Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structures of two styrene analogues, 4-vinyl­benzoic acid, C9H8O2, (I), and 9-vinyl­anthracene, C16H12, (II), were determined by X-ray analyses at 108 and 293 K for (I) and at 123 and 293 K for (II). In (I), a pair of mol­ecules around an inversion center form a dimer connected by two carboxyl groups. The anthracene planes of two mol­ecules in (II) are antiparallel to each other around an inversion center. The vinyl group of (I) is almost coplanar with the phenyl ring, whereas the vinyl group of (II) is nearly perpendicular to the anthracene plane. In (I), the bond length of the vinyl group at 293 K is significantly shorter than that at 108 K [1.288 (2) versus 1.3248 (14) Å] suggesting a bias of the thermal motion, whereas the bond lengths are not so different between the two temperatures in (II) [1.3266 (15) versus 1.310 (2) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100010805/ob1035sup1.cif
Contains datablocks I_108K, I_293K, II_123K, II_293K, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100010805/ob1035I_108Ksup2.hkl
Contains datablock I_108K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100010805/ob1035I_293Ksup3.hkl
Contains datablock I_293K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100010805/ob1035II_123Ksup4.hkl
Contains datablock II_123K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100010805/ob1035II_293Ksup5.hkl
Contains datablock II_293K

CCDC references: 153904; 153905; 153906; 153907

Computing details top

For all compounds, data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: TEXSAN (Rigaku, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1998); software used to prepare material for publication: SHELXL97.

(I_108K) 4-vinylbenzoic acid top
Crystal data top
C9H8O2Dx = 1.357 Mg m3
Mr = 148.15Melting point: 416 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.3945 (9) ÅCell parameters from 9603 reflections
b = 6.4096 (7) Åθ = 2.6–27.5°
c = 13.8798 (14) ŵ = 0.10 mm1
β = 103.899 (4)°T = 108 K
V = 724.94 (13) Å3Prism, colorless
Z = 40.50 × 0.40 × 0.30 mm
F(000) = 312
Data collection top
Rigaku RAXIS-RAPID Imaging Plate
diffractometer
1653 independent reflections
Radiation source: Rigaku ratating anode Ultrax181567 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 10 pixels mm-1θmax = 27.5°, θmin = 2.6°
Oscillation Photograph scansh = 1010
Absorption correction: multi-scan
ABSCOR (Higashi, 1995)
k = 88
Tmin = 0.952, Tmax = 0.972l = 1817
6316 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039Only H-atom coordinates refined
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0635P)2 + 0.1621P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1653 reflectionsΔρmax = 0.38 e Å3
129 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.045 (6)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.69007 (10)0.51215 (12)0.47417 (6)0.0283 (2)
HO10.627 (4)0.592 (5)0.503 (2)0.034*0.51 (2)
O20.50393 (9)0.25638 (13)0.44913 (6)0.0257 (2)
HO20.452 (4)0.335 (5)0.475 (2)0.031*0.49 (2)
C10.98244 (11)0.06138 (15)0.34383 (7)0.0194 (2)
C21.02545 (11)0.14209 (16)0.37601 (7)0.0214 (2)
H21.1320 (16)0.195 (2)0.3756 (10)0.026*
C30.91517 (12)0.26869 (16)0.40778 (7)0.0209 (2)
H30.9440 (16)0.409 (2)0.4296 (10)0.025*
C40.75938 (11)0.19427 (15)0.40953 (7)0.0188 (2)
C50.71481 (11)0.00747 (15)0.37755 (7)0.0201 (2)
H50.6087 (16)0.059 (2)0.3796 (10)0.024*
C60.82498 (12)0.13235 (15)0.34379 (7)0.0202 (2)
H60.7948 (16)0.273 (2)0.3223 (10)0.024*
C71.09875 (12)0.20408 (16)0.31316 (7)0.0226 (2)
H71.0512 (16)0.329 (2)0.2846 (10)0.027*
C81.25780 (13)0.17151 (18)0.32344 (8)0.0261 (3)
H8A1.3130 (18)0.044 (2)0.3520 (11)0.031*
H8B1.3260 (18)0.276 (2)0.3040 (11)0.031*
C90.64314 (12)0.32874 (15)0.44628 (7)0.0198 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0320 (4)0.0198 (4)0.0366 (4)0.0013 (3)0.0151 (3)0.0032 (3)
O20.0192 (4)0.0282 (4)0.0310 (4)0.0003 (3)0.0083 (3)0.0032 (3)
C10.0184 (4)0.0226 (5)0.0168 (4)0.0003 (3)0.0034 (3)0.0001 (3)
C20.0180 (4)0.0248 (5)0.0212 (5)0.0038 (4)0.0044 (3)0.0023 (4)
C30.0208 (5)0.0212 (5)0.0204 (5)0.0036 (4)0.0045 (3)0.0023 (3)
C40.0185 (5)0.0202 (5)0.0173 (4)0.0006 (3)0.0032 (3)0.0010 (3)
C50.0169 (4)0.0216 (5)0.0211 (4)0.0009 (3)0.0032 (3)0.0013 (3)
C60.0195 (4)0.0191 (5)0.0210 (4)0.0015 (3)0.0028 (3)0.0004 (3)
C70.0224 (5)0.0238 (5)0.0217 (5)0.0003 (4)0.0054 (4)0.0032 (4)
C80.0224 (5)0.0298 (5)0.0270 (5)0.0022 (4)0.0077 (4)0.0020 (4)
C90.0203 (4)0.0196 (5)0.0193 (5)0.0003 (3)0.0044 (3)0.0013 (3)
Geometric parameters (Å, º) top
O1—HO10.89 (4)C3—C41.3978 (13)
O1—C91.2703 (12)C4—C51.3890 (13)
O2—HO20.80 (4)C4—C91.4813 (13)
O2—C91.2667 (12)C5—H50.958 (13)
C1—C21.3975 (14)C5—C61.3869 (14)
C1—C61.3978 (13)C6—H60.966 (14)
C1—C71.4734 (14)C7—H70.939 (15)
C2—H20.958 (14)C7—C81.3248 (14)
C2—C31.3806 (14)C8—H8B0.963 (15)
C3—H30.961 (14)C8—H8A0.975 (15)
HO1—O1—C9119.6 (19)H5—C5—C4119.6 (8)
HO2—O2—C9113 (2)C6—C5—C4119.67 (9)
C2—C1—C6118.39 (9)H6—C6—C5119.8 (8)
C2—C1—C7122.23 (9)H6—C6—C1118.8 (8)
C6—C1—C7119.34 (9)C5—C6—C1121.28 (9)
H2—C2—C3119.5 (8)H7—C7—C8119.7 (8)
H2—C2—C1119.9 (8)H7—C7—C1114.1 (8)
C3—C2—C1120.59 (9)C8—C7—C1126.28 (10)
H3—C3—C2120.9 (8)H8B—C8—H8A116.3 (12)
H3—C3—C4118.7 (8)H8B—C8—C7120.8 (9)
C2—C3—C4120.46 (9)H8A—C8—C7123.0 (9)
C5—C4—C3119.57 (9)O2—C9—O1123.38 (9)
C5—C4—C9120.17 (8)O2—C9—C4119.12 (9)
C3—C4—C9120.26 (9)O1—C9—C4117.50 (9)
H5—C5—C6120.7 (8)
C8—C7—C1—C29.06 (16)O2—C9—C4—C3178.52 (8)
O1—C9—C4—C30.99 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—HO1···O2i0.89 (4)1.72 (4)2.6114 (11)176 (3)
O2—HO2···O1i0.80 (4)1.82 (4)2.6114 (11)172 (3)
Symmetry code: (i) x+1, y+1, z+1.
(I_293K) 4-vinylbenzoic acid top
Crystal data top
C9H8O2Dx = 1.304 Mg m3
Mr = 148.15Melting point: 416 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.2876 (16) ÅCell parameters from 8554 reflections
b = 6.5504 (12) Åθ = 1.5–27.5°
c = 14.247 (2) ŵ = 0.09 mm1
β = 102.651 (8)°T = 293 K
V = 754.7 (2) Å3Prism, colorless
Z = 40.50 × 0.40 × 0.30 mm
F(000) = 312
Data collection top
Rigaku RAXIS-RAPID Imaging Plate
diffractometer
1718 independent reflections
Radiation source: Rigaku ratating anode Ultrax181396 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 10 pixels mm-1θmax = 27.5°, θmin = 2.9°
Oscillation Photograph scansh = 1010
Absorption correction: multi-scan
ABSCOR (Higashi, 1995)
k = 78
Tmin = 0.982, Tmax = 0.991l = 1818
5865 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051Only H-atom coordinates refined
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.0661P)2 + 0.0872P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1718 reflectionsΔρmax = 0.18 e Å3
129 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.070 (11)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.68953 (16)0.50975 (19)0.47359 (11)0.0823 (4)
HO10.636 (7)0.576 (8)0.507 (3)0.099*0.53 (4)
O20.50421 (13)0.26183 (19)0.44964 (9)0.0748 (4)
HO20.443 (7)0.346 (8)0.474 (3)0.090*0.47 (4)
C10.98094 (16)0.0523 (2)0.34578 (10)0.0592 (4)
C21.02382 (18)0.1451 (3)0.37687 (11)0.0668 (4)
H21.128 (2)0.196 (3)0.3759 (13)0.080*
C30.91465 (19)0.2704 (3)0.40793 (11)0.0652 (4)
H30.945 (2)0.404 (3)0.4317 (13)0.078*
C40.75887 (16)0.1997 (2)0.41002 (9)0.0565 (4)
C50.71478 (17)0.0041 (2)0.37877 (11)0.0615 (4)
H50.607 (2)0.045 (3)0.3777 (12)0.074*
C60.82395 (18)0.1187 (2)0.34586 (11)0.0633 (4)
H60.794 (2)0.256 (3)0.3244 (12)0.076*
C71.0970 (2)0.1924 (3)0.31540 (12)0.0726 (5)
H71.053 (2)0.321 (3)0.2899 (14)0.087*
C81.2534 (2)0.1638 (4)0.32423 (15)0.0854 (6)
H8A1.309 (3)0.033 (3)0.3567 (16)0.103*
H8B1.312 (3)0.273 (3)0.3020 (16)0.103*
C90.64365 (17)0.3318 (2)0.44629 (10)0.0599 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0794 (8)0.0614 (7)0.1171 (10)0.0111 (6)0.0456 (7)0.0109 (6)
O20.0557 (6)0.0739 (8)0.0991 (9)0.0073 (5)0.0266 (5)0.0108 (6)
C10.0544 (7)0.0691 (9)0.0543 (7)0.0025 (6)0.0125 (5)0.0005 (6)
C20.0516 (7)0.0827 (11)0.0688 (9)0.0153 (7)0.0189 (6)0.0087 (7)
C30.0611 (8)0.0679 (9)0.0692 (9)0.0155 (7)0.0204 (6)0.0094 (7)
C40.0529 (7)0.0598 (8)0.0571 (7)0.0038 (6)0.0127 (5)0.0033 (6)
C50.0492 (7)0.0603 (8)0.0751 (9)0.0072 (6)0.0140 (6)0.0026 (6)
C60.0580 (8)0.0593 (8)0.0723 (9)0.0065 (6)0.0135 (6)0.0025 (7)
C70.0659 (9)0.0822 (11)0.0715 (9)0.0042 (8)0.0186 (7)0.0102 (8)
C80.0665 (10)0.1012 (14)0.0932 (12)0.0028 (10)0.0274 (8)0.0135 (11)
C90.0563 (7)0.0588 (8)0.0660 (8)0.0053 (6)0.0166 (6)0.0028 (6)
Geometric parameters (Å, º) top
O1—HO10.83 (6)C3—C41.3780 (19)
O1—C91.2611 (19)C4—C51.379 (2)
O2—HO20.87 (7)C4—C91.464 (2)
O2—C91.2537 (17)C5—H50.949 (18)
C1—C61.372 (2)C5—C61.368 (2)
C1—C21.388 (2)C6—H60.966 (17)
C1—C71.462 (2)C7—H70.96 (2)
C2—H20.930 (19)C7—C81.288 (2)
C2—C31.365 (2)C8—H8B0.96 (2)
C3—H30.95 (2)C8—H8A1.03 (2)
HO1—O1—C9120 (3)H5—C5—C4120.1 (11)
HO2—O2—C9114 (3)C6—C5—C4120.56 (13)
C6—C1—C2118.13 (14)H6—C6—C5120.7 (10)
C6—C1—C7119.16 (15)H6—C6—C1118.4 (10)
C2—C1—C7122.70 (14)C5—C6—C1120.85 (14)
H2—C2—C3118.2 (12)H7—C7—C8117.0 (12)
H2—C2—C1120.3 (12)H7—C7—C1116.5 (12)
C3—C2—C1121.49 (14)C8—C7—C1126.40 (18)
H3—C3—C2121.9 (11)H8B—C8—H8A123.8 (19)
H3—C3—C4118.3 (11)H8B—C8—C7115.7 (14)
C2—C3—C4119.70 (15)H8A—C8—C7120.4 (12)
C3—C4—C5119.24 (14)O2—C9—O1122.98 (14)
C3—C4—C9119.72 (14)O2—C9—C4118.39 (14)
C5—C4—C9121.04 (12)O1—C9—C4118.63 (13)
H5—C5—C6119.3 (10)
C8—C7—C1—C29.1 (3)O2—C9—C4—C3178.24 (13)
O1—C9—C4—C31.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—HO1···O2i0.83 (6)1.79 (6)2.6043 (17)166 (5)
O2—HO2···O1i0.87 (7)1.74 (7)2.6043 (17)173 (5)
Symmetry code: (i) x+1, y+1, z+1.
(II_123K) 9-vinylanthracene top
Crystal data top
C16H12Dx = 1.269 Mg m3
Mr = 204.26Melting point: 338 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.3213 (3) ÅCell parameters from 12209 reflections
b = 13.6798 (4) Åθ = 2.7–27.5°
c = 8.8957 (3) ŵ = 0.07 mm1
β = 109.467 (1)°T = 123 K
V = 1069.48 (6) Å3Prism, yellow
Z = 40.20 × 0.20 × 0.20 mm
F(000) = 432
Data collection top
Rigaku RAXIS-RAPID Imaging Plate
diffractometer
2459 independent reflections
Radiation source: Rigaku ratating anode Ultrax182231 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 10 pixels mm-1θmax = 27.5°, θmin = 2.3°
Oscillation Photograph scansh = 1212
Absorption correction: multi-scan
ABSCOR (Higashi, 1995)
k = 1717
Tmin = 0.975, Tmax = 0.986l = 1111
10703 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041Only H-atom coordinates refined
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0626P)2 + 0.2677P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2459 reflectionsΔρmax = 0.31 e Å3
182 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.062 (6)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.00703 (11)0.84752 (7)0.04917 (11)0.0174 (2)
C20.09567 (11)0.91479 (7)0.16326 (11)0.0174 (2)
C30.02333 (11)0.97660 (7)0.24759 (11)0.0186 (2)
C40.13356 (11)0.97049 (7)0.21476 (11)0.0199 (2)
H40.1818 (14)1.0139 (10)0.2736 (15)0.024*
C50.22284 (11)0.90650 (7)0.09986 (11)0.0186 (2)
C60.15251 (11)0.84437 (7)0.01435 (11)0.0175 (2)
C70.07801 (11)0.77923 (7)0.03495 (12)0.0212 (2)
H70.0362 (14)0.7799 (9)0.1535 (16)0.025*
C80.18792 (12)0.71643 (8)0.03694 (13)0.0252 (3)
H8A0.2284 (15)0.7129 (10)0.1544 (17)0.030*
H8B0.2292 (15)0.6710 (10)0.0237 (16)0.030*
C90.25644 (11)0.92662 (7)0.19731 (11)0.0200 (2)
H90.3070 (14)0.8881 (10)0.1378 (15)0.024*
C100.33823 (11)0.99190 (8)0.30849 (12)0.0228 (2)
H100.4481 (15)1.0015 (10)0.3274 (15)0.027*
C110.26629 (12)1.05084 (8)0.39421 (12)0.0243 (2)
H110.3270 (15)1.0978 (10)0.4729 (16)0.029*
C120.11382 (12)1.04364 (7)0.36417 (11)0.0223 (2)
H120.0618 (14)1.0853 (10)0.4200 (16)0.027*
C130.24862 (11)0.78011 (7)0.10311 (12)0.0212 (2)
H130.2028 (14)0.7375 (10)0.1619 (16)0.025*
C140.40229 (12)0.77840 (8)0.13440 (13)0.0247 (2)
H140.4669 (15)0.7358 (10)0.2178 (16)0.030*
C150.47103 (12)0.83928 (8)0.04860 (13)0.0251 (2)
H150.5807 (16)0.8363 (10)0.0717 (16)0.030*
C160.38401 (11)0.90093 (8)0.06536 (12)0.0227 (2)
H160.4304 (15)0.9431 (10)0.1245 (16)0.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0204 (5)0.0166 (4)0.0158 (4)0.0022 (3)0.0067 (4)0.0020 (3)
C20.0201 (5)0.0167 (4)0.0152 (4)0.0017 (3)0.0058 (3)0.0027 (3)
C30.0238 (5)0.0168 (4)0.0149 (4)0.0024 (3)0.0063 (4)0.0021 (3)
C40.0241 (5)0.0195 (5)0.0176 (4)0.0047 (4)0.0090 (4)0.0015 (3)
C50.0209 (5)0.0182 (4)0.0179 (4)0.0032 (3)0.0080 (4)0.0044 (3)
C60.0202 (5)0.0160 (4)0.0164 (4)0.0015 (3)0.0063 (4)0.0028 (3)
C70.0208 (5)0.0228 (5)0.0205 (5)0.0011 (4)0.0078 (4)0.0044 (4)
C80.0232 (5)0.0223 (5)0.0305 (6)0.0005 (4)0.0095 (4)0.0060 (4)
C90.0211 (5)0.0204 (5)0.0188 (4)0.0011 (4)0.0073 (4)0.0016 (4)
C100.0214 (5)0.0232 (5)0.0215 (5)0.0019 (4)0.0043 (4)0.0018 (4)
C110.0287 (5)0.0208 (5)0.0197 (5)0.0021 (4)0.0031 (4)0.0024 (4)
C120.0289 (5)0.0195 (5)0.0175 (5)0.0029 (4)0.0062 (4)0.0010 (4)
C130.0230 (5)0.0186 (5)0.0215 (5)0.0005 (4)0.0069 (4)0.0002 (4)
C140.0234 (5)0.0230 (5)0.0253 (5)0.0036 (4)0.0052 (4)0.0002 (4)
C150.0185 (5)0.0295 (5)0.0276 (5)0.0002 (4)0.0080 (4)0.0048 (4)
C160.0212 (5)0.0255 (5)0.0234 (5)0.0040 (4)0.0102 (4)0.0041 (4)
Geometric parameters (Å, º) top
C1—C21.4145 (13)C8—H8A0.987 (14)
C1—C61.4150 (13)C9—H90.972 (13)
C1—C71.4834 (13)C9—C101.3617 (14)
C2—C91.4357 (13)C10—H100.990 (14)
C2—C31.4386 (13)C10—C111.4220 (15)
C3—C41.3951 (14)C11—H110.979 (14)
C3—C121.4299 (13)C11—C121.3594 (15)
C4—H40.993 (13)C12—H120.983 (13)
C4—C51.3916 (14)C13—H130.972 (14)
C5—C161.4316 (13)C13—C141.3652 (14)
C5—C61.4364 (13)C14—H140.977 (14)
C6—C131.4294 (13)C14—C151.4187 (15)
C7—H70.995 (13)C15—H150.974 (14)
C7—C81.3266 (15)C15—C161.3597 (15)
C8—H8B0.982 (14)C16—H160.974 (14)
C2—C1—C6119.79 (8)H9—C9—C10119.6 (7)
C2—C1—C7121.31 (8)H9—C9—C2119.0 (7)
C6—C1—C7118.90 (8)C10—C9—C2121.30 (9)
C1—C2—C9122.94 (9)H10—C10—C9120.5 (8)
C1—C2—C3119.56 (9)H10—C10—C11118.7 (8)
C9—C2—C3117.48 (9)C9—C10—C11120.76 (9)
C4—C3—C12120.93 (9)H11—C11—C12120.3 (8)
C4—C3—C2119.76 (9)H11—C11—C10119.5 (8)
C12—C3—C2119.30 (9)C12—C11—C10120.16 (9)
H4—C4—C5119.9 (7)H12—C12—C11121.2 (8)
H4—C4—C3118.7 (7)H12—C12—C3117.8 (8)
C5—C4—C3121.33 (9)C11—C12—C3120.96 (9)
C4—C5—C16121.26 (9)H13—C13—C14120.0 (8)
C4—C5—C6119.63 (9)H13—C13—C6118.8 (8)
C16—C5—C6119.11 (9)C14—C13—C6121.26 (9)
C1—C6—C13122.39 (9)H14—C14—C13120.3 (8)
C1—C6—C5119.86 (9)H14—C14—C15118.9 (8)
C13—C6—C5117.74 (9)C13—C14—C15120.77 (10)
H7—C7—C8118.9 (7)H15—C15—C16120.5 (8)
H7—C7—C1116.5 (7)H15—C15—C14119.5 (8)
C8—C7—C1124.56 (9)C16—C15—C14120.07 (9)
H8B—C8—H8A118.0 (11)H16—C16—C15120.5 (8)
H8B—C8—C7121.8 (8)H16—C16—C5118.4 (8)
H8A—C8—C7120.2 (8)C15—C16—C5121.03 (9)
C2—C1—C7—C856.15 (14)
(II_293K) 9-vinylanthracene top
Crystal data top
C16H12Dx = 1.225 Mg m3
Mr = 204.26Melting point: 338 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.3873 (5) ÅCell parameters from 10475 reflections
b = 13.9756 (10) Åθ = 2.7–27.5°
c = 8.9889 (7) ŵ = 0.07 mm1
β = 110.066 (1)°T = 293 K
V = 1107.70 (13) Å3Prism, yellow
Z = 40.40 × 0.30 × 0.30 mm
F(000) = 432
Data collection top
Rigaku RAXIS-RAPID Imaging Plate
diffractometer
2538 independent reflections
Radiation source: Rigaku ratating anode Ultrax182010 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 10 pixels mm-1θmax = 27.5°, θmin = 2.7°
Oscillation Photograph scansh = 1211
Absorption correction: multi-scan
ABSCOR (Higashi, 1995)
k = 1818
Tmin = 0.968, Tmax = 0.976l = 1111
10621 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056Only H-atom coordinates refined
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.0685P)2 + 0.1928P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2538 reflectionsΔρmax = 0.25 e Å3
182 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.109 (10)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.00702 (15)0.84764 (9)0.05231 (15)0.0430 (3)
C20.09515 (16)0.91436 (9)0.16424 (15)0.0429 (3)
C30.02277 (17)0.97528 (10)0.24666 (16)0.0470 (4)
C40.13200 (18)0.96879 (11)0.21364 (17)0.0512 (4)
H40.1780 (18)1.0117 (13)0.270 (2)0.061*
C50.22145 (16)0.90549 (10)0.10070 (16)0.0473 (4)
C60.15131 (16)0.84395 (9)0.01761 (16)0.0445 (3)
C70.07746 (17)0.78048 (11)0.03034 (19)0.0533 (4)
H70.0357 (19)0.7839 (12)0.149 (2)0.064*
C80.18362 (19)0.71803 (12)0.0388 (2)0.0633 (5)
H8A0.226 (2)0.7160 (14)0.160 (3)0.076*
H8B0.223 (2)0.6742 (15)0.021 (2)0.076*
C90.25412 (17)0.92666 (11)0.19802 (17)0.0502 (4)
H90.3049 (19)0.8860 (13)0.141 (2)0.060*
C100.33499 (19)0.99125 (12)0.30695 (19)0.0599 (4)
H100.443 (2)1.0013 (14)0.324 (2)0.072*
C110.2637 (2)1.04895 (12)0.3903 (2)0.0649 (5)
H110.323 (2)1.0932 (15)0.463 (2)0.078*
C120.1137 (2)1.04172 (11)0.36089 (18)0.0582 (4)
H120.062 (2)1.0826 (13)0.415 (2)0.070*
C130.24718 (18)0.78051 (11)0.09750 (19)0.0551 (4)
H130.199 (2)0.7372 (13)0.151 (2)0.066*
C140.3991 (2)0.77874 (13)0.1286 (2)0.0657 (5)
H140.462 (2)0.7370 (15)0.211 (2)0.079*
C150.4670 (2)0.83883 (14)0.0457 (2)0.0682 (5)
H150.576 (2)0.8356 (15)0.072 (2)0.082*
C160.38105 (18)0.89963 (13)0.0657 (2)0.0599 (4)
H160.426 (2)0.9435 (14)0.124 (2)0.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0504 (7)0.0431 (7)0.0382 (7)0.0045 (5)0.0185 (6)0.0037 (5)
C20.0512 (7)0.0435 (7)0.0351 (6)0.0039 (5)0.0162 (5)0.0051 (5)
C30.0603 (9)0.0449 (7)0.0359 (7)0.0070 (6)0.0165 (6)0.0040 (5)
C40.0617 (9)0.0522 (8)0.0448 (8)0.0142 (7)0.0248 (7)0.0027 (6)
C50.0525 (8)0.0493 (7)0.0439 (7)0.0091 (6)0.0216 (6)0.0092 (6)
C60.0507 (7)0.0433 (7)0.0416 (7)0.0037 (6)0.0184 (6)0.0064 (5)
C70.0535 (8)0.0603 (9)0.0485 (8)0.0021 (7)0.0207 (6)0.0105 (7)
C80.0580 (9)0.0578 (9)0.0747 (11)0.0067 (7)0.0237 (8)0.0157 (8)
C90.0519 (8)0.0537 (8)0.0463 (8)0.0005 (6)0.0185 (6)0.0030 (6)
C100.0565 (9)0.0624 (9)0.0552 (9)0.0066 (7)0.0119 (7)0.0016 (7)
C110.0759 (11)0.0566 (9)0.0513 (9)0.0054 (8)0.0079 (8)0.0086 (7)
C120.0737 (11)0.0531 (8)0.0440 (8)0.0066 (7)0.0152 (7)0.0060 (6)
C130.0570 (9)0.0518 (8)0.0563 (9)0.0012 (7)0.0191 (7)0.0021 (7)
C140.0584 (9)0.0661 (10)0.0671 (11)0.0104 (8)0.0146 (8)0.0012 (8)
C150.0498 (9)0.0813 (12)0.0741 (12)0.0014 (8)0.0218 (8)0.0089 (9)
C160.0546 (9)0.0696 (10)0.0617 (10)0.0108 (7)0.0277 (8)0.0096 (8)
Geometric parameters (Å, º) top
C1—C61.411 (2)C8—H8A1.02 (2)
C1—C21.4124 (19)C9—H90.990 (18)
C1—C71.4857 (19)C9—C101.356 (2)
C2—C91.428 (2)C10—H100.98 (2)
C2—C31.4425 (19)C10—C111.416 (3)
C3—C41.382 (2)C11—H110.94 (2)
C3—C121.430 (2)C11—C121.344 (3)
C4—H40.974 (18)C12—H120.979 (19)
C4—C51.390 (2)C13—H130.98 (2)
C5—C161.424 (2)C13—C141.356 (2)
C5—C61.4382 (19)C14—H140.97 (2)
C6—C131.424 (2)C14—C151.412 (3)
C7—H71.005 (19)C15—H150.97 (2)
C7—C81.310 (2)C15—C161.349 (3)
C8—H8B0.97 (2)C16—H160.99 (2)
C6—C1—C2119.79 (12)H9—C9—C10120.4 (10)
C6—C1—C7118.82 (12)H9—C9—C2118.3 (10)
C2—C1—C7121.39 (13)C10—C9—C2121.26 (15)
C1—C2—C9123.03 (13)H10—C10—C9119.8 (11)
C1—C2—C3119.44 (13)H10—C10—C11119.2 (11)
C9—C2—C3117.51 (13)C9—C10—C11120.80 (16)
C4—C3—C12121.43 (13)H11—C11—C12121.5 (13)
C4—C3—C2119.77 (13)H11—C11—C10118.0 (13)
C12—C3—C2118.80 (14)C12—C11—C10120.43 (15)
H4—C4—C3117.9 (10)H12—C12—C11121.6 (11)
H4—C4—C5120.3 (10)H12—C12—C3117.2 (11)
C3—C4—C5121.69 (13)C11—C12—C3121.16 (15)
C4—C5—C16121.60 (14)H13—C13—C14121.4 (10)
C4—C5—C6119.36 (13)H13—C13—C6117.4 (10)
C16—C5—C6119.04 (14)C14—C13—C6121.26 (16)
C1—C6—C13122.59 (13)H14—C14—C13119.7 (12)
C1—C6—C5119.90 (13)H14—C14—C15119.4 (12)
C13—C6—C5117.51 (13)C13—C14—C15120.91 (17)
H7—C7—C8119.5 (10)H15—C15—C16121.5 (12)
H7—C7—C1115.1 (10)H15—C15—C14118.3 (12)
C8—C7—C1125.46 (15)C16—C15—C14120.21 (16)
H8B—C8—H8A119.4 (16)H16—C16—C15121.8 (11)
H8B—C8—C7121.9 (11)H16—C16—C5117.2 (11)
H8A—C8—C7118.7 (11)C15—C16—C5121.06 (16)
C2—C1—C7—C858.4 (2)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds