
N2—N1—C5—C611.7 (2)N3—C10—C11—C12179.51 (15)
N2—N1—C5—C4169.97 (15)C8—C7—C12—C111.0 (3)
C2—C1—C6—C52.4 (2)N2—C7—C12—C11178.54 (16)
C13—C1—C6—C5175.25 (13)C10—C11—C12—C70.9 (3)
C4—C5—C6—C11.8 (2)C6—C1—C13—O34.5 (2)
N1—C5—C6—C1179.97 (14)C2—C1—C13—O3173.19 (14)
N1—N2—C7—C126.1 (2)C6—C1—C13—O2176.96 (13)
N1—N2—C7—C8173.45 (15)C2—C1—C13—O25.41 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O21.07 (3)1.37 (3)2.4170 (17)162 (2)
C41—H41A···O5i0.962.623.491 (2)151
C41—H41B···O1ii0.962.503.383 (2)152
C41—H41C···O2iii0.962.513.4058 (19)156
C42—H42A···O3iii0.962.563.445 (2)154
C42—H42C···O3iv0.962.523.367 (2)147
C43—H43A···O3iv0.962.483.336 (2)148
C44—H44A···O3iv0.962.573.402 (2)145
C44—H44B···O1ii0.962.663.502 (2)147
C44—H44C···O5i0.962.653.507 (2)149
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y1, z; (iii) x, y, z+1/2; (iv) x, y, z1/2.
(II) Tetramethylammonium 2-hydroxy-5-[(E)-(2-nitrophenyl)diazenyl]benzoate top
Crystal data top
C4H12N+·C13H8N3O5F(000) = 760
Mr = 360.37Dx = 1.353 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.4305 (7) ÅCell parameters from 5134 reflections
b = 6.7820 (4) Åθ = 3.0–27.7°
c = 19.4498 (11) ŵ = 0.10 mm1
β = 92.935 (4)°T = 295 K
V = 1769.27 (17) Å3Irregular block, red
Z = 40.35 × 0.30 × 0.25 mm
Data collection top
Stoe STADI VARI
diffractometer
3294 independent reflections
Radiation source: fine-focus sealed tube1831 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 5.81 pixels mm-1θmax = 25.5°, θmin = 1.5°
rotation method scansh = 1616
Absorption correction: multi-scan
(Blessing, 1995)
k = 78
Tmin = 0.931, Tmax = 0.975l = 2323
6430 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0282P)2 + 0.165P]
where P = (Fo2 + 2Fc2)/3
3294 reflections(Δ/σ)max < 0.001
243 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.11 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.33438 (12)0.4885 (3)0.51425 (8)0.0620 (5)
H10.391 (2)0.473 (4)0.4911 (14)0.108 (11)*
O20.45032 (12)0.4248 (3)0.42289 (9)0.0846 (6)
O30.40133 (12)0.4292 (3)0.31267 (8)0.0807 (6)
O40.10733 (12)0.6880 (3)0.14040 (9)0.0750 (5)
O50.06993 (13)0.4564 (3)0.06850 (9)0.0888 (6)
N10.02075 (11)0.5636 (2)0.32067 (8)0.0420 (4)
N20.03466 (11)0.5247 (2)0.25841 (8)0.0422 (4)
N30.04997 (13)0.5637 (3)0.11612 (9)0.0519 (5)
C10.28106 (14)0.4898 (3)0.39495 (10)0.0400 (5)
C20.26088 (15)0.5068 (3)0.46500 (10)0.0436 (5)
C30.16524 (15)0.5435 (3)0.48431 (10)0.0522 (6)
H30.15250.55480.53070.063*
C40.08906 (15)0.5633 (3)0.43534 (10)0.0481 (5)
H40.02500.59070.44870.058*
C50.10645 (15)0.5428 (3)0.36564 (10)0.0405 (5)
C60.20263 (14)0.5081 (3)0.34630 (9)0.0388 (5)
H60.21480.49690.29980.047*
C70.05544 (14)0.5363 (3)0.21610 (9)0.0398 (5)
C80.04811 (15)0.5440 (3)0.14504 (10)0.0415 (5)
C90.13029 (16)0.5332 (3)0.09981 (10)0.0477 (5)
H90.12290.53710.05250.057*
C100.22288 (16)0.5166 (3)0.12545 (10)0.0496 (6)
H100.27930.50990.09570.059*
C110.23201 (16)0.5098 (3)0.19601 (11)0.0502 (6)
H110.29510.49930.21330.060*
C120.14965 (15)0.5184 (3)0.24100 (10)0.0465 (5)
H120.15730.51220.28820.056*
C130.38500 (16)0.4464 (4)0.37393 (12)0.0560 (6)
N40.38289 (14)0.4930 (3)0.13083 (9)0.0573 (5)
C410.3152 (2)0.3330 (4)0.15256 (13)0.0852 (9)
H41A0.32360.31470.20150.128*
H41B0.33120.21260.12960.128*
H41C0.24740.36850.14060.128*
C420.36231 (19)0.6799 (4)0.16767 (12)0.0732 (8)
H42A0.40740.78040.15380.110*
H42B0.37130.65910.21640.110*
H42C0.29490.72070.15660.110*
C430.48775 (19)0.4341 (5)0.14858 (17)0.1053 (11)
H43A0.53210.53470.13370.158*
H43B0.50200.31220.12600.158*
H43C0.49690.41740.19750.158*
C440.3678 (3)0.5272 (5)0.05562 (13)0.1033 (11)
H44A0.29960.56320.04490.155*
H44B0.38320.40880.03130.155*
H44C0.41080.63160.04200.155*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0534 (11)0.0871 (14)0.0440 (9)0.0041 (10)0.0124 (8)0.0016 (9)
O20.0491 (10)0.1366 (18)0.0665 (11)0.0210 (11)0.0116 (9)0.0138 (12)
O30.0533 (10)0.1354 (17)0.0541 (11)0.0126 (11)0.0095 (8)0.0038 (11)
O40.0585 (11)0.0849 (13)0.0820 (12)0.0216 (10)0.0061 (9)0.0070 (10)
O50.0820 (13)0.1237 (17)0.0627 (11)0.0099 (12)0.0245 (9)0.0344 (12)
N10.0421 (10)0.0450 (11)0.0382 (9)0.0014 (8)0.0026 (8)0.0008 (8)
N20.0446 (10)0.0432 (11)0.0381 (10)0.0006 (8)0.0059 (7)0.0019 (8)
N30.0476 (12)0.0657 (14)0.0425 (10)0.0013 (10)0.0027 (8)0.0020 (10)
C10.0422 (12)0.0339 (12)0.0433 (11)0.0035 (9)0.0020 (9)0.0011 (9)
C20.0489 (13)0.0414 (13)0.0398 (11)0.0026 (11)0.0049 (10)0.0003 (10)
C30.0546 (14)0.0660 (16)0.0357 (11)0.0008 (12)0.0007 (10)0.0016 (11)
C40.0417 (12)0.0609 (15)0.0418 (12)0.0016 (11)0.0042 (9)0.0011 (11)
C50.0442 (12)0.0376 (13)0.0392 (11)0.0030 (10)0.0044 (9)0.0015 (10)
C60.0461 (12)0.0355 (12)0.0344 (10)0.0006 (9)0.0016 (9)0.0026 (9)
C70.0426 (12)0.0361 (12)0.0399 (11)0.0033 (9)0.0053 (9)0.0010 (9)
C80.0457 (12)0.0373 (12)0.0412 (11)0.0045 (10)0.0016 (9)0.0013 (10)
C90.0543 (14)0.0467 (14)0.0412 (11)0.0034 (11)0.0057 (10)0.0012 (10)
C100.0480 (13)0.0489 (14)0.0500 (13)0.0045 (11)0.0157 (10)0.0026 (11)
C110.0435 (12)0.0500 (15)0.0566 (14)0.0045 (11)0.0028 (10)0.0014 (11)
C120.0468 (13)0.0488 (14)0.0436 (11)0.0020 (11)0.0012 (9)0.0030 (10)
C130.0395 (13)0.0742 (18)0.0537 (14)0.0027 (12)0.0021 (11)0.0023 (13)
N40.0576 (12)0.0619 (13)0.0527 (11)0.0023 (10)0.0053 (9)0.0002 (10)
C410.102 (2)0.075 (2)0.0782 (19)0.0297 (17)0.0046 (16)0.0032 (15)
C420.0696 (18)0.0688 (18)0.0814 (18)0.0017 (15)0.0061 (14)0.0160 (15)
C430.067 (2)0.110 (3)0.140 (3)0.0313 (18)0.0169 (19)0.025 (2)
C440.162 (3)0.094 (2)0.0539 (16)0.008 (2)0.0070 (18)0.0043 (16)
Geometric parameters (Å, º) top
O1—C21.346 (2)C9—C101.368 (3)
O1—H10.91 (3)C9—H90.9300
O2—C131.270 (2)C10—C111.385 (3)
O3—C131.228 (2)C10—H100.9300
O4—N31.221 (2)C11—C121.376 (3)
O5—N31.219 (2)C11—H110.9300
N1—N21.263 (2)C12—H120.9300
N1—C51.417 (2)N4—C441.485 (3)
N2—C71.430 (2)N4—C431.487 (3)
N3—C81.465 (2)N4—C421.489 (3)
C1—C61.385 (2)N4—C411.491 (3)
C1—C21.407 (2)C41—H41A0.9600
C1—C131.504 (3)C41—H41B0.9600
C2—C31.379 (3)C41—H41C0.9600
C3—C41.368 (3)C42—H42A0.9600
C3—H30.9300C42—H42B0.9600
C4—C51.394 (3)C42—H42C0.9600
C4—H40.9300C43—H43A0.9600
C5—C61.384 (3)C43—H43B0.9600
C6—H60.9300C43—H43C0.9600
C7—C121.383 (3)C44—H44A0.9600
C7—C81.392 (3)C44—H44B0.9600
C8—C91.378 (3)C44—H44C0.9600
C2—O1—H1105.1 (17)C10—C11—H11119.3
N2—N1—C5114.57 (16)C11—C12—C7120.1 (2)
N1—N2—C7112.20 (16)C11—C12—H12120.0
O5—N3—O4123.20 (19)C7—C12—H12120.0
O5—N3—C8118.33 (19)O3—C13—O2124.5 (2)
O4—N3—C8118.47 (18)O3—C13—C1119.79 (19)
C6—C1—C2118.47 (18)O2—C13—C1115.7 (2)
C6—C1—C13121.06 (18)C44—N4—C43110.5 (2)
C2—C1—C13120.44 (18)C44—N4—C42108.8 (2)
O1—C2—C3118.83 (18)C43—N4—C42108.3 (2)
O1—C2—C1120.73 (19)C44—N4—C41109.8 (2)
C3—C2—C1120.44 (18)C43—N4—C41108.8 (2)
C4—C3—C2120.12 (19)C42—N4—C41110.65 (19)
C4—C3—H3119.9N4—C41—H41A109.5
C2—C3—H3119.9N4—C41—H41B109.5
C3—C4—C5120.7 (2)H41A—C41—H41B109.5
C3—C4—H4119.7N4—C41—H41C109.5
C5—C4—H4119.7H41A—C41—H41C109.5
C6—C5—C4119.10 (18)H41B—C41—H41C109.5
C6—C5—N1126.11 (18)N4—C42—H42A109.5
C4—C5—N1114.78 (18)N4—C42—H42B109.5
C5—C6—C1121.16 (18)H42A—C42—H42B109.5
C5—C6—H6119.4N4—C42—H42C109.5
C1—C6—H6119.4H42A—C42—H42C109.5
C12—C7—C8117.62 (18)H42B—C42—H42C109.5
C12—C7—N2123.77 (18)N4—C43—H43A109.5
C8—C7—N2118.21 (18)N4—C43—H43B109.5
C9—C8—C7122.48 (19)H43A—C43—H43B109.5
C9—C8—N3117.81 (18)N4—C43—H43C109.5
C7—C8—N3119.71 (18)H43A—C43—H43C109.5
C10—C9—C8119.03 (19)H43B—C43—H43C109.5
C10—C9—H9120.5N4—C44—H44A109.5
C8—C9—H9120.5N4—C44—H44B109.5
C9—C10—C11119.49 (19)H44A—C44—H44B109.5
C9—C10—H10120.3N4—C44—H44C109.5
C11—C10—H10120.3H44A—C44—H44C109.5
C12—C11—C10121.3 (2)H44B—C44—H44C109.5
C12—C11—H11119.3
C5—N1—N2—C7176.40 (16)N2—C7—C8—C9172.57 (19)
C6—C1—C2—O1179.4 (2)C12—C7—C8—N3179.74 (19)
C13—C1—C2—O11.3 (3)N2—C7—C8—N37.2 (3)
C6—C1—C2—C30.9 (3)O5—N3—C8—C946.3 (3)
C13—C1—C2—C3179.0 (2)O4—N3—C8—C9133.0 (2)
O1—C2—C3—C4179.8 (2)O5—N3—C8—C7133.6 (2)
C1—C2—C3—C40.1 (3)O4—N3—C8—C747.2 (3)
C2—C3—C4—C51.3 (3)C7—C8—C9—C100.8 (3)
C3—C4—C5—C62.0 (3)N3—C8—C9—C10179.39 (19)
C3—C4—C5—N1179.0 (2)C8—C9—C10—C110.4 (3)
N2—N1—C5—C68.2 (3)C9—C10—C11—C120.3 (3)
N2—N1—C5—C4172.94 (18)C10—C11—C12—C70.7 (3)
C4—C5—C6—C11.3 (3)C8—C7—C12—C110.3 (3)
N1—C5—C6—C1179.88 (19)N2—C7—C12—C11172.89 (19)
C2—C1—C6—C50.2 (3)C6—C1—C13—O30.9 (4)
C13—C1—C6—C5178.2 (2)C2—C1—C13—O3179.0 (2)
N1—N2—C7—C1222.6 (3)C6—C1—C13—O2177.2 (2)
N1—N2—C7—C8164.85 (18)C2—C1—C13—O20.8 (3)
C12—C7—C8—C90.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.91 (3)1.61 (3)2.460 (2)153 (3)
C9—H9···O5i0.932.493.413 (3)170
C41—H41A···O30.962.483.331 (3)148
C41—H41B···O1ii0.962.633.482 (3)148
C42—H42B···O30.962.453.312 (3)149
C42—H42C···O40.962.533.439 (3)157
C43—H43C···O30.962.643.452 (3)143
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z1/2.
Selected interatomic distances (Å) in (I), (II) and related structures top
StructureC2—O1C13—O2C13—O3O1···O2
(I)1.3273 (18)1.2923 (17)1.2225 (18)2.4170 (17)
(II)1.346 (2)1.270 (3)1.228 (2)2.460 (2)
CODYIFa1.352 (3)1.286 (3)1.257 (3)2.534 (3)
1.347 (3)1.281 (3)1.234 (3)2.532 (2)
CODYEBb1.350 (3)1.265 (3)1.246 (3)2.524 (3)
NILNAZc1.340 (4)1.281 (4)1.224 (4)2.457 (3)
ACACUEd1.334 (4)1.279 (3)1.236 (4)2.497 (3)
EGUTEF01e1.280 (3)1.302 (2)1.222 (2)2.454 (2)
Notes: (a) CODYIF is sodium 5-[(4-nitrophenyl)diazenyl]salicylate (Yatsenko & Paseshnichenko, 2014); (b) CODYEB is ammonium 5-(phenyldiazenyl)salicylate (Yatsenko & Paseshnichenko, 2014); (c) NILNAZ is tetrabutylphosphonium salicylate (Ando et al., 2013); (d) ACACUE is 4-aminopyridinium 5-nitrosalicylate (Montis & Hursthouse, 2012); (e) EGUTEF01 is the COOH form of ammonium 3,5-dinitrosalicylate (Smith et al., 2002).
Calculated energy of the COOH form (at the B3LYP and MP2 levels) with respect to that of COO- form of substituted salicylates in benzene and water (kJ mol-1). top
SubstituentMethodBenzeneWater
5-(Phenyldiazenyl)-B3LYP-6.2a4.4
MP20.8
5-[(4-Nitrophenyl)diazenyl]-B3LYP-12.0b0.3
MP2-2.49.5b
5-[(2-Nitrophenyl)diazenyl]-B3LYP-10.6b1.7
Notes: (a) the negative value means that the COOH form is more stable; (b) one of the forms does not correspond with energy minimum. In such case, the O—H bond distance was fixed at 1.06 Å through geometry optimization of `unstable' form.
Calculated O1···O2 distances (Å) and proton-transfer barriers in substituted salicylates top
SystemCalculation methodO1···O2 in the COO- formO1···O2 in the COOH formO1···O2 with H atom at the top of barrierBarrier heighta (kJ mol-1)
5-Nitrosalicylate in waterB3LYP2.4792.4792.3744.2
5-Nitrosalicylate in benzeneMP22.4472.4482.3712.5
5-[(4-Nitrophenyl)diazenyl]salicylate in waterB3LYP2.4762.4772.3754.3
5-Phenyldiazenyl-salicylate in benzeneMP22.4472.4422.3712.7
3,5-Dinitrosalicylate in waterMP22.4422.4582.3663.6
Note: (a) with respect to the most stable form.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds