Buy article online - an online subscription or single-article purchase is required to access this article.
The title compound, C9H11NO3S, has crystallographic mirror symmetry, occurs in the thiocarbamate form and is stabilized in an s-cisoid,s-transoid conformation with respect to the C-N-C group. There are two intramolecular hydrogen bonds, one between the H atom of the N-H group and the O atom of the furan ring, and the other between the H atom of the secondary carbon of the isopropyl group and the S atom. The packing of the molecules is assumed to be dictated by van der Waals interactions.
Supporting information
CCDC reference: 150405
The title compound was synthesized by the reaction of furoyl isothiocyanate with isopropyl alcohol using acetone as solvent (Schröder et al., 1995). Recrystallization from methanol gave crystals suitable for X-ray analysis.
H atoms were calculated geometrically and included in the refinement, but were restrained to ride on their parent atoms. The isotropic displacement parameters of the H atoms were fixed to 1.3Ueq of their parent atoms.
Data collection: DIF4 (Stoe & Cie, 1992); cell refinement: DIF4; data reduction: REDU4 (Stoe & Cie, 1992); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick 1997) and PARST (Nardelli, 1983, 1995).
O-Isopropyl
N-(2-furoyl)thiocarbamate
top
Crystal data top
C9H11NO3S | F(000) = 224 |
Mr = 213.25 | Dx = 1.331 Mg m−3 |
Monoclinic, P21/m | Mo Kα radiation, λ = 0.71073 Å |
a = 7.679 (4) Å | Cell parameters from 25 reflections |
b = 7.004 (5) Å | θ = 10–15° |
c = 10.372 (5) Å | µ = 0.29 mm−1 |
β = 107.43 (4)° | T = 293 K |
V = 532.2 (5) Å3 | Prism, colourless |
Z = 2 | 0.6 × 0.2 × 0.1 mm |
Data collection top
Stoe Stadi-4 four-circle diffractometer | Rint = 0.058 |
Radiation source: fine-focus sealed tube | θmax = 25.0°, θmin = 2.1° |
Graphite monochromator | h = −2→9 |
ω scans | k = −2→8 |
1980 measured reflections | l = −12→12 |
1019 independent reflections | 2 standard reflections every 60 min |
457 reflections with I > 2σ(I) | intensity decay: <2.0% |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.055 | H-atom parameters constrained |
wR(F2) = 0.134 | w = 1/[σ2(Fo2) + (0.0545P)2 + 0.0084P] where P = (Fo2 + 2Fc2)/3 |
S = 0.98 | (Δ/σ)max < 0.001 |
1019 reflections | Δρmax = 0.19 e Å−3 |
84 parameters | Δρmin = −0.19 e Å−3 |
0 restraints | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.038 (7) |
Crystal data top
C9H11NO3S | V = 532.2 (5) Å3 |
Mr = 213.25 | Z = 2 |
Monoclinic, P21/m | Mo Kα radiation |
a = 7.679 (4) Å | µ = 0.29 mm−1 |
b = 7.004 (5) Å | T = 293 K |
c = 10.372 (5) Å | 0.6 × 0.2 × 0.1 mm |
β = 107.43 (4)° | |
Data collection top
Stoe Stadi-4 four-circle diffractometer | Rint = 0.058 |
1980 measured reflections | 2 standard reflections every 60 min |
1019 independent reflections | intensity decay: <2.0% |
457 reflections with I > 2σ(I) | |
Refinement top
R[F2 > 2σ(F2)] = 0.055 | 0 restraints |
wR(F2) = 0.134 | H-atom parameters constrained |
S = 0.98 | Δρmax = 0.19 e Å−3 |
1019 reflections | Δρmin = −0.19 e Å−3 |
84 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
S1 | 0.3128 (2) | 0.2500 | 0.91368 (13) | 0.0848 (8) | |
O1 | −0.1571 (5) | 0.2500 | 0.4904 (3) | 0.0656 (13) | |
O2 | 0.2914 (5) | 0.2500 | 0.4666 (3) | 0.0947 (19) | |
O3 | 0.4864 (5) | 0.2500 | 0.7292 (3) | 0.0827 (17) | |
N1 | 0.1849 (5) | 0.2500 | 0.6505 (4) | 0.0590 (15) | |
H1 | 0.0830 | 0.2500 | 0.6690 | 0.071* | |
C1 | −0.3197 (7) | 0.2500 | 0.3881 (6) | 0.076 (2) | |
H1A | −0.4345 | 0.2500 | 0.4011 | 0.091* | |
C2 | −0.2903 (7) | 0.2500 | 0.2686 (6) | 0.070 (2) | |
H2 | −0.3784 | 0.2500 | 0.1844 | 0.084* | |
C3 | −0.1005 (7) | 0.2500 | 0.2938 (5) | 0.0659 (19) | |
H3 | −0.0387 | 0.2500 | 0.2291 | 0.079* | |
C4 | −0.0237 (7) | 0.2500 | 0.4294 (5) | 0.0551 (18) | |
C5 | 0.1670 (8) | 0.2500 | 0.5134 (5) | 0.0588 (18) | |
C6 | 0.3373 (7) | 0.2500 | 0.7623 (5) | 0.0537 (18) | |
C7 | 0.6648 (7) | 0.2500 | 0.8351 (6) | 0.096 (3) | |
H7 | 0.6499 | 0.2500 | 0.9257 | 0.116* | |
C8 | 0.7613 (6) | 0.4272 (9) | 0.8109 (5) | 0.123 (3) | |
H8A | 0.7647 | 0.4285 | 0.7192 | 0.185* | |
H8B | 0.8837 | 0.4283 | 0.8712 | 0.185* | |
H8C | 0.6972 | 0.5380 | 0.8271 | 0.185* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
S1 | 0.0516 (10) | 0.155 (2) | 0.0464 (8) | 0.000 | 0.0131 (7) | 0.000 |
O1 | 0.035 (2) | 0.107 (4) | 0.053 (2) | 0.000 | 0.0114 (19) | 0.000 |
O2 | 0.036 (2) | 0.199 (6) | 0.050 (2) | 0.000 | 0.0134 (19) | 0.000 |
O3 | 0.033 (2) | 0.167 (5) | 0.0436 (19) | 0.000 | 0.0048 (17) | 0.000 |
N1 | 0.030 (2) | 0.100 (5) | 0.045 (2) | 0.000 | 0.008 (2) | 0.000 |
C1 | 0.032 (3) | 0.113 (7) | 0.075 (4) | 0.000 | 0.006 (3) | 0.000 |
C2 | 0.045 (4) | 0.096 (7) | 0.056 (3) | 0.000 | −0.005 (3) | 0.000 |
C3 | 0.044 (4) | 0.100 (6) | 0.051 (3) | 0.000 | 0.010 (3) | 0.000 |
C4 | 0.034 (3) | 0.087 (6) | 0.044 (3) | 0.000 | 0.010 (2) | 0.000 |
C5 | 0.047 (4) | 0.082 (6) | 0.048 (3) | 0.000 | 0.016 (3) | 0.000 |
C6 | 0.035 (3) | 0.071 (6) | 0.054 (3) | 0.000 | 0.012 (3) | 0.000 |
C7 | 0.034 (4) | 0.202 (11) | 0.052 (3) | 0.000 | 0.011 (3) | 0.000 |
C8 | 0.055 (3) | 0.152 (7) | 0.140 (5) | 0.004 (4) | −0.007 (3) | −0.056 (5) |
Geometric parameters (Å, º) top
S1—C6 | 1.636 (5) | C2—C3 | 1.402 (7) |
O1—C4 | 1.356 (6) | C2—H2 | 0.93 |
O1—C1 | 1.375 (6) | C3—C4 | 1.352 (7) |
O2—C5 | 1.194 (6) | C3—H3 | 0.93 |
O3—C6 | 1.290 (6) | C4—C5 | 1.463 (7) |
O3—C7 | 1.477 (6) | C7—C8i | 1.505 (6) |
N1—C6 | 1.379 (6) | C7—C8 | 1.505 (6) |
N1—C5 | 1.387 (6) | C7—H7 | 0.9800 |
N1—H1 | 0.86 | C8—H8A | 0.96 |
C1—C2 | 1.326 (7) | C8—H8B | 0.96 |
C1—H1A | 0.93 | C8—H8C | 0.96 |
| | | |
C4—O1—C1 | 106.2 (4) | O2—C5—C4 | 122.5 (5) |
C6—O3—C7 | 120.1 (4) | N1—C5—C4 | 112.6 (5) |
C6—N1—C5 | 131.4 (4) | O3—C6—N1 | 111.9 (4) |
C6—N1—H1 | 114.3 | O3—C6—S1 | 128.4 (4) |
C5—N1—H1 | 114.3 | N1—C6—S1 | 119.7 (4) |
C2—C1—O1 | 110.6 (5) | O3—C7—C8i | 105.6 (3) |
C2—C1—H1A | 124.7 | O3—C7—C8 | 105.6 (3) |
O1—C1—H1A | 124.7 | C8i—C7—C8 | 111.1 (6) |
C1—C2—C3 | 106.5 (5) | O3—C7—H7 | 111.4 |
C1—C2—H2 | 126.7 | C8i—C7—H7 | 111.4 |
C3—C2—H2 | 126.7 | C8—C7—H7 | 111.4 |
C4—C3—C2 | 107.4 (5) | C7—C8—H8A | 109.5 |
C4—C3—H3 | 126.3 | C7—C8—H8B | 109.5 |
C2—C3—H3 | 126.3 | H8A—C8—H8B | 109.5 |
C3—C4—O1 | 109.3 (4) | C7—C8—H8C | 109.5 |
C3—C4—C5 | 131.8 (5) | H8A—C8—H8C | 109.5 |
O1—C4—C5 | 118.9 (4) | H8B—C8—H8C | 109.5 |
O2—C5—N1 | 124.8 (5) | | |
| | | |
C4—O1—C1—C2 | 0 | O1—C4—C5—O2 | 180 |
O1—C1—C2—C3 | 0 | C3—C4—C5—N1 | 180 |
C1—C2—C3—C4 | 0 | O1—C4—C5—N1 | 0 |
C2—C3—C4—O1 | 0 | C7—O3—C6—N1 | 180 |
C2—C3—C4—C5 | 180 | C7—O3—C6—S1 | 0 |
C1—O1—C4—C3 | 0 | C5—N1—C6—O3 | 0 |
C1—O1—C4—C5 | 180 | C5—N1—C6—S1 | 180 |
C6—N1—C5—O2 | 0 | C6—O3—C7—C8i | 121.1 (3) |
C6—N1—C5—C4 | 180 | C6—O3—C7—C8 | −121.1 (3) |
C3—C4—C5—O2 | 0 | | |
Symmetry code: (i) x, −y+1/2, z. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.86 | 2.19 | 2.654 (6) | 114 |
C1—H1A···O2ii | 0.93 | 2.40 | 3.322 (7) | 172 |
C7—H7···S1 | 0.98 | 2.55 | 3.048 (7) | 111 |
Symmetry code: (ii) x−1, y, z. |
Experimental details
Crystal data |
Chemical formula | C9H11NO3S |
Mr | 213.25 |
Crystal system, space group | Monoclinic, P21/m |
Temperature (K) | 293 |
a, b, c (Å) | 7.679 (4), 7.004 (5), 10.372 (5) |
β (°) | 107.43 (4) |
V (Å3) | 532.2 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.29 |
Crystal size (mm) | 0.6 × 0.2 × 0.1 |
|
Data collection |
Diffractometer | Stoe Stadi-4 four-circle diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1980, 1019, 457 |
Rint | 0.058 |
(sin θ/λ)max (Å−1) | 0.594 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.055, 0.134, 0.98 |
No. of reflections | 1019 |
No. of parameters | 84 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.19, −0.19 |
Selected geometric parameters (Å, º) topS1—C6 | 1.636 (5) | O3—C6 | 1.290 (6) |
O1—C4 | 1.356 (6) | O3—C7 | 1.477 (6) |
O1—C1 | 1.375 (6) | N1—C6 | 1.379 (6) |
O2—C5 | 1.194 (6) | N1—C5 | 1.387 (6) |
| | | |
C6—O3—C7 | 120.1 (4) | N1—C5—C4 | 112.6 (5) |
C6—N1—C5 | 131.4 (4) | O3—C6—N1 | 111.9 (4) |
O2—C5—N1 | 124.8 (5) | O3—C6—S1 | 128.4 (4) |
O2—C5—C4 | 122.5 (5) | N1—C6—S1 | 119.7 (4) |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.86 | 2.19 | 2.654 (6) | 114 |
C1—H1A···O2i | 0.93 | 2.40 | 3.322 (7) | 172 |
C7—H7···S1 | 0.98 | 2.55 | 3.048 (7) | 111 |
Symmetry code: (i) x−1, y, z. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.
The chemistry of organic sulfur compounds, such as thiocarbamates and their S-alkylated products, has been investigated with increasing interest due to the biological activity of these compounds (Schröpl & Pohloudek-Fabini, 1968). In recent years, O-alkyl N-acylthiocarbamates have been proposed as intermediates for regio- and chemoselective deoxygenation for primary and secondary aliphatic alcohols (Oba & Nishiyama, 1994). Structural studies of O-alkyl N-benzoylthiocarbamate showed the C—N bonds to have partial double-bond character, thus giving rise to hindered rotation (Schröder et al., 1995). The present paper reports the crystal structure of O-isopropyl N-(2-furoyl)thiocarbamate, (I), in order to provide a better understanding of the above-mentioned properties.
The title compound crystallizes in the thiocarbamate form. A view of the molecule with the atom-numbering scheme is shown in Fig. 1. The asymmetry of the C3—C4—C5 and O1—C4—C5 angles [131.8 (5) and 118.9 (4)°, respectively] is probably caused by repulsion in the C3—H3···O2 system [C3···O2 = 3.006 (6) and H3···O2 = 2.96 Å] and attraction in the N—H···O1 system (see Table 2). The molecule is stabilized in the s-cisoid,s-transoid conformation with respect to the C5—N1—C6 group. The bond distance C6—O3 indiactes double-bond character, while the C5—N1 and C6—N1 distances indicate Csp2—Nsp2 single-bond character. This indicates that there is π–π conjugation along S1—C6—O3, but not along O2—C5—N1 and N1—C6—S1 as reported for O-alkyl N-benzoylthiocarbamate (Schröder et al., 1995).
There are two intramolecular hydrogen bonds, one between the N—H group and the O atom of the furan ring, and the other between the H atom of the secondary carbon of the isopropyl group and the S atom. The packing of the molecules is assumed to be dictated by short contacts and van der Waals interactions.