Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title complex, [Ru(C10H8N2S)2(CH3CN)2](BF4)2·H2O, is the product of the solvolysis of [Ru(dps-N,N)2(dps-N,S)](PF6)2 (dps is di-2-pyridyl sulfide) in the presence of HBF4 in acetone-aceto­nitrile at room temperature. There are two independent cations, with the Ru atoms on inversion centres; each Ru atom has an octahedral geometry with the dps mol­ecules behaving as N,N'-bidentate ligands and assuming a trans arrangement.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101018091/na1542sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101018091/na1542Isup2.hkl
Contains datablock I

CCDC reference: 180146

Comment top

Following our interest in the chemistry of the flexible non-planar bipyridine-like ligands (Tresoldi et al., 1991, 1992) we were particularly interested to know how they would modify the chemical and physical properties of the ruthenium complexes (Bruno et al., 1995; Tresoldi et al., 1996). Recently taking advantage of the steric hindrance of the cis-Ru(N,N-dps)2-core and steric demanding nature of dps we were able to introduce into the above centre a N,S-coordinated dps ligand and provide the possibility for pairs of chemically distinct coordination modes being present in [Ru(N,N-dps)2(N,S-dps)][PF6]2 (Scopelliti et al., 2001). In this work the solvolysis of the last complex in the presence of an excess of HBF4 has led to the title complex (I).

It is the first example of a ruthenium complex in which two dps ligands adopt the trans arrangement.

The IR spectrum contains the characteristic bands of the dps ligands at 1589 (s), 1561 (ms), 783 (versus), 774 (versus), 752 (ms) and 723 (s). The 1H-NMR spectrum in CD3(CO)2 show a single ABMX system with signals at d 8.90, assigned to the proton H6 in ortho position with respect to the N atom, 7.82, assigned to the proton H5 in the meta position, 8.34, assigned to the proton H4 in the para position and 8.00, assigned to the proton H3 in the ortho position with respect to the S atom, while the 13C NMR show signals at d 146.87 (C6), 125.13 (C5), 143.18 (C4), 126.82 (C3) and 154.57 (C2). These data are in agreement with the presence of a trans isomer which has four equivalent pyridine rings. A cis isomer should have only two equivalent pyridyl rings.

Di-2-pyridyl sulfide and its derivatives are flexible ligands that can adopt several possible conformations and dynamic interconvertion depending on their chemical condition (protonated or unprotonated free molecule, chelating or bridging ligand) and on the physical state (Nicoló et al., 1996; and references therein).

The crystal packing of the title compound (I) shows two complex cations placed on two crystallographic independent inversion centres, in the 1:2 ratio with the tetrafluoroborate anions for charge balance. Then both molecules have the imposed Ci symmetry and appear equal within the experimental errors. The dps ligand adopts the twisted N,N inside `butterfly-like' arrangement and the resulting six-membered chelate rings show the usual boat conformation, as evidenced by the puckering analysis (Cremer & Pople, 1975) on Ru1,N1,C5,S1,C6,N2 [Ru2,N4,C17,S2,C18,N5] ring: θ=88.4 (2) [88.9 (2)]°, ϕ=2.4 (2) [-0.2 (2)]°, QT=0.897 (2) [0.898 (2)] Å and ΔS(Ru)=0.025 (1) [0.001 (1)], respectively. The C and N atoms lie on a plane from which the Ru and S atoms deviate 0.8148 (1) [0.8055 (1)] and 0.743 (1) [0.754 (1)]Å on the same side, respectively. The geometry of the trans-arrangement of the two chelating dps is very similar to that one found in the square-planar palladium cation [Pd(dps)2]2+ (Bruno et al., 1995) showing shorter metal-nitrogen bond lengths as expected by the different metal atom size. The geometry about the ruthenium(II) ion is distorted octahedral (Fig.1), with the coordination polyhedron defined by four N atoms of the two opposite chelating dps rings on the equatorial plane and the two acetonitrile N atoms along the axial direction. The Ru—Npy bonds are equivalent [av. 2.091 (3) Å] but significantly longer than the axial Ru—Nac due to the different electronic and steric properties of the two ligand types and the larger hindrance on the equatorial plane. In fact the dps chelating bite (average Npy—Ru—Npy and Npy···Npy are 88.5 (1)° and 2.918 (5) Å, respectively) is very similar in the cis-[Ru(dps)2Cl2] (Bruno et al., 1995) [88.5 (1)° and 2.893 (4) Å] and in one N,N-chelate ligand in [Ru(dps)3]2+ (Scopelliti et al., 2001) [89.5 (2)° and 2.918 (7) Å]. The main distortion from the regular coordination geometry is due to the hindering effect of the S atom on the axial acetonitrile ligand on the same side with respect to the equatorial plane, increasing the Npy—Ru—Nac up to the mean value of 93.5 (1) and 94.5 (1)° in the Ru1 and Ru2 cations, respectively.

In order to understand the structural modifications of the ligand induced by the dps coordination to the metal centre ab initio calculations [HF/6–31+G(d,p) method] were carried out on the free ligand by using GAUSSIAN98 (Frisch et al., 1998). The most important variations concern pyridyl-N atoms: the calculated N—C distances 1.318 and 1.321 Å in each ring are shorter than the experimental mean value 1.350 (5) Å while the N···N computed separation of 3.41 Å is significantly longer, mainly due to the N,N-coordination of dps. The calculated C—S bond lengths are slightly longer than the experimental mean value of 1.764 (4) Å], while the C—S—C computed bond angle of 101.5° is very close to the observed average 102.3 (2)°.

Experimental top

[Ru(N,N-dps)2(N,S-dps)][PF6]2.H2O was prepared according to the method of Scopelliti et al. (2001). All other chemicals were reagent grade. An acetone-acetonitrile (1:1) solution (5 ml) of Ru(N,N-dps)2(N,S-dps)][PF6]2.H2O (48.68 mg, 0.05 mmol) was introduced into a test-tube and 0.1 ml of an aqueous solution of HBF4 (7.65M) added. Di-isopropyl ether (8 ml) was layered on top of the reaction mixture and the test tube was closed with parafilm. After 20 d colourless crystals were isolated and found to be suitable for X-ray structure investigation. The analysis of C24H24B2F8N6ORuS2 gave C 38.37 versus 38.40, H 3.22 versus 3.35, N 11.19 versus 11.10 and S 8.53 versus 8.50% for the calculated and found composition, respectively.

Reflection intensities were evaluated by profile fitting of a 96-steps peak scan among 2θ shells procedure (Diamond, 1969). H atoms were located in idealized positions and allowed to ride on their parent C atoms with isotropic displacement parameters related to the refined values of their corresponding parent atoms. In the last refinement cycles the water-H atoms were fixed in the idealized positions located by HYDROGEN (Nardelli, 1999). Both [BF4]- anions appear to be affected by the usual rotational disorder and one tetrahedral moiety was split in two orientations.

Computing details top

Data collection: XSCANS (Bruker,1999); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS90 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XPW (SHELXTL; Siemens, 1996); software used to prepare material for publication: PARST97 (Nardelli, 1995) and SHELXL97.

Figures top
[Figure 1] Fig. 1. View of one ruthenium complex showing the atomic numbering scheme of the independent fragment. Displacement ellipsoids are drawn at the 30% probability level while H atoms are of arbitrary size. The unlabelled atoms represent the centrosymmetric (1 - x, 1 - y, -z) portion of the complex, with the anions and water molecule omitted for clarity.
trans-bis(acetonitrile)-bis(di-2-pyridylsulfide-N,N')-ruthenium(ii) bis(tetrafluoroborate) monohydrate top
Crystal data top
[Ru(C2H3N)2(C10H8N2S)2].2(BF4).H2OZ = 2
Mr = 751.30F(000) = 752
Triclinic, P1Dx = 1.627 Mg m3
a = 10.0709 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.6595 (8) ÅCell parameters from 37 reflections
c = 13.547 (1) Åθ = 8.2–16.0°
α = 77.016 (7)°µ = 0.73 mm1
β = 75.004 (6)°T = 298 K
γ = 68.225 (6)°Prysmatic, pale yellow
V = 1533.3 (2) Å30.36 × 0.30 × 0.25 mm
Data collection top
Siemens P4
diffractometer
4761 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 26.0°, θmin = 1.6°
2θ/ω scansh = 111
Absorption correction: numerical
by seven indexed faces (XPREPW in SHELXTL; Siemens, 1996)
k = 1414
Tmin = 0.689, Tmax = 0.826l = 1616
7496 measured reflections3 standard reflections every 197 reflections
5922 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0413P)2 + 0.9658P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.051
5922 reflectionsΔρmax = 0.53 e Å3
440 parametersΔρmin = 0.39 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0028 (5)
Crystal data top
[Ru(C2H3N)2(C10H8N2S)2].2(BF4).H2Oγ = 68.225 (6)°
Mr = 751.30V = 1533.3 (2) Å3
Triclinic, P1Z = 2
a = 10.0709 (7) ÅMo Kα radiation
b = 12.6595 (8) ŵ = 0.73 mm1
c = 13.547 (1) ÅT = 298 K
α = 77.016 (7)°0.36 × 0.30 × 0.25 mm
β = 75.004 (6)°
Data collection top
Siemens P4
diffractometer
4761 reflections with I > 2σ(I)
Absorption correction: numerical
by seven indexed faces (XPREPW in SHELXTL; Siemens, 1996)
Rint = 0.030
Tmin = 0.689, Tmax = 0.8263 standard reflections every 197 reflections
7496 measured reflections intensity decay: none
5922 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.53 e Å3
5922 reflectionsΔρmin = 0.39 e Å3
440 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

One BF4- anion appeared to be affected by rotational disorder and it was splitted into two positions (0.53/0.47 occup.).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.50000.50000.00000.03497 (10)
N10.5978 (3)0.3215 (2)0.02163 (17)0.0426 (5)
C10.5364 (4)0.2561 (3)0.0051 (2)0.0516 (7)
H10.45010.29260.02990.062*
C20.5949 (5)0.1389 (3)0.0026 (3)0.0697 (10)
H20.54880.09690.01580.084*
C30.7239 (6)0.0842 (3)0.0382 (3)0.0857 (13)
H30.76760.00490.04210.103*
C40.7862 (5)0.1480 (3)0.0676 (3)0.0745 (11)
H40.87260.11240.09230.089*
C50.7203 (3)0.2664 (3)0.0604 (2)0.0519 (7)
S10.80545 (9)0.34311 (8)0.10157 (7)0.0585 (2)
C60.6585 (3)0.4328 (3)0.1807 (2)0.0484 (7)
C70.6782 (4)0.4332 (3)0.2783 (3)0.0649 (9)
H70.76290.38410.30110.078*
C80.5719 (5)0.5065 (4)0.3405 (3)0.0741 (11)
H80.58440.50960.40540.089*
C90.4464 (4)0.5756 (3)0.3060 (2)0.0643 (9)
H90.37210.62540.34750.077*
C100.4319 (4)0.5702 (3)0.2092 (2)0.0504 (7)
H100.34560.61620.18720.060*
N20.5367 (3)0.5013 (2)0.14480 (17)0.0421 (5)
N30.6882 (3)0.5266 (2)0.07705 (17)0.0415 (5)
C110.7904 (3)0.5444 (3)0.1224 (2)0.0483 (7)
C120.9247 (4)0.5660 (4)0.1778 (3)0.0775 (11)
H12A1.00480.49500.17680.116*
H12B0.94150.61860.14520.116*
H12C0.91620.59870.24800.116*
Ru20.50000.00000.50000.03769 (10)
N40.3750 (2)0.17193 (19)0.51251 (19)0.0443 (5)
C130.3093 (3)0.2031 (3)0.6071 (3)0.0534 (7)
H130.32020.14640.66440.064*
C140.2278 (4)0.3138 (3)0.6228 (3)0.0679 (9)
H140.18760.33150.68950.081*
C150.2058 (4)0.3979 (3)0.5401 (4)0.0739 (11)
H150.15040.47350.54930.089*
C160.2673 (4)0.3687 (3)0.4426 (3)0.0638 (9)
H160.25250.42430.38490.077*
C170.3515 (3)0.2558 (3)0.4313 (2)0.0494 (7)
S20.43334 (10)0.22457 (7)0.30422 (6)0.0581 (2)
C180.3829 (3)0.1060 (3)0.3008 (2)0.0467 (7)
C190.3218 (3)0.1116 (3)0.2182 (2)0.0565 (8)
H190.30590.17690.16880.068*
C200.2852 (4)0.0209 (3)0.2099 (3)0.0624 (9)
H200.24680.02270.15380.075*
C210.3057 (3)0.0731 (3)0.2857 (3)0.0591 (8)
H210.27970.13530.28250.071*
C220.3655 (3)0.0734 (3)0.3665 (2)0.0496 (7)
H220.37740.13650.41820.060*
N50.4077 (2)0.0133 (2)0.37408 (17)0.0432 (5)
N60.6772 (3)0.0372 (2)0.41339 (18)0.0444 (5)
C230.7854 (3)0.0495 (3)0.3741 (2)0.0500 (7)
C240.9247 (4)0.0654 (4)0.3237 (3)0.0745 (11)
H24A0.90840.13440.27460.112*
H24B0.98580.00090.28870.112*
H24C0.97150.07150.37450.112*
B10.0766 (5)0.7393 (4)0.5048 (3)0.0661 (11)
F10.0135 (5)0.8416 (3)0.4887 (4)0.197 (2)
F20.0894 (4)0.6796 (3)0.4248 (2)0.1297 (11)
F30.2127 (3)0.7381 (3)0.5038 (2)0.1249 (11)
F40.0336 (3)0.6803 (3)0.5939 (2)0.1212 (10)
B20.1943 (6)0.2454 (4)0.9234 (4)0.0747 (12)
F50.3217 (14)0.1845 (13)0.8897 (15)0.202 (7)0.55 (2)
F60.2077 (16)0.3463 (8)0.8939 (13)0.179 (6)0.55 (2)
F70.1507 (17)0.2074 (14)1.0198 (9)0.205 (8)0.55 (2)
F80.1033 (18)0.2267 (18)0.8888 (11)0.166 (5)0.55 (2)
F5A0.3007 (18)0.1719 (10)0.8596 (9)0.120 (5)0.45 (2)
F7A0.208 (3)0.1899 (12)1.0168 (12)0.165 (8)0.45 (2)
F6A0.1953 (13)0.3471 (12)0.9400 (18)0.174 (8)0.45 (2)
F8A0.0579 (13)0.2803 (10)0.8852 (8)0.088 (3)0.45 (2)
O0.9078 (5)0.2009 (5)0.7862 (3)0.163 (2)
H0A0.91790.23170.72150.080*
H0B0.95640.22400.81350.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.03699 (17)0.04050 (18)0.03119 (16)0.01942 (13)0.00549 (12)0.00249 (12)
N10.0471 (13)0.0449 (13)0.0358 (12)0.0205 (11)0.0031 (10)0.0028 (10)
C10.0625 (19)0.0530 (18)0.0444 (16)0.0317 (15)0.0029 (14)0.0107 (13)
C20.093 (3)0.056 (2)0.063 (2)0.038 (2)0.007 (2)0.0178 (17)
C30.118 (4)0.046 (2)0.078 (3)0.012 (2)0.013 (3)0.0128 (19)
C40.087 (3)0.054 (2)0.066 (2)0.0001 (19)0.022 (2)0.0096 (17)
C50.0556 (18)0.0513 (17)0.0416 (16)0.0131 (14)0.0074 (13)0.0031 (13)
S10.0474 (4)0.0689 (5)0.0579 (5)0.0153 (4)0.0194 (4)0.0030 (4)
C60.0551 (18)0.0586 (18)0.0404 (15)0.0302 (15)0.0152 (13)0.0020 (13)
C70.074 (2)0.086 (3)0.0491 (19)0.041 (2)0.0248 (17)0.0007 (18)
C80.095 (3)0.109 (3)0.0407 (18)0.057 (3)0.0163 (19)0.0110 (19)
C90.082 (2)0.082 (2)0.0418 (17)0.045 (2)0.0027 (17)0.0197 (16)
C100.0575 (18)0.0567 (18)0.0418 (16)0.0283 (15)0.0029 (13)0.0081 (13)
N20.0474 (13)0.0508 (13)0.0354 (12)0.0269 (11)0.0068 (10)0.0035 (10)
N30.0429 (13)0.0481 (13)0.0373 (12)0.0215 (11)0.0076 (10)0.0028 (10)
C110.0430 (16)0.0508 (17)0.0498 (17)0.0196 (14)0.0076 (14)0.0009 (13)
C120.0457 (19)0.087 (3)0.089 (3)0.0318 (19)0.0035 (18)0.006 (2)
Ru20.03723 (17)0.03944 (18)0.03546 (17)0.01596 (13)0.01024 (13)0.00574 (12)
N40.0431 (13)0.0423 (13)0.0479 (14)0.0170 (10)0.0128 (11)0.0020 (10)
C130.0521 (18)0.0529 (18)0.0535 (18)0.0164 (14)0.0110 (14)0.0056 (14)
C140.066 (2)0.063 (2)0.076 (2)0.0145 (17)0.0143 (19)0.0222 (19)
C150.075 (2)0.0477 (19)0.103 (3)0.0145 (17)0.028 (2)0.017 (2)
C160.072 (2)0.0428 (17)0.084 (3)0.0246 (16)0.034 (2)0.0086 (17)
C170.0482 (16)0.0452 (16)0.0589 (18)0.0223 (13)0.0204 (14)0.0079 (13)
S20.0660 (5)0.0575 (5)0.0493 (4)0.0301 (4)0.0166 (4)0.0184 (4)
C180.0401 (15)0.0548 (17)0.0377 (14)0.0133 (13)0.0072 (12)0.0035 (12)
C190.0505 (18)0.070 (2)0.0380 (16)0.0109 (16)0.0113 (13)0.0001 (14)
C200.0544 (19)0.083 (2)0.0460 (18)0.0114 (18)0.0148 (15)0.0162 (17)
C210.0520 (18)0.070 (2)0.062 (2)0.0203 (16)0.0140 (16)0.0189 (17)
C220.0474 (16)0.0520 (17)0.0515 (17)0.0197 (14)0.0126 (13)0.0026 (13)
N50.0401 (12)0.0495 (13)0.0389 (12)0.0172 (10)0.0104 (10)0.0027 (10)
N60.0411 (13)0.0467 (13)0.0430 (13)0.0170 (11)0.0085 (11)0.0032 (10)
C230.0447 (17)0.0520 (17)0.0493 (17)0.0175 (14)0.0123 (14)0.0067 (13)
C240.0491 (19)0.092 (3)0.075 (2)0.0329 (19)0.0046 (17)0.012 (2)
B10.075 (3)0.065 (3)0.062 (3)0.030 (2)0.026 (2)0.012 (2)
F10.228 (5)0.083 (2)0.251 (5)0.019 (2)0.137 (4)0.016 (3)
F20.139 (3)0.183 (3)0.094 (2)0.073 (2)0.0276 (19)0.034 (2)
F30.114 (2)0.187 (3)0.103 (2)0.093 (2)0.0193 (18)0.006 (2)
F40.132 (2)0.152 (3)0.0819 (18)0.080 (2)0.0105 (17)0.0233 (18)
B20.089 (3)0.075 (3)0.068 (3)0.026 (3)0.036 (3)0.004 (2)
F50.097 (6)0.235 (12)0.312 (18)0.032 (6)0.003 (8)0.195 (13)
F60.266 (13)0.079 (6)0.229 (12)0.088 (7)0.133 (9)0.062 (7)
F70.196 (10)0.192 (11)0.074 (6)0.074 (8)0.008 (6)0.020 (5)
F80.153 (10)0.199 (14)0.198 (9)0.073 (9)0.117 (8)0.005 (9)
F5A0.164 (11)0.093 (6)0.084 (6)0.034 (5)0.002 (5)0.021 (5)
F7A0.31 (2)0.106 (7)0.115 (10)0.059 (11)0.158 (13)0.033 (6)
F6A0.104 (7)0.126 (9)0.35 (2)0.005 (6)0.104 (9)0.132 (13)
F8A0.081 (5)0.115 (7)0.079 (5)0.027 (4)0.035 (4)0.020 (4)
O0.172 (4)0.290 (6)0.095 (3)0.152 (4)0.033 (3)0.020 (3)
Geometric parameters (Å, º) top
Ru1—N32.022 (2)C14—C151.363 (5)
Ru1—N12.088 (2)C14—H140.9300
Ru1—N22.092 (2)C15—C161.374 (5)
N1—C51.348 (4)C15—H150.9300
N1—C11.353 (4)C16—C171.385 (5)
C1—C21.369 (5)C16—H160.9300
C1—H10.9300C17—S21.768 (3)
C2—C31.380 (6)S2—C181.767 (3)
C2—H20.9300C18—N51.346 (3)
C3—C41.361 (6)C18—C191.387 (4)
C3—H30.9300C19—C201.364 (5)
C4—C51.387 (5)C19—H190.9300
C4—H40.9300C20—C211.376 (5)
C5—S11.761 (3)C20—H200.9300
S1—C61.763 (3)C21—C221.378 (4)
C6—N21.351 (4)C21—H210.9300
C6—C71.389 (4)C22—N51.347 (4)
C7—C81.365 (5)C22—H220.9300
C7—H70.9300N6—C231.133 (4)
C8—C91.373 (5)C23—C241.458 (4)
C8—H80.9300C24—H24A0.9600
C9—C101.375 (4)C24—H24B0.9600
C9—H90.9300C24—H24C0.9600
C10—N21.348 (4)B1—F11.285 (5)
C10—H100.9300B1—F41.329 (5)
N3—C111.127 (4)B1—F31.362 (5)
C11—C121.457 (4)B1—F21.410 (5)
C12—H12A0.9600B2—F81.245 (13)
C12—H12B0.9600B2—F51.253 (14)
C12—H12C0.9600B2—F61.296 (10)
Ru2—N62.018 (2)B2—F71.307 (14)
Ru2—N42.091 (2)B2—F7A1.317 (13)
Ru2—N52.093 (2)B2—F6A1.360 (12)
N4—C171.348 (4)B2—F5A1.380 (14)
N4—C131.353 (4)B2—F8A1.472 (13)
C13—C141.369 (4)O—H0A0.872
C13—H130.9300O—H0B0.843
N3—Ru1—N3i180.000 (1)C17—N4—C13116.5 (3)
N3—Ru1—N1i86.79 (9)C17—N4—Ru2124.2 (2)
N3—Ru1—N193.21 (9)C13—N4—Ru2119.30 (19)
N1i—Ru1—N1180.00 (13)N4—C13—C14123.3 (3)
N3—Ru1—N2i86.25 (9)N4—C13—H13118.3
N1—Ru1—N2i91.71 (9)C14—C13—H13118.3
N3—Ru1—N293.75 (9)C15—C14—C13119.6 (4)
N1—Ru1—N288.29 (9)C15—C14—H14120.2
N2i—Ru1—N2180.0C13—C14—H14120.2
C5—N1—C1117.2 (3)C14—C15—C16118.7 (3)
C5—N1—Ru1124.0 (2)C14—C15—H15120.7
C1—N1—Ru1118.8 (2)C16—C15—H15120.7
N1—C1—C2123.2 (3)C15—C16—C17119.4 (3)
N1—C1—H1118.4C15—C16—H16120.3
C2—C1—H1118.4C17—C16—H16120.3
C1—C2—C3118.7 (4)N4—C17—C16122.6 (3)
C1—C2—H2120.6N4—C17—S2120.1 (2)
C3—C2—H2120.6C16—C17—S2117.3 (3)
C4—C3—C2119.1 (4)C18—S2—C17102.4 (1)
C4—C3—H3120.5N5—C18—C19122.2 (3)
C2—C3—H3120.5N5—C18—S2120.7 (2)
C3—C4—C5119.7 (4)C19—C18—S2117.1 (2)
C3—C4—H4120.1C20—C19—C18119.6 (3)
C5—C4—H4120.1C20—C19—H19120.2
N1—C5—C4121.9 (3)C18—C19—H19120.2
N1—C5—S1120.8 (2)C19—C20—C21119.1 (3)
C4—C5—S1117.3 (3)C19—C20—H20120.5
C5—S1—C6102.3 (1)C21—C20—H20120.5
N2—C6—C7122.5 (3)C20—C21—C22118.7 (3)
N2—C6—S1120.7 (2)C20—C21—H21120.7
C7—C6—S1116.6 (3)C22—C21—H21120.7
C8—C7—C6119.2 (3)N5—C22—C21123.2 (3)
C8—C7—H7120.4N5—C22—H22118.4
C6—C7—H7120.4C21—C22—H22118.4
C7—C8—C9119.0 (3)C18—N5—C22117.2 (3)
C7—C8—H8120.5C18—N5—Ru2123.7 (2)
C9—C8—H8120.5C22—N5—Ru2119.00 (19)
C8—C9—C10119.1 (3)C23—N6—Ru2171.5 (2)
C8—C9—H9120.4N6—C23—C24179.9 (4)
C10—C9—H9120.4C23—C24—H24A109.5
N2—C10—C9123.2 (3)C23—C24—H24B109.5
N2—C10—H10118.4H24A—C24—H24B109.5
C9—C10—H10118.4C23—C24—H24C109.5
C10—N2—C6116.8 (2)H24A—C24—H24C109.5
C10—N2—Ru1119.4 (2)H24B—C24—H24C109.5
C6—N2—Ru1123.8 (2)F1—B1—F4112.9 (5)
C11—N3—Ru1177.5 (2)F1—B1—F3112.6 (4)
N3—C11—C12178.0 (3)F4—B1—F3107.7 (3)
C11—C12—H12A109.5F1—B1—F2108.5 (4)
C11—C12—H12B109.5F4—B1—F2107.9 (4)
H12A—C12—H12B109.5F3—B1—F2107.0 (4)
C11—C12—H12C109.5F8—B2—F5111.4 (9)
H12A—C12—H12C109.5F8—B2—F6116.5 (9)
H12B—C12—H12C109.5F5—B2—F699.6 (11)
N6ii—Ru2—N6180.0F8—B2—F796.0 (12)
N6ii—Ru2—N485.99 (9)F5—B2—F7110.9 (10)
N6—Ru2—N494.01 (9)F6—B2—F7122.9 (12)
N6—Ru2—N4ii85.99 (9)F7A—B2—F6A96.8 (11)
N4—Ru2—N4ii180.00 (14)F7A—B2—F5A103.5 (10)
N6—Ru2—N5ii85.12 (9)F6A—B2—F5A126.3 (12)
N6—Ru2—N594.88 (9)F7A—B2—F8A122.5 (12)
N4—Ru2—N588.61 (9)F6A—B2—F8A102.3 (7)
N4ii—Ru2—N591.39 (9)F5A—B2—F8A107.2 (8)
N5ii—Ru2—N5180.000 (1)H0A—O—H0B106.3
N3—Ru1—N1—C550.6 (2)N6ii—Ru2—N4—C17125.6 (2)
N3i—Ru1—N1—C5129.4 (2)N6—Ru2—N4—C1754.4 (2)
N2i—Ru1—N1—C5137.0 (2)N5ii—Ru2—N4—C17139.6 (2)
N2—Ru1—N1—C543.0 (2)N5—Ru2—N4—C1740.4 (2)
N3—Ru1—N1—C1128.9 (2)N6ii—Ru2—N4—C1352.8 (2)
N3i—Ru1—N1—C151.1 (2)N6—Ru2—N4—C13127.2 (2)
N2i—Ru1—N1—C142.6 (2)N5ii—Ru2—N4—C1342.0 (2)
N2—Ru1—N1—C1137.4 (2)N5—Ru2—N4—C13138.0 (2)
C5—N1—C1—C22.1 (4)C17—N4—C13—C142.7 (5)
Ru1—N1—C1—C2177.6 (2)Ru2—N4—C13—C14178.8 (3)
N1—C1—C2—C30.7 (5)N4—C13—C14—C152.3 (5)
C1—C2—C3—C42.0 (6)C13—C14—C15—C160.3 (6)
C2—C3—C4—C50.6 (6)C14—C15—C16—C171.1 (5)
C1—N1—C5—C43.6 (4)C13—N4—C17—C161.2 (4)
Ru1—N1—C5—C4176.0 (3)Ru2—N4—C17—C16179.6 (2)
C1—N1—C5—S1177.9 (2)C13—N4—C17—S2179.5 (2)
Ru1—N1—C5—S12.5 (3)Ru2—N4—C17—S22.0 (3)
C3—C4—C5—N12.3 (6)C15—C16—C17—N40.7 (5)
C3—C4—C5—S1179.1 (3)C15—C16—C17—S2177.7 (3)
N1—C5—S1—C649.1 (3)N4—C17—S2—C1851.9 (3)
C4—C5—S1—C6132.2 (3)C16—C17—S2—C18129.7 (3)
C5—S1—C6—N253.4 (3)C17—S2—C18—N552.0 (3)
C5—S1—C6—C7129.7 (3)C17—S2—C18—C19129.9 (2)
N2—C6—C7—C81.0 (5)N5—C18—C19—C200.1 (5)
S1—C6—C7—C8175.8 (3)S2—C18—C19—C20177.9 (2)
C6—C7—C8—C91.9 (6)C18—C19—C20—C212.0 (5)
C7—C8—C9—C100.8 (5)C19—C20—C21—C221.3 (5)
C8—C9—C10—N21.2 (5)C20—C21—C22—N51.3 (5)
C9—C10—N2—C62.1 (4)C19—C18—N5—C222.4 (4)
C9—C10—N2—Ru1179.4 (2)S2—C18—N5—C22179.7 (2)
C7—C6—N2—C101.0 (4)C19—C18—N5—Ru2179.8 (2)
S1—C6—N2—C10177.7 (2)S2—C18—N5—Ru21.9 (3)
C7—C6—N2—Ru1178.2 (2)C21—C22—N5—C183.1 (4)
S1—C6—N2—Ru15.2 (3)C21—C22—N5—Ru2179.0 (2)
N3—Ru1—N2—C10128.5 (2)N6ii—Ru2—N5—C18126.5 (2)
N3i—Ru1—N2—C1051.5 (2)N6—Ru2—N5—C1853.5 (2)
N1i—Ru1—N2—C1041.6 (2)N4—Ru2—N5—C1840.4 (2)
N1—Ru1—N2—C10138.4 (2)N4ii—Ru2—N5—C18139.6 (2)
N3—Ru1—N2—C654.5 (2)N6ii—Ru2—N5—C2251.3 (2)
N3i—Ru1—N2—C6125.5 (2)N6—Ru2—N5—C22128.7 (2)
N1i—Ru1—N2—C6141.4 (2)N4—Ru2—N5—C22137.4 (2)
N1—Ru1—N2—C638.6 (2)N4ii—Ru2—N5—C2242.6 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···F7Aiii0.932.453.05 (1)122
C20—H20···F7Aiii0.932.463.05 (1)121
C12—H12C···F4iv0.962.383.205 (5)144
C12—H12A···F6iv0.962.453.34 (1)154
O—H0A···F2v0.872.052.917 (5)171
O—H0B···F8vi0.842.022.83 (1)162
O—H0B···F8Avi0.841.962.81 (1)176
Symmetry codes: (iii) x, y, z1; (iv) x+1, y, z1; (v) x+1, y+1, z+1; (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ru(C2H3N)2(C10H8N2S)2].2(BF4).H2O
Mr751.30
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.0709 (7), 12.6595 (8), 13.547 (1)
α, β, γ (°)77.016 (7), 75.004 (6), 68.225 (6)
V3)1533.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.36 × 0.30 × 0.25
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correctionNumerical
by seven indexed faces (XPREPW in SHELXTL; Siemens, 1996)
Tmin, Tmax0.689, 0.826
No. of measured, independent and
observed [I > 2σ(I)] reflections
7496, 5922, 4761
Rint0.030
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.085, 1.06
No. of reflections5922
No. of parameters440
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.39

Computer programs: XSCANS (Bruker,1999), XSCANS, SHELXS90 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), XPW (SHELXTL; Siemens, 1996), PARST97 (Nardelli, 1995) and SHELXL97.

Selected geometric parameters (Å, º) top
Ru1—N32.022 (2)Ru2—N62.018 (2)
Ru1—N12.088 (2)Ru2—N42.091 (2)
Ru1—N22.092 (2)Ru2—N52.093 (2)
C5—S11.761 (3)C17—S21.768 (3)
S1—C61.763 (3)S2—C181.767 (3)
N3—C111.127 (4)N6—C231.133 (4)
C11—C121.457 (4)C23—C241.458 (4)
N3—Ru1—N193.21 (9)N6—Ru2—N494.01 (9)
N3—Ru1—N293.75 (9)N6—Ru2—N594.88 (9)
N1—Ru1—N288.29 (9)N4—Ru2—N588.61 (9)
N1—C5—S1120.8 (2)N4—C17—S2120.1 (2)
C5—S1—C6102.3 (1)C18—S2—C17102.4 (1)
N2—C6—S1120.7 (2)N5—C18—S2120.7 (2)
C11—N3—Ru1177.5 (2)C23—N6—Ru2171.5 (2)
N3—C11—C12178.0 (3)N6—C23—C24179.9 (4)
N1—C5—S1—C649.1 (3)N4—C17—S2—C1851.9 (3)
C5—S1—C6—N253.4 (3)C17—S2—C18—N552.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12C···F4i0.962.383.205 (5)144
O—H0A···F2ii0.872.052.917 (5)171
O—H0B···F8iii0.842.022.83 (1)162
O—H0B···F8Aiii0.841.962.81 (1)176
Symmetry codes: (i) x+1, y, z1; (ii) x+1, y+1, z+1; (iii) x+1, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds