Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101018571/ln1125sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270101018571/ln1125Isup2.hkl |
CCDC reference: 180171
1.40 g (10 mmol) of hexamethylenetetramine and 2.29 g (10 mmol) of 2,4,6-trinitrophenol were thoroughly mixed and then dissolved in 50 ml of acetone with drops of water. The mixture was warmed until a clear solution was obtained. The solution was filtered off and left to evaporate slowly in air. Yellow single crystals suitable for X-ray data collection were obtained from the solution after a few days.
The H14N atom was located in a difference Fourier map and was refined freely as an isotropic atom. After checking for H atoms in the difference map, the positions of all remaining H atoms were geometrically idealized and allowed to ride on their parent atoms with C—H distances in the range 0.93–0.97 Å and fixed displacement parameters defined by Uiso(H) = 1.2Ueq(C).
Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).
C6H13N4+·C6H2N3O7− | F(000) = 768 |
Mr = 369.31 | Dx = 1.661 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.4995 (2) Å | Cell parameters from 6652 reflections |
b = 6.6344 (1) Å | θ = 3.2–28.3° |
c = 18.6203 (2) Å | µ = 0.14 mm−1 |
β = 107.022 (1)° | T = 183 K |
V = 1476.48 (4) Å3 | Block, yellow |
Z = 4 | 0.40 × 0.40 × 0.32 mm |
Siemens SMART CCD area detector diffractometer | 3575 independent reflections |
Radiation source: fine-focus sealed tube | 2697 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.069 |
Detector resolution: 8.33 pixels mm-1 | θmax = 28.3°, θmin = 3.2° |
ω scans | h = −16→16 |
Absorption correction: empirical (using intensity measurements) (SADABS; Sheldrick, 1996) | k = −8→7 |
Tmin = 0.947, Tmax = 0.957 | l = −24→16 |
8504 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.058 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.154 | w = 1/[σ2(Fo2) + (0.0807P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.95 | (Δ/σ)max < 0.001 |
3575 reflections | Δρmax = 0.43 e Å−3 |
240 parameters | Δρmin = −0.43 e Å−3 |
0 restraints | Extinction correction: SHELXTL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.033 (4) |
C6H13N4+·C6H2N3O7− | V = 1476.48 (4) Å3 |
Mr = 369.31 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.4995 (2) Å | µ = 0.14 mm−1 |
b = 6.6344 (1) Å | T = 183 K |
c = 18.6203 (2) Å | 0.40 × 0.40 × 0.32 mm |
β = 107.022 (1)° |
Siemens SMART CCD area detector diffractometer | 3575 independent reflections |
Absorption correction: empirical (using intensity measurements) (SADABS; Sheldrick, 1996) | 2697 reflections with I > 2σ(I) |
Tmin = 0.947, Tmax = 0.957 | Rint = 0.069 |
8504 measured reflections |
R[F2 > 2σ(F2)] = 0.058 | 0 restraints |
wR(F2) = 0.154 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.95 | Δρmax = 0.43 e Å−3 |
3575 reflections | Δρmin = −0.43 e Å−3 |
240 parameters |
Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 10 s covered 0.3° in ω. The crystal-to-detector distance was 5 cm and the detector swing angle was -35°. Crystal decay was monitored by repeating fifty initial frames at the end of data collection and analysing the intensity of duplicate reflections, and was found to be negligible. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.60294 (10) | 0.5516 (2) | 0.07795 (8) | 0.0320 (3) | |
O2 | 0.45903 (14) | 0.8527 (2) | 0.04912 (12) | 0.0550 (5) | |
O3 | 0.29116 (13) | 0.7894 (3) | 0.04515 (12) | 0.0615 (6) | |
O4 | 0.18616 (10) | 0.2220 (2) | 0.15681 (8) | 0.0312 (4) | |
O5 | 0.30662 (12) | −0.0030 (2) | 0.21338 (10) | 0.0438 (4) | |
O6 | 0.67789 (12) | 0.0254 (2) | 0.20283 (10) | 0.0431 (4) | |
O7 | 0.73586 (11) | 0.2486 (2) | 0.14037 (10) | 0.0408 (4) | |
N3 | 0.66203 (12) | 0.1781 (2) | 0.16407 (9) | 0.0223 (3) | |
N2 | 0.28268 (12) | 0.1539 (2) | 0.17746 (8) | 0.0227 (3) | |
N1 | 0.38972 (12) | 0.7422 (2) | 0.06093 (9) | 0.0243 (3) | |
N4 | 0.81992 (11) | 0.61547 (19) | 0.09625 (7) | 0.0149 (3) | |
N5 | 0.97556 (10) | 0.7577 (2) | 0.19366 (7) | 0.0157 (3) | |
N6 | 1.00739 (11) | 0.59303 (19) | 0.08449 (8) | 0.0160 (3) | |
N7 | 0.91067 (11) | 0.91728 (19) | 0.07003 (8) | 0.0151 (3) | |
C1 | 0.53481 (13) | 0.4662 (2) | 0.10504 (9) | 0.0182 (3) | |
C2 | 0.42297 (13) | 0.5466 (2) | 0.09739 (9) | 0.0171 (3) | |
C3 | 0.34367 (13) | 0.4483 (2) | 0.12158 (9) | 0.0168 (3) | |
H3A | 0.2733 | 0.5054 | 0.1143 | 0.020* | |
C4 | 0.36892 (13) | 0.2631 (2) | 0.15695 (9) | 0.0170 (3) | |
C5 | 0.47419 (13) | 0.1785 (2) | 0.17098 (9) | 0.0175 (3) | |
H5A | 0.4908 | 0.0567 | 0.1966 | 0.021* | |
C6 | 0.55404 (13) | 0.2770 (2) | 0.14654 (9) | 0.0176 (3) | |
C7 | 0.86933 (13) | 0.6544 (2) | 0.17982 (9) | 0.0167 (3) | |
H7A | 0.8181 | 0.7361 | 0.1978 | 0.020* | |
H7B | 0.8802 | 0.5274 | 0.2068 | 0.020* | |
C8 | 0.90167 (14) | 0.4883 (2) | 0.06953 (9) | 0.0174 (3) | |
H8A | 0.9127 | 0.3597 | 0.0954 | 0.021* | |
H8B | 0.8717 | 0.4629 | 0.0161 | 0.021* | |
C9 | 0.80422 (13) | 0.8160 (2) | 0.05523 (9) | 0.0162 (3) | |
H9A | 0.7730 | 0.7938 | 0.0017 | 0.019* | |
H9B | 0.7524 | 0.8994 | 0.0720 | 0.019* | |
C10 | 1.05185 (13) | 0.6316 (2) | 0.16567 (9) | 0.0181 (3) | |
H10A | 1.1237 | 0.6986 | 0.1758 | 0.022* | |
H10B | 1.0635 | 0.5042 | 0.1924 | 0.022* | |
C11 | 0.98830 (13) | 0.7876 (2) | 0.04477 (9) | 0.0173 (3) | |
H11A | 0.9580 | 0.7635 | −0.0087 | 0.021* | |
H11B | 1.0593 | 0.8568 | 0.0532 | 0.021* | |
C12 | 0.95718 (13) | 0.9492 (2) | 0.15161 (9) | 0.0169 (3) | |
H12A | 0.9062 | 1.0326 | 0.1691 | 0.020* | |
H12B | 1.0277 | 1.0207 | 0.1615 | 0.020* | |
H1N4 | 0.751 (2) | 0.550 (3) | 0.0879 (14) | 0.046 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0130 (6) | 0.0422 (8) | 0.0414 (8) | −0.0030 (5) | 0.0087 (6) | 0.0185 (6) |
O2 | 0.0472 (10) | 0.0246 (8) | 0.1038 (16) | −0.0003 (7) | 0.0387 (10) | 0.0197 (8) |
O3 | 0.0211 (8) | 0.0479 (10) | 0.1066 (16) | 0.0081 (7) | 0.0046 (9) | 0.0446 (10) |
O4 | 0.0117 (6) | 0.0399 (8) | 0.0434 (8) | 0.0009 (5) | 0.0104 (6) | 0.0099 (6) |
O5 | 0.0277 (8) | 0.0465 (9) | 0.0591 (10) | 0.0008 (6) | 0.0156 (7) | 0.0337 (8) |
O6 | 0.0261 (8) | 0.0465 (9) | 0.0603 (11) | 0.0174 (6) | 0.0181 (7) | 0.0281 (8) |
O7 | 0.0222 (7) | 0.0264 (7) | 0.0838 (13) | 0.0037 (5) | 0.0310 (8) | 0.0089 (7) |
N3 | 0.0146 (7) | 0.0219 (7) | 0.0309 (8) | 0.0009 (5) | 0.0074 (6) | −0.0016 (6) |
N2 | 0.0145 (7) | 0.0314 (8) | 0.0226 (7) | −0.0016 (6) | 0.0062 (6) | 0.0078 (6) |
N1 | 0.0219 (8) | 0.0202 (7) | 0.0281 (8) | −0.0014 (6) | 0.0032 (6) | 0.0033 (6) |
N4 | 0.0103 (6) | 0.0165 (6) | 0.0183 (7) | −0.0016 (5) | 0.0048 (5) | 0.0009 (5) |
N5 | 0.0119 (6) | 0.0188 (6) | 0.0160 (6) | 0.0006 (5) | 0.0033 (5) | 0.0012 (5) |
N6 | 0.0148 (7) | 0.0172 (6) | 0.0183 (7) | 0.0019 (5) | 0.0082 (5) | 0.0020 (5) |
N7 | 0.0143 (6) | 0.0144 (6) | 0.0175 (6) | 0.0007 (5) | 0.0058 (5) | 0.0019 (5) |
C1 | 0.0115 (7) | 0.0242 (8) | 0.0181 (8) | −0.0041 (6) | 0.0030 (6) | −0.0002 (6) |
C2 | 0.0139 (8) | 0.0174 (7) | 0.0184 (8) | −0.0014 (6) | 0.0022 (6) | 0.0011 (6) |
C3 | 0.0117 (7) | 0.0219 (8) | 0.0165 (7) | 0.0001 (6) | 0.0035 (6) | −0.0013 (6) |
C4 | 0.0116 (8) | 0.0229 (8) | 0.0176 (8) | −0.0023 (6) | 0.0062 (6) | 0.0021 (6) |
C5 | 0.0143 (8) | 0.0190 (7) | 0.0181 (8) | 0.0000 (6) | 0.0031 (6) | 0.0012 (6) |
C6 | 0.0099 (7) | 0.0218 (8) | 0.0204 (8) | 0.0006 (6) | 0.0033 (6) | −0.0016 (6) |
C7 | 0.0158 (8) | 0.0218 (8) | 0.0145 (7) | −0.0005 (6) | 0.0078 (6) | 0.0019 (6) |
C8 | 0.0188 (8) | 0.0142 (7) | 0.0208 (8) | 0.0001 (6) | 0.0083 (6) | −0.0020 (6) |
C9 | 0.0118 (7) | 0.0185 (7) | 0.0166 (7) | 0.0026 (5) | 0.0016 (6) | 0.0020 (6) |
C10 | 0.0124 (7) | 0.0223 (8) | 0.0189 (8) | 0.0044 (6) | 0.0034 (6) | 0.0039 (6) |
C11 | 0.0164 (8) | 0.0193 (8) | 0.0192 (8) | 0.0014 (6) | 0.0099 (6) | 0.0031 (6) |
C12 | 0.0159 (7) | 0.0141 (7) | 0.0204 (8) | −0.0018 (5) | 0.0049 (6) | −0.0023 (6) |
O1—C1 | 1.2456 (19) | N7—C12 | 1.474 (2) |
O2—N1 | 1.2037 (19) | C1—C6 | 1.457 (2) |
O3—N1 | 1.221 (2) | C1—C2 | 1.464 (2) |
O4—N2 | 1.2393 (18) | C2—C3 | 1.368 (2) |
O5—N2 | 1.2258 (19) | C3—C4 | 1.386 (2) |
O6—N3 | 1.226 (2) | C3—H3A | 0.9300 |
O7—N3 | 1.2262 (18) | C4—C5 | 1.383 (2) |
N3—C6 | 1.449 (2) | C5—C6 | 1.377 (2) |
N2—C4 | 1.4403 (19) | C5—H5A | 0.9300 |
N1—C2 | 1.467 (2) | C7—H7A | 0.9700 |
N4—C8 | 1.517 (2) | C7—H7B | 0.9700 |
N4—C9 | 1.5181 (19) | C8—H8A | 0.9700 |
N4—C7 | 1.519 (2) | C8—H8B | 0.9700 |
N4—H1N4 | 0.94 (3) | C9—H9A | 0.9700 |
N5—C7 | 1.4488 (19) | C9—H9B | 0.9700 |
N5—C10 | 1.4737 (19) | C10—H10A | 0.9700 |
N5—C12 | 1.474 (2) | C10—H10B | 0.9700 |
N6—C8 | 1.446 (2) | C11—H11A | 0.9700 |
N6—C11 | 1.4719 (19) | C11—H11B | 0.9700 |
N6—C10 | 1.472 (2) | C12—H12A | 0.9700 |
N7—C9 | 1.4431 (19) | C12—H12B | 0.9700 |
N7—C11 | 1.4733 (19) | ||
O6—N3—O7 | 121.20 (15) | C5—C6—N3 | 115.37 (14) |
O6—N3—C6 | 119.06 (14) | C5—C6—C1 | 124.14 (14) |
O7—N3—C6 | 119.74 (14) | N3—C6—C1 | 120.49 (14) |
O5—N2—O4 | 122.60 (14) | N5—C7—N4 | 109.83 (12) |
O5—N2—C4 | 119.32 (14) | N5—C7—H7A | 109.7 |
O4—N2—C4 | 118.07 (14) | N4—C7—H7A | 109.7 |
O2—N1—O3 | 121.94 (16) | N5—C7—H7B | 109.7 |
O2—N1—C2 | 120.14 (15) | N4—C7—H7B | 109.7 |
O3—N1—C2 | 117.89 (14) | H7A—C7—H7B | 108.2 |
C8—N4—C9 | 108.82 (12) | N6—C8—N4 | 109.58 (12) |
C8—N4—C7 | 108.64 (12) | N6—C8—H8A | 109.8 |
C9—N4—C7 | 108.69 (12) | N4—C8—H8A | 109.8 |
C8—N4—H1N4 | 111.3 (14) | N6—C8—H8B | 109.8 |
C9—N4—H1N4 | 110.2 (15) | N4—C8—H8B | 109.8 |
C7—N4—H1N4 | 109.2 (15) | H8A—C8—H8B | 108.2 |
C7—N5—C10 | 108.83 (12) | N7—C9—N4 | 109.62 (12) |
C7—N5—C12 | 108.73 (12) | N7—C9—H9A | 109.7 |
C10—N5—C12 | 108.51 (12) | N4—C9—H9A | 109.7 |
C8—N6—C11 | 108.66 (12) | N7—C9—H9B | 109.7 |
C8—N6—C10 | 109.30 (12) | N4—C9—H9B | 109.7 |
C11—N6—C10 | 108.68 (12) | H9A—C9—H9B | 108.2 |
C9—N7—C11 | 108.89 (12) | N6—C10—N5 | 111.90 (12) |
C9—N7—C12 | 109.09 (12) | N6—C10—H10A | 109.2 |
C11—N7—C12 | 108.35 (12) | N5—C10—H10A | 109.2 |
O1—C1—C6 | 125.47 (15) | N6—C10—H10B | 109.2 |
O1—C1—C2 | 122.79 (15) | N5—C10—H10B | 109.2 |
C6—C1—C2 | 111.73 (13) | H10A—C10—H10B | 107.9 |
C3—C2—C1 | 123.88 (15) | N6—C11—N7 | 112.14 (12) |
C3—C2—N1 | 116.08 (14) | N6—C11—H11A | 109.2 |
C1—C2—N1 | 120.03 (14) | N7—C11—H11A | 109.2 |
C2—C3—C4 | 119.52 (15) | N6—C11—H11B | 109.2 |
C2—C3—H3A | 120.2 | N7—C11—H11B | 109.2 |
C4—C3—H3A | 120.2 | H11A—C11—H11B | 107.9 |
C5—C4—C3 | 121.41 (14) | N7—C12—N5 | 112.13 (12) |
C5—C4—N2 | 119.35 (14) | N7—C12—H12A | 109.2 |
C3—C4—N2 | 119.21 (14) | N5—C12—H12A | 109.2 |
C6—C5—C4 | 119.11 (15) | N7—C12—H12B | 109.2 |
C6—C5—H5A | 120.4 | N5—C12—H12B | 109.2 |
C4—C5—H5A | 120.4 | H12A—C12—H12B | 107.9 |
O1—C1—C2—C3 | 174.80 (16) | O1—C1—C6—N3 | 4.4 (3) |
C6—C1—C2—C3 | −4.4 (2) | C2—C1—C6—N3 | −176.45 (14) |
O1—C1—C2—N1 | −4.2 (3) | C10—N5—C7—N4 | −59.11 (16) |
C6—C1—C2—N1 | 176.62 (14) | C12—N5—C7—N4 | 58.91 (15) |
O2—N1—C2—C3 | 167.90 (18) | C8—N4—C7—N5 | 59.14 (15) |
O3—N1—C2—C3 | −10.3 (2) | C9—N4—C7—N5 | −59.12 (15) |
O2—N1—C2—C1 | −13.0 (3) | C11—N6—C8—N4 | −59.31 (16) |
O3—N1—C2—C1 | 168.81 (18) | C10—N6—C8—N4 | 59.14 (16) |
C1—C2—C3—C4 | 1.3 (3) | C9—N4—C8—N6 | 59.25 (16) |
N1—C2—C3—C4 | −179.67 (14) | C7—N4—C8—N6 | −58.93 (15) |
C2—C3—C4—C5 | 2.5 (2) | C11—N7—C9—N4 | 58.91 (16) |
C2—C3—C4—N2 | −175.61 (15) | C12—N7—C9—N4 | −59.16 (15) |
O5—N2—C4—C5 | 6.9 (2) | C8—N4—C9—N7 | −59.03 (16) |
O4—N2—C4—C5 | −172.03 (15) | C7—N4—C9—N7 | 59.12 (15) |
O5—N2—C4—C3 | −174.93 (17) | C8—N6—C10—N5 | −60.44 (16) |
O4—N2—C4—C3 | 6.1 (2) | C11—N6—C10—N5 | 57.99 (16) |
C3—C4—C5—C6 | −2.6 (3) | C7—N5—C10—N6 | 60.22 (16) |
N2—C4—C5—C6 | 175.49 (14) | C12—N5—C10—N6 | −57.94 (16) |
C4—C5—C6—N3 | 179.64 (14) | C8—N6—C11—N7 | 60.76 (16) |
C4—C5—C6—C1 | −1.0 (3) | C10—N6—C11—N7 | −58.08 (16) |
O6—N3—C6—C5 | −4.9 (2) | C9—N7—C11—N6 | −60.66 (17) |
O7—N3—C6—C5 | 175.43 (17) | C12—N7—C11—N6 | 57.88 (16) |
O6—N3—C6—C1 | 175.74 (16) | C9—N7—C12—N5 | 60.49 (16) |
O7—N3—C6—C1 | −3.9 (3) | C11—N7—C12—N5 | −57.92 (16) |
O1—C1—C6—C5 | −174.91 (17) | C7—N5—C12—N7 | −60.16 (16) |
C2—C1—C6—C5 | 4.3 (2) | C10—N5—C12—N7 | 58.06 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H14N···O1 | 0.94 (2) | 1.81 (3) | 2.666 (2) | 152 (2) |
N4—H14N···O7 | 0.94 (2) | 2.26 (2) | 2.865 (2) | 122 (2) |
C12—H12A···O7i | 0.97 | 2.49 | 3.362 (2) | 149 |
C12—H12B···O4ii | 0.97 | 2.41 | 3.364 (2) | 167 |
C5—H5A···Cgiii | 0.93 | 3.30 | 4.07 | 142 |
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) −x+1, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C6H13N4+·C6H2N3O7− |
Mr | 369.31 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 183 |
a, b, c (Å) | 12.4995 (2), 6.6344 (1), 18.6203 (2) |
β (°) | 107.022 (1) |
V (Å3) | 1476.48 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.14 |
Crystal size (mm) | 0.40 × 0.40 × 0.32 |
Data collection | |
Diffractometer | Siemens SMART CCD area detector diffractometer |
Absorption correction | Empirical (using intensity measurements) (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.947, 0.957 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8504, 3575, 2697 |
Rint | 0.069 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.058, 0.154, 0.95 |
No. of reflections | 3575 |
No. of parameters | 240 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.43, −0.43 |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).
O1—C1 | 1.2456 (19) | N5—C7 | 1.4488 (19) |
O2—N1 | 1.2037 (19) | N5—C10 | 1.4737 (19) |
O3—N1 | 1.221 (2) | N5—C12 | 1.474 (2) |
O4—N2 | 1.2393 (18) | N6—C8 | 1.446 (2) |
O5—N2 | 1.2258 (19) | N6—C11 | 1.4719 (19) |
O6—N3 | 1.226 (2) | N6—C10 | 1.472 (2) |
O7—N3 | 1.2262 (18) | N7—C9 | 1.4431 (19) |
N4—C8 | 1.517 (2) | N7—C11 | 1.4733 (19) |
N4—C9 | 1.5181 (19) | N7—C12 | 1.474 (2) |
N4—C7 | 1.519 (2) | ||
O6—N3—O7 | 121.20 (15) | O2—N1—O3 | 121.94 (16) |
O5—N2—O4 | 122.60 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H14N···O1 | 0.94 (2) | 1.81 (3) | 2.666 (2) | 152 (2) |
N4—H14N···O7 | 0.94 (2) | 2.26 (2) | 2.865 (2) | 122 (2) |
C12—H12A···O7i | 0.97 | 2.49 | 3.362 (2) | 149 |
C12—H12B···O4ii | 0.97 | 2.41 | 3.364 (2) | 167 |
C5—H5A···Cgiii | 0.93 | 3.30 | 4.07 | 142 |
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) −x+1, y−1/2, −z+1/2. |
Ring | Q2(Å) | Q3(Å) | QT(Å) | θ(°) |
A | 0.010 (2) | -0.598 (2) | 0.598 (2) | 179.0 (2) |
B | 0.011 (2) | 0.598 (2) | 0.598 (2) | 1.0 (2) |
C | 0.009 (2) | -0.599 (2) | 0.599 (2) | 179.0 (2) |
D | 0.001 (2) | 0.577 (2) | 0.577 (2) | 0.0 (2) |
The A, B, C, D rings are defined by N4-C7-N5-C10-N6-C8, N4-C7-N5-C12-N7-C9, N4-C8-N6-C11-N7-C9, and N5-C10-N6-C11-N7-C12, respectively. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register
The crystal structures of the adducts of hexamethylenetetramine (HMT) and mono-, di-, or tri-phenol derivatives have been investigated intensively (Jordan & Mak, 1970; Mak et al., 1977, 1978; Mahmoud & Wallwork, 1979; Coupar, Glidewell & Ferguson, 1997; Coupar, Ferguson et al., 1997; Ng et al., 2001; Usman et al., 2001). Although HMT usually acts as an acceptor of up to three O—H···N hydrogen bonds (Jordan & Mak, 1970; Mak et al., 1977, 1978; Mahmoud & Wallwork, 1979; Coupar, Glidewell & Ferguson, 1997; Coupar, Ferguson et al., 1997), or partially acts as a hydrogen bond donor with 4-nitrophenol (Ng et al., 2001), recently we have shown that HMT can also act solely as an N—H···O hydrogen donor in the presence of 2,4-dinitrophenol (Usman et al., 2001). In this HMT-2,4-dinitrophenol complex, the phenolic H atom is transferred to the HMT. This H-atom transfer process occurs because 2,4-dinitrophenol is a stronger acid than the other phenols investigated. This unusual behaviour of HMT in the solid state is of interest, and led us to the title adduct where 2,4,6-trinitrophenol (TNP) also acts as a stronger acid.
Scheme 1
In the title complex, the TNP also transfers an H atom from the hydroxy group to the HMT moiety to form the 2,4,6-trinitrophenolate anion (TNP-), making the HMT positively charged.
The bond lengths and angles (Table 1) within the hexamethylenetetraminium cation (HMT+) are comparable with those of HMT+ in the 143 K polymorph of hexamethylenetetraminium-2,4-dinitrophenolate (Usman et al., 2001), while those within the TNP- anion are comparable with those of TNP- in potassium- and ammonium-2,4,6-trinitrophenolate (Maartmann-Moe, 1969). For instance, in the title complex the mean N—O bond length [1.224 (5) Å] and the C—O bond length agree with the mean N—C and C—O bond lengths in the two 2,4,6-trinitrophenolate derivatives reported by Maartmann-Moe (1969) [N—C 1.224 (6) Å and C—O 1.241 (7) Å].
In the HMT+ cation, the N—C bond distances around the N4 atom are elongated due to the positive charge localized on the protonated N4 atom. The N4—C7, N4—C8 and N4—C9 bond distances [mean value of 1.518 (2) Å] are equivalent to the length of the typical N—C single bond in the trimethylammonium ion (Allen et al., 1987). The protonated N4 atom also slightly affects the π-electron distribution in the surrounding atoms, which can be seen in the shortening by about 0.03 Å of the N5—C7, N6—C8, and N7—C9 bond distances compared with the other two N5—C, N6—C and N7—C bonds.
In the title adduct, the TNP- anion is nearly planar, with the nitro groups slightly twisted about their C—N bonds so that the angles between the aromatic ring plane and those of the CNO2 groupings containing N1, N2 and N3 are 11.06 (1), 7.96 (9) and 5.46 (10)°, respectively. The nitro-O atoms deviate from the aromatic ring plane by 0.287 (2) O2, -0.114 (2) O3, -0.307 (1) O4, -0.062 (2) O5, 0.175 (2) O6 and -0.017 (2) Å O7. For the HMT+ cation, all of the six-membered NCNCNC rings adopt a chair conformation, as shown by their puckering parameters (Cremer & Pople, 1975) (see Table 3).
The crystal structure of the title adduct is built from sheets of HMT+ cations and separate sheets of TNP- anions stacked alternately along the a axis. The HMT+ cation acts as an N—H···O hydrogen bond donor and forms bifurcated interionic hydrogen bonds with both the phenolate-O atom and a nitro-O atom of the same adjacent TNP- anion (Table 2). These interactions link the HMT+ and TNP- ions into ion pairs. Interionic C12—H12A···O7 and C12—H12B···O4 interactions interconnect the ion pairs into infinite two dimensional networks which lie perpendicular to the c axis (Fig. 2). An interionic C5—H5···π interaction involving the centroid of the aromatic ring of the TNP- anion was also observed (Table 2).