Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Atomic-scale simulations, and in particular molecular dynamics (MD), are key assets to model the behavior of the structure of materials under the action of external stimuli, say temperature, strain or stress, irradiation, etc. Despite the widespread use of MD in condensed matter science, some basic material characteristics remain difficult to determine. This is, for instance, the case for the long-range strain tensor, and its root-mean-squared fluctuations, in disordered materials. In this work, computational diffraction is introduced as a fast and reliable structural characterization tool of atomic-scale simulation cells in the case of irradiated single crystals. In contrast to direct-space methods, computational diffraction operates in the reciprocal space and is therefore highly sensitive to long-range spatial correlations. With the example of irradiated UO2 single crystals, it is demonstrated that the normal strains, shear strains and rotations, as well as their root-mean-squared fluctuations (microstrain) and the atomic disorder, are straightforwardly and unambiguously determined. The methodology presented here has been developed with efficiency in mind, in order to be able to provide simple and reliable characterizations either operating in real time, in parallel with other analysis tools, or operating on very large data sets.

Supporting information

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S1600576722001406/nb5310sup1.pdf
Supplementary material


Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds