Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title complex, [MnHg(SCN)4(CH4N2O)3]n, consists of slightly distorted octahedral MnN3O3 and tetrahedral HgS4 units. The MnII atom is coordinated by the O atoms of three urea mol­ecules and by the N atoms of three SCN ions; HgII is coordinated by four S atoms from SCN ions. Each pair of MnII and HgII atoms is connected by an –SCN– bridge, forming infinite two-dimensional –Mn—NCS—Hg– networks.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010101719X/ob1045sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010101719X/ob1045Isup2.hkl
Contains datablock I

CCDC reference: 180138

Comment top

Owing to the diverse applications of coordination compounds in chemistry-physics and technology, there exists continuing interest in the synthesis and characterization of compounds especially those of transition metals. In these studies, supramolecular architecture of multi-dimensional networks is one of the most attractive field from the technological point of view because these networks may have electronic, magnetic, optical or catalytic applications (Batten & Robson, 1998). For designing infinite inorganic and organic frameworks, various pseudohalide and pseudochalocogenide ions, such as CN-, OCN-, SCN-, SeCN-, CNO-, N3-, CN22-, SN22- and complementary ligands are used (Kitazawa et al., 1994; Cortes et al., 1997; Munno et al., 1997; Wang et al., 2000; Nandibewoor et al., 2000; Thirumaran & Ramalingam, 2000; Becker & Jansen, 2001). Due to their versatility in acting as monodentate, bidentate or bridging ligands, multi-dimensional framework structures linking alternately one metal atom M to another M' could be built by using pseudohalide or pseudochalocogenide ions.

Coordination chemistries of transition metals have been extensively studied from a chemical and structural point of view, mainly due to the capability of theirs to adopt different modes of coordination determined by considerations of size, as well as electrostatic and covalent bonding forces. The presence of pseudohalide and pseudochalocogenide ions introduces some additional degrees of freedom.

As a part of these investigations, the title compound (I), the urea adduct of manganese mercury thiocyanate, MnHg(SCN)4 (Yan et al., 1999) has been prepared, which has been introduced SCN-ions as bridging ligands [linking manganese(II) and mercury(II)] and urea as complementary ligands.

According to the hard and soft acid and bases (HSAB) concept (Pearson, 1966; Balarew & Duhlew, 1984), the harder metals show a pronounced affinity for coordination with harder ligands while softer metals prefer coordination with softer ligands. In this structure, each harder MnII is hexa-coordinated via harder 3 N(SCN)3O(urea) and in a slightly distorted octahedral geometry; and each softer HgII is tetracoordinated via softer 4S(SCN) and in a slightly distorted tetragonal geometry.

Each MnII is bound to three N atoms belonging to SCN groups and three O atoms to urea ligands. The resulting of hexa-coordinated MnII surrounding exhibits slight distortions from the ideal octahedron. The bond lengths of Mn—N [range 2.225 (5)–2.243 (5) Å] and those of Mn—O [range 2.152 (3)–2.197 (4) Å] are both much longer than the sum of Shannon's ionic radii, 2.13 and 2.02 Å (Shannon, 1976), respectively. This is probably because the assumed valences of the N and O atoms are not appropriated, for the charges on the SCN- ions and urea molecules are much delocalized. The bond angles for N—Mn—N, O—Mn—N and O—Mn—O (between adjacent atoms) range 87.2 (2)–88.7 (2), 88.2 (2)–94.8 (2) and 86.18 (14)–91.71 (13)° with the average values 87.95, 90.82 and 88.95°, respectively, which are somewhat different from the typical octahedral angles, 90°.

Each HgII, coordinated with four SCN S atoms, is in tetrahedral geometry. The tetrahedron is also slightly deformed. The Hg—S bond lengths are in the range 2.4865 (14)–2.6035 (15) Å, on the average 2.5473 Å, are much shorter than the sum of the Shannon ionic radii, 2.80 Å (Shannon, 1976), which all the more exhibits considerable delocaization of the charges on the SCN- ions. The bond angles for S—Hg—S [range 101.84 (5)–126.91 (6)°] are distinctly deviated from the typical tetrahedral angle.

Among the C—S—Hg angles, the bond angle of C1—S1—Hg1 is much larger than that of the rest. Although the bond angles of C2—N2—Mn1 [172.0 (4)°] and C3—N3—Mn1 [178.2 (4)°] are both close to 180.0°, however, that of C1—N1—Mn1 [159.1 (4)°] is obviously smaller and exhibit a significant bending. The SCN groups are quasi-linear [the N—C—S angles range 175.9 (5)–178.4 (5)°], which is the striking feature of these kinds of complexes: the –SCN– bridges, which connect bimetals forming infinite two- or three-dimensional networks (three-dimensional networks formed in this complex).

Experimental top

MnHg(SCN)4 was prepared by the reaction of MnX2, HgX2 (where X = Cl, NO3 or CH3COO) and ASCN (where A = K, Na, or NH4) (molar ratio 1:1:4) in water. The crystalline powders of MnHg(SCN)4 and urea were dissolved into water according to the stoichiometric proportion. The mixture was then left standing for several days, thereby crystals of (I) were obtained.

Refinement top

The N7 and N8 atoms were disordered. The N7, N7', N8 and N8' atoms were refined isotropically, and their site-occupation factors were 0.59, 0.41, 0.69 and 0.31, respectively. The positions of all H atoms were placed geometrically (N—H = 0.86 Å) and refined using a riding model, with Uiso=1.2Ueq(parent atom).

Computing details top

Data collection: XSCANS (Bruker, 1996); cell refinement: XSCANS (Bruker, 1996); data reduction: XSCANS (Bruker, 1996); program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids. The hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. Packing diagram for (I) showing the three-dimensional network.
(I) top
Crystal data top
C7H12HgMnN10O3S4Z = 2
Mr = 668.04F(000) = 634
Triclinic, P1Dx = 2.191 Mg m3
a = 7.5210 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.6669 (9) ÅCell parameters from 53 reflections
c = 13.3202 (9) Åθ = 4.7–14.5°
α = 80.185 (6)°µ = 8.64 mm1
β = 82.009 (7)°T = 293 K
γ = 75.147 (7)°Prism, pale green
V = 1012.69 (14) Å30.31 × 0.21 × 0.20 mm
Data collection top
Bruker P4
diffractometer
3229 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
θ/2θ scansh = 81
Absorption correction: ψ scan
XSCANS (Bruker,1996)
k = 1212
Tmin = 0.125, Tmax = 0.179l = 1515
4448 measured reflections3 standard reflections every 97 reflections
3561 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0255P)2 + 2.0461P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
3558 reflectionsΔρmax = 0.84 e Å3
236 parametersΔρmin = 0.81 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0064 (3)
Crystal data top
C7H12HgMnN10O3S4γ = 75.147 (7)°
Mr = 668.04V = 1012.69 (14) Å3
Triclinic, P1Z = 2
a = 7.5210 (7) ÅMo Kα radiation
b = 10.6669 (9) ŵ = 8.64 mm1
c = 13.3202 (9) ÅT = 293 K
α = 80.185 (6)°0.31 × 0.21 × 0.20 mm
β = 82.009 (7)°
Data collection top
Bruker P4
diffractometer
3229 reflections with I > 2σ(I)
Absorption correction: ψ scan
XSCANS (Bruker,1996)
Rint = 0.017
Tmin = 0.125, Tmax = 0.1793 standard reflections every 97 reflections
4448 measured reflections intensity decay: none
3561 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.02Δρmax = 0.84 e Å3
3558 reflectionsΔρmin = 0.81 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Hg10.11801 (3)0.83307 (2)0.33629 (2)0.05191 (11)
Mn10.25073 (10)0.40068 (7)0.25381 (5)0.0377 (2)
S10.1281 (2)0.60520 (15)0.42110 (13)0.0633 (4)
S20.2927 (3)0.8242 (2)0.15528 (14)0.0843 (6)
S30.2131 (3)1.00831 (15)0.4057 (2)0.0757 (5)
S40.2341 (2)0.92646 (14)0.32078 (12)0.0537 (3)
C10.0023 (7)0.5626 (5)0.3463 (4)0.0426 (11)
C20.5556 (8)0.6837 (6)0.1825 (4)0.0477 (12)
C30.0579 (7)0.1353 (5)0.3532 (4)0.0466 (12)
C40.2257 (8)0.9276 (5)0.1956 (5)0.0546 (14)
C50.0190 (7)0.3072 (5)0.0498 (4)0.0415 (11)
C60.5371 (8)0.2842 (6)0.1620 (5)0.063 (2)
C70.4855 (6)0.3153 (5)0.4589 (4)0.0377 (10)
N10.0825 (6)0.5254 (4)0.2972 (3)0.0487 (10)
N20.4482 (7)0.5861 (5)0.1990 (4)0.0545 (11)
N30.0486 (7)0.2241 (4)0.3189 (4)0.0503 (11)
N40.2178 (9)0.9340 (6)0.1084 (5)0.077 (2)
N50.0874 (8)0.3334 (5)0.0354 (4)0.0654 (15)
H5A0.1088 (8)0.4101 (5)0.0522 (4)0.078*
H5B0.1350 (8)0.2737 (5)0.0739 (4)0.078*
N60.0369 (8)0.1857 (4)0.0764 (4)0.0616 (14)
H6A0.0975 (8)0.1643 (4)0.1337 (4)0.074*
H6B0.0120 (8)0.1279 (4)0.0365 (4)0.074*
N90.5002 (8)0.2071 (5)0.4287 (4)0.0602 (13)
H9A0.4580 (8)0.1910 (5)0.3677 (4)0.072*
H9B0.5521 (8)0.1527 (5)0.4701 (4)0.072*
N100.5469 (6)0.3337 (4)0.5555 (3)0.0498 (11)
H10A0.5354 (6)0.4017 (4)0.5781 (3)0.060*
H10B0.5980 (6)0.2775 (4)0.5951 (3)0.060*
O10.0878 (5)0.3948 (3)0.1055 (3)0.0483 (9)
O20.3973 (5)0.2729 (4)0.2029 (3)0.0511 (9)
O30.4110 (5)0.3965 (3)0.4008 (3)0.0462 (8)
N70.5441 (17)0.2077 (11)0.0933 (12)0.066 (4)*0.59 (3)
H7A0.4480 (17)0.1484 (11)0.0768 (12)0.079*0.59 (3)
H7B0.6446 (17)0.2180 (11)0.0657 (12)0.079*0.59 (3)
N80.6875 (12)0.3780 (8)0.1862 (6)0.069 (3)*0.69 (2)
H8A0.6836 (12)0.4282 (8)0.2296 (6)0.083*0.69 (2)
H8B0.7875 (12)0.3877 (8)0.1583 (6)0.083*0.69 (2)
N7'0.5834 (19)0.1797 (14)0.1369 (14)0.052 (4)*0.41 (3)
H7'A0.5134 (19)0.1025 (14)0.1497 (14)0.062*0.41 (3)
H7'B0.6829 (19)0.1906 (14)0.1082 (14)0.062*0.41 (3)
N8'0.616 (4)0.409 (3)0.100 (3)0.135 (13)*0.31 (2)
H8'A0.563 (4)0.474 (3)0.092 (3)0.162*0.31 (2)
H8'B0.715 (4)0.418 (3)0.071 (3)0.162*0.31 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.04664 (14)0.03664 (13)0.0745 (2)0.01145 (9)0.00442 (10)0.01239 (9)
Mn10.0394 (4)0.0344 (4)0.0385 (4)0.0095 (3)0.0019 (3)0.0069 (3)
S10.0744 (10)0.0502 (8)0.0743 (10)0.0304 (8)0.0330 (8)0.0108 (7)
S20.0779 (12)0.0730 (11)0.0658 (10)0.0234 (9)0.0074 (9)0.0145 (8)
S30.0701 (10)0.0381 (7)0.129 (2)0.0079 (7)0.0553 (11)0.0108 (8)
S40.0410 (7)0.0533 (8)0.0657 (9)0.0089 (6)0.0015 (6)0.0142 (7)
C10.041 (3)0.030 (2)0.055 (3)0.010 (2)0.001 (2)0.002 (2)
C20.046 (3)0.054 (3)0.040 (3)0.010 (3)0.003 (2)0.006 (2)
C30.045 (3)0.039 (3)0.060 (3)0.012 (2)0.009 (2)0.012 (2)
C40.047 (3)0.036 (3)0.080 (4)0.004 (2)0.002 (3)0.019 (3)
C50.045 (3)0.039 (3)0.042 (3)0.012 (2)0.000 (2)0.008 (2)
C60.048 (3)0.056 (4)0.089 (5)0.004 (3)0.018 (3)0.026 (3)
C70.035 (2)0.036 (2)0.043 (3)0.009 (2)0.001 (2)0.007 (2)
N10.050 (3)0.043 (2)0.056 (3)0.015 (2)0.002 (2)0.011 (2)
N20.051 (3)0.050 (3)0.055 (3)0.002 (2)0.003 (2)0.010 (2)
N30.054 (3)0.037 (2)0.059 (3)0.008 (2)0.011 (2)0.005 (2)
N40.086 (4)0.061 (3)0.079 (4)0.002 (3)0.007 (3)0.026 (3)
N50.097 (4)0.044 (3)0.053 (3)0.022 (3)0.026 (3)0.018 (2)
N60.087 (4)0.041 (2)0.056 (3)0.023 (2)0.021 (3)0.017 (2)
N90.091 (4)0.049 (3)0.050 (3)0.037 (3)0.007 (3)0.010 (2)
N100.064 (3)0.043 (2)0.045 (2)0.024 (2)0.013 (2)0.010 (2)
O10.062 (2)0.039 (2)0.043 (2)0.017 (2)0.012 (2)0.0108 (15)
O20.049 (2)0.053 (2)0.058 (2)0.017 (2)0.009 (2)0.014 (2)
O30.057 (2)0.038 (2)0.045 (2)0.019 (2)0.009 (2)0.0090 (15)
Geometric parameters (Å, º) top
Hg1—S12.4865 (14)C6—N71.341 (12)
Hg1—S32.514 (2)C6—N81.346 (10)
Hg1—S22.585 (2)C6—N7'1.354 (14)
Hg1—S42.6035 (15)C6—N8'1.48 (3)
Mn1—O32.152 (3)C7—O31.250 (6)
Mn1—O12.176 (3)C7—N91.320 (6)
Mn1—O22.197 (4)C7—N101.335 (6)
Mn1—N32.225 (5)N5—H5A0.86
Mn1—N22.226 (5)N5—H5B0.86
Mn1—N12.243 (5)N6—H6A0.86
S1—C11.653 (6)N6—H6B0.86
S2—C2i1.653 (6)N9—H9A0.86
S3—C3ii1.667 (6)N9—H9B0.86
S4—C41.658 (7)N10—H10A0.86
C1—N11.152 (7)N10—H10B0.86
C2—N21.151 (7)N7—H7A0.86
C2—S2iii1.653 (6)N7—H7B0.86
C3—N31.146 (7)N8—H8A0.86
C3—S3iv1.667 (6)N8—H8B0.86
C4—N41.146 (8)N7'—H7'A0.86
C5—O11.254 (6)N7'—H7'B0.86
C5—N61.321 (6)N8'—H8'A0.86
C5—N51.327 (7)N8'—H8'B0.86
C6—O21.220 (7)
S1—Hg1—S3126.91 (6)O2—C6—N8'119.5 (14)
S1—Hg1—S2108.63 (6)N7'—C6—N8'113.6 (15)
S3—Hg1—S2105.24 (8)O3—C7—N9121.7 (4)
S1—Hg1—S4101.84 (5)O3—C7—N10120.4 (4)
S3—Hg1—S4103.95 (5)N9—C7—N10117.8 (4)
S2—Hg1—S4109.38 (6)C1—N1—Mn1159.1 (4)
O3—Mn1—O1177.20 (13)C2—N2—Mn1172.0 (4)
O3—Mn1—O291.71 (13)C3—N3—Mn1178.2 (4)
O1—Mn1—O286.18 (14)C5—N5—H5A120.0 (3)
O3—Mn1—N388.2 (2)C5—N5—H5B120.0 (3)
O1—Mn1—N389.9 (2)H5A—N5—H5B120.0
O2—Mn1—N389.5 (2)C5—N6—H6A120.0 (3)
O3—Mn1—N289.3 (2)C5—N6—H6B120.0 (3)
O1—Mn1—N292.8 (2)H6A—N6—H6B120.0
O2—Mn1—N294.8 (2)C7—N9—H9A120.0 (3)
N3—Mn1—N2175.1 (2)C7—N9—H9B120.0 (3)
O3—Mn1—N192.27 (15)H9A—N9—H9B120.0
O1—Mn1—N189.8 (2)C7—N10—H10A120.0 (3)
O2—Mn1—N1175.6 (2)C7—N10—H10B120.0 (3)
N3—Mn1—N188.7 (2)H10A—N10—H10B120.0
N2—Mn1—N187.2 (2)C5—O1—Mn1134.5 (3)
C1—S1—Hg199.2 (2)C6—O2—Mn1138.0 (4)
C2i—S2—Hg197.1 (2)C7—O3—Mn1135.7 (3)
C3ii—S3—Hg197.0 (2)C6—N7—H7A120.0 (5)
C4—S4—Hg197.0 (2)C6—N7—H7B120.0 (5)
N1—C1—S1175.9 (5)H7A—N7—H7B120.0
N2—C2—S2iii178.3 (5)C6—N8—H8A120.0 (4)
N3—C3—S3iv178.4 (5)C6—N8—H8B120.0 (5)
N4—C4—S4176.7 (6)H8A—N8—H8B120.0
O1—C5—N6122.3 (5)C6—N7'—H7'A120.0 (6)
O1—C5—N5119.6 (5)C6—N7'—H7'B120.0 (6)
N6—C5—N5117.9 (5)H7'A—N7'—H7'B120.0
O2—C6—N7122.0 (7)C6—N8'—H8'A120.0 (13)
O2—C6—N8118.5 (6)C6—N8'—H8'B120.0 (13)
N7—C6—N8119.5 (7)H8'A—N8'—H8'B120.0
O2—C6—N7'122.0 (7)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x1, y, z; (iv) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10A···O3v0.862.152.964 (5)159
Symmetry code: (v) x1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC7H12HgMnN10O3S4
Mr668.04
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.5210 (7), 10.6669 (9), 13.3202 (9)
α, β, γ (°)80.185 (6), 82.009 (7), 75.147 (7)
V3)1012.69 (14)
Z2
Radiation typeMo Kα
µ (mm1)8.64
Crystal size (mm)0.31 × 0.21 × 0.20
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionψ scan
XSCANS (Bruker,1996)
Tmin, Tmax0.125, 0.179
No. of measured, independent and
observed [I > 2σ(I)] reflections
4448, 3561, 3229
Rint0.017
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.065, 1.02
No. of reflections3558
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.84, 0.81

Computer programs: XSCANS (Bruker, 1996), SHELXTL (Bruker, 1997), SHELXL93 (Sheldrick, 1993).

Selected geometric parameters (Å, º) top
Hg1—S12.4865 (14)S1—C11.653 (6)
Hg1—S32.514 (2)S2—C2i1.653 (6)
Hg1—S22.585 (2)S3—C3ii1.667 (6)
Hg1—S42.6035 (15)S4—C41.658 (7)
Mn1—O32.152 (3)C1—N11.152 (7)
Mn1—O12.176 (3)C2—N21.151 (7)
Mn1—O22.197 (4)C2—S2iii1.653 (6)
Mn1—N32.225 (5)C3—N31.146 (7)
Mn1—N22.226 (5)C3—S3iv1.667 (6)
Mn1—N12.243 (5)C4—N41.146 (8)
S1—Hg1—S3126.91 (6)O3—Mn1—N192.27 (15)
S1—Hg1—S2108.63 (6)O1—Mn1—N189.8 (2)
S3—Hg1—S2105.24 (8)O2—Mn1—N1175.6 (2)
S1—Hg1—S4101.84 (5)N3—Mn1—N188.7 (2)
S3—Hg1—S4103.95 (5)N2—Mn1—N187.2 (2)
S2—Hg1—S4109.38 (6)C1—S1—Hg199.2 (2)
O3—Mn1—O1177.20 (13)C2i—S2—Hg197.1 (2)
O3—Mn1—O291.71 (13)C3ii—S3—Hg197.0 (2)
O1—Mn1—O286.18 (14)C4—S4—Hg197.0 (2)
O3—Mn1—N388.2 (2)N1—C1—S1175.9 (5)
O1—Mn1—N389.9 (2)N2—C2—S2iii178.3 (5)
O2—Mn1—N389.5 (2)N3—C3—S3iv178.4 (5)
O3—Mn1—N289.3 (2)N4—C4—S4176.7 (6)
O1—Mn1—N292.8 (2)C1—N1—Mn1159.1 (4)
O2—Mn1—N294.8 (2)C2—N2—Mn1172.0 (4)
N3—Mn1—N2175.1 (2)C3—N3—Mn1178.2 (4)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x1, y, z; (iv) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10A···O3v0.862.152.964 (5)158.5
Symmetry code: (v) x1, y+1, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds