Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compounds, [PtCl2(C3H10N2)], (I), [PdCl2(C3H10N2)], (II), and [Pt2Cl4(C10H26N4)], (III), each metal atom lies in a distorted cis-square coordination geometry. Compounds (I) and (II) are isostructural, and each complex has a mirror plane through the metal atom and the middle C atom of the propane-1,3-diamine ligand. In (III), the binuclear complex [Pt2Cl4(spn)] has an inversion center at the middle of the 4,9-diaza­dodecane-1,12-diamine (spermine, spn) ligand. The six-membered chelate rings in (III) adopt a chair form, which is unsymmetrical and less flattened than those in (I) and (II). In all three crystal structures, there are inter­molecular N-H...Cl hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010600610X/ob1247sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010600610X/ob1247Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010600610X/ob1247IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010600610X/ob1247IIIsup4.hkl
Contains datablock III

CCDC references: 605659; 605660; 605661

Comment top

cis-Diamminedichloroplatinum(II) (cisplatin) is known as an anticancer agent against a wide variety of human tumors, especially testicular and ovarian cancers (Siddik, 2003; Zhang & Lippard, 2003). However, its use is limited becuase of the toxic side effects and the development of resistance in tumor cells. Therefore, it is important to design new PtII compounds with improved pharmacological properties and a broader range of anticancer activity.

On the other hand, it is known that polyamines play an important role in the syntheses of nucleic acids and protein, in the structure of the cell membrane, and in the modulation of neurophysiological function in mammalian system (Morgan, 1999). Numerous derivatives and analogues of biogenic polyamines, spermidine [N-(3-aminopropyl)-4-aminobutylamine, spd] and spermine [N,N'-bis(3-aminopropyl)-1,4-butanediamine, spn], have been synthesized with the aim of generating a new type of anticancer drugs (Seiler, 2005). The PtII or PdII complexes of these ligands have been also synthesized, their anticancer properties tested (Teixeira et al., 2004; Marques et al., 2002; McGregor et al., 2002; Hegmans et al., 2001; Amo-Ochoa et al., 1996; Navarro-Ranninger et al., 1994, 1992) and their crystal structures analyzed (Codina et al., 1999). Among them, PtII complexes of spn have been investigated for their antiproliferative and cytotoxic effects, and have been demonstrated to display irreversible anticancer properties against Hera and HSC-3 cell lines, and growth inhibition properties against THP-1 and MOLT-3 cell lines (Teixeira et al., 2004).

The PtII or PdII complexes of propane-1,3-diamine (tn) have also been used as model anticancer agents to study the interaction with DNA (Akdi et al., 2005; Alvarez-Valdes et al., 2002; Marzilli et al., 1980). In the present study, we report the crystal structures of the title compounds, namely [PtCl2(tn)], (I), [PdCl2(tn)], (II), and [Pt2Cl4(spn)], (III).

Compounds (I) and (II) are isostructural (Fig. 1). In each complex, MII [PtII or PdII] and atom C2 of the tn ligand lie on a mirror plane. The metal atom is coordinated by two N atoms from the tn ligand and two Cl atoms, which form a slightly distorted cis-square coordination geometry. The MII atom and the four coordinated atoms are coplanar [the r.m.s. deviation of the fitted atoms is 0.016 Å for (I) and 0.022 Å for (II)]. The metal atom and the tn ligand form a six-membered chelate ring, which adopts a chair form.

The MII—Cl and MII—N bond lengths in (I) and (II) (Tables 1 and 3) are comparable to those in [PtCl2(en)] and [PdCl2(en)] (en is 1,2-ethylenediamine; Iball et al., 1975) and cis-[PtCl2(NH3)2] (Milburn & Truter, 1966) [MII—Cl = 2.288 (8)–2.333 (9) Å and MII—N = 1.95 (3)–2.08 (3) Å], although the five-membered chelate rings of the en ligands have smaller N—MII—N bond angles [73 (2)–87 (2)°] than in (I) and (II). The shortest intermolecular distances between the metal atoms are 3.646 (4) Å in (I) and 3.586 (3) Å in (II), which are considerably longer than those of the en complexes cited above [3.37–3.41 Å]; this difference may be due to the steric hindrance of the propane groups of the tn ligand.

In the crystal packing of (I) and (II), centrosymmetrically related complexes are aligned along the b axis (Fig. 2). The crystal structures are stabilized by N—H···Cl hydrogen bonds (Tables 2 and 4) between the amino groups of the tn ligand and the Cl atoms of the neighboring complexes along the b and c axes (Figs. 2 and 3), forming a lattice-like network.

In (III), the spn ligand coordinates to the two PtII atoms to form a binuclear complex (Fig. 4). Compound (III) is isostructural with the corresponding PdII complex, [Pd2Cl4(spn)] (Codina et al., 1999). A crystallographic inversion center is located at the middle of the butane chain of the spn ligand. The PtII atom is in a slightly distorted cis-square coordination geometry with two N and two Cl atoms. The PtII and four coordinated atoms are coplanar (the r.m.s. deviation of fitted atoms is 0.046 Å). The coordination bond lengths and bond angles (Table 5) are similar to those of (I). The PtII atom and the tn group of the spn ligand form a six-membered chelate ring, which adopts a chair form as in (I) and (II). However, the dihedral angles of the Pt1/N1/N2 and C1/C2/C3 planes with resepct to the N1/C1/N2/C3 plane are 46.4 (2) and 57.9 (4)°, respectively, indicating a less flattened conformation than those in (I) and (II). The corresponding dihedral angles are 24.3 (2) and 62.1 (5)° for (I), 22.2 (1) and 62.1 (3)° for (II), respectively. In addition, the torsion angles of the chelate rings (Table 5) show an unsymmetrical conformation around the PtII atom.

In the crystal packing of (III), there are intermolecular N—H···Cl hydrogen bonds (Table 6) between the primary amine groups of the spn ligand and the Cl atoms of neighboring complexes along the b axis, and between the secondary amine groups and the Cl atoms of neighboring complexes along the c axis, forming a three-dimensional network (Fig. 5).

Experimental top

For the preparation of (I), propane-1,3-diamine dihydrochloride (5 mg) was dissolved in 90% (v/v) dimethylformamide (DMF)/water and added to a K2[PtCl4] (14 mg) DMF solution. Colorless platelet crystals appeared after three months on evaporation of this mixture. For the prepartion of (II), propane-1,3-diamine dihydrochloride (5 mg) was dissolved in water, and then PdCl2 (6 mg) in a 2 M NaCl aqueous solution and AgNO3 (5.8 mg) dissolved in water were added. Brown needle-like crystals appeared from this mixture within one week. For the preparation of (III), spermine phosphate (5 mg) dissolved in a 50% (v/v) DMF/1 M NaCl aqueous solution was added to K2[PtCl4] (2.6 mg) dissolved in water. Colorless platelet crystals appeared after five months on evaporation of this mixture.

Refinement top

All H atoms were located in difference Fourier maps, and were then placed at idealized positions and treated as riding, with C—H distances of 0.97 Å, N—H distances for the primary amine groups of 0.90 Å and for the secondary amine groups of 0.91 Å, and Uiso(H) values of 1.2Ueq(carrier atom).

Computing details top

For all compounds, data collection: RAPID-AUTO (Rigaku Corporation, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2005) and CRYSTALS (Watkin et al., 1996). Program(s) used to solve structure: SIR97 (Altomare et al., 1999) for (I), (II); SHELXS97 (Sheldrick, 1997) for (III). For all compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: CrystalStructure.

Figures top
[Figure 1] Fig. 1. A view of the structure of (I) (left) and (II) (right), showing the atom-numbering schemes. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. A view of the crystal packing of (I), showing the centrosymmetric stacking along the b axis. Dashed lines show the N—H···Cl hydrogen bonds.
[Figure 3] Fig. 3. A view of the crystal packing of (II), showing the N—H···Cl hydrogen bonds along the b axis as dashed lines.
[Figure 4] Fig. 4. A view of the structure of (III), showing the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level. [Symmetry code (i): −x, −y + 1, −z + 2.]
[Figure 5] Fig. 5. A view of the crystal packing of (III), showing the N—H···Cl hydrogen bonds as dashed lines.
(I) Dichloro(propane-1,3-diamine-κ2N,N')platinum(II) top
Crystal data top
[PtCl2(C3H10N2)]F(000) = 616.00
Mr = 340.11Dx = 2.861 Mg m3
Orthorhombic, PbcmMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2c 2bCell parameters from 4958 reflections
a = 8.36 (1) Åθ = 3.1–27.4°
b = 7.292 (8) ŵ = 18.36 mm1
c = 12.950 (5) ÅT = 296 K
V = 789.5 (13) Å3Platelet, colorless
Z = 40.20 × 0.10 × 0.05 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
573 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.020
ω scansθmax = 27.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1010
Tmin = 0.152, Tmax = 0.401k = 99
7821 measured reflectionsl = 1616
945 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.016 w = 1/[σ2(Fo2) + (0.020P)2 + 0.2145P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.042(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.88 e Å3
945 reflectionsΔρmin = 0.81 e Å3
41 parameters
Crystal data top
[PtCl2(C3H10N2)]V = 789.5 (13) Å3
Mr = 340.11Z = 4
Orthorhombic, PbcmMo Kα radiation
a = 8.36 (1) ŵ = 18.36 mm1
b = 7.292 (8) ÅT = 296 K
c = 12.950 (5) Å0.20 × 0.10 × 0.05 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
945 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
573 reflections with F2 > 2.0σ(F2)
Tmin = 0.152, Tmax = 0.401Rint = 0.020
7821 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01641 parameters
wR(F2) = 0.042H-atom parameters constrained
S = 1.10Δρmax = 0.88 e Å3
945 reflectionsΔρmin = 0.81 e Å3
Special details top

Refinement. Refinement using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.00153 (3)0.03892 (3)0.25000.03543 (9)
Cl10.18963 (14)0.02167 (16)0.11953 (8)0.0531 (3)
N10.1680 (4)0.0640 (5)0.1357 (2)0.0493 (9)
H1A0.13130.00110.08080.059*
H1B0.17050.18300.11730.059*
C10.3349 (5)0.0061 (6)0.1527 (3)0.0538 (11)
H1C0.39960.04450.09440.065*
H1D0.33920.12670.15650.065*
C20.4035 (8)0.0855 (8)0.25000.0480 (15)
H2A0.38520.21690.25000.058*
H2B0.51820.06570.25000.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.03252 (13)0.04391 (14)0.02984 (11)0.00046 (11)0.0000.000
Cl10.0438 (6)0.0752 (7)0.0401 (5)0.0076 (6)0.0049 (5)0.0033 (5)
N10.041 (2)0.074 (2)0.0328 (18)0.0058 (18)0.0020 (15)0.0004 (15)
C10.041 (3)0.065 (2)0.055 (2)0.001 (2)0.007 (2)0.009 (2)
C20.033 (4)0.054 (3)0.057 (3)0.001 (3)0.0000.000
Geometric parameters (Å, º) top
Pt1—N12.040 (3)C1—C21.501 (5)
Pt1—Cl12.3295 (17)C1—H1C0.9700
N1—C11.475 (6)C1—H1D0.9700
N1—H1A0.9000C2—H2A0.9700
N1—H1B0.9000C2—H2B0.9700
N1—Pt1—N1i93.0 (2)N1—C1—C2112.1 (4)
N1—Pt1—Cl186.98 (13)N1—C1—H1C109.2
N1i—Pt1—Cl1177.94 (10)C2—C1—H1C109.2
N1—Pt1—Cl1i177.94 (10)N1—C1—H1D109.2
N1i—Pt1—Cl1i86.98 (13)C2—C1—H1D109.2
Cl1—Pt1—Cl1i92.99 (9)H1C—C1—H1D107.9
C1—N1—Pt1120.8 (3)C1—C2—C1i114.2 (5)
C1—N1—H1A107.1C1—C2—H2A108.7
Pt1—N1—H1A107.1C1i—C2—H2A108.7
C1—N1—H1B107.1C1—C2—H2B108.7
Pt1—N1—H1B107.1C1i—C2—H2B108.7
H1A—N1—H1B106.8H2A—C2—H2B107.6
N1i—Pt1—N1—C128.3 (4)Pt1—N1—C1—C250.5 (5)
Cl1—Pt1—N1—C1153.7 (3)N1—C1—C2—C1i70.6 (6)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1ii0.902.653.369 (5)138
N1—H1B···Cl1iii0.902.483.349 (6)164
Symmetry codes: (ii) x, y, z; (iii) x, y+1/2, z.
(II) dichloro(propane-1,3-diamine-κ2N,N')palladium(II) top
Crystal data top
[PdCl2(C3H10N2)]F(000) = 488.00
Mr = 251.45Dx = 2.158 Mg m3
Orthorhombic, PbcmMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2c 2bCell parameters from 5562 reflections
a = 8.386 (7) Åθ = 3.2–27.4°
b = 7.167 (5) ŵ = 3.00 mm1
c = 12.88 (1) ÅT = 296 K
V = 774.1 (10) Å3Needle, brown
Z = 40.15 × 0.05 × 0.05 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
650 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.022
ω scansθmax = 27.5°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1010
Tmin = 0.645, Tmax = 0.861k = 98
7656 measured reflectionsl = 1616
923 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.017 w = 1/[σ2(Fo2) + (0.0243P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.043(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.26 e Å3
923 reflectionsΔρmin = 0.60 e Å3
41 parameters
Crystal data top
[PdCl2(C3H10N2)]V = 774.1 (10) Å3
Mr = 251.45Z = 4
Orthorhombic, PbcmMo Kα radiation
a = 8.386 (7) ŵ = 3.00 mm1
b = 7.167 (5) ÅT = 296 K
c = 12.88 (1) Å0.15 × 0.05 × 0.05 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
923 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
650 reflections with F2 > 2.0σ(F2)
Tmin = 0.645, Tmax = 0.861Rint = 0.022
7656 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01741 parameters
wR(F2) = 0.043H-atom parameters constrained
S = 1.02Δρmax = 0.26 e Å3
923 reflectionsΔρmin = 0.60 e Å3
Special details top

Refinement. Refinement using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.00708 (3)0.04926 (3)0.25000.02881 (9)
Cl10.18302 (7)0.03777 (8)0.11832 (5)0.04133 (15)
N10.1721 (2)0.0737 (2)0.13486 (15)0.0408 (4)
H1A0.13650.00600.08080.049*
H1B0.17170.19380.11440.049*
C10.3417 (3)0.0204 (3)0.1518 (2)0.0449 (6)
H1C0.40490.06170.09310.054*
H1D0.34970.11450.15580.054*
C20.4087 (3)0.1044 (5)0.25000.0397 (7)
H2A0.38690.23730.25000.048*
H2B0.52350.08840.25000.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02779 (13)0.03443 (14)0.02421 (13)0.00006 (11)0.0000.000
Cl10.0348 (3)0.0578 (3)0.0314 (3)0.0039 (3)0.0055 (2)0.0022 (2)
N10.0366 (10)0.0547 (11)0.0313 (11)0.0047 (9)0.0041 (8)0.0030 (8)
C10.0341 (11)0.0548 (13)0.0458 (14)0.0018 (11)0.0075 (11)0.0061 (11)
C20.0250 (15)0.0446 (17)0.049 (2)0.0032 (14)0.0000.000
Geometric parameters (Å, º) top
Pd1—N12.036 (2)C1—C21.509 (3)
Pd1—Cl12.3296 (15)C1—H1C0.9700
N1—C11.489 (3)C1—H1D0.9700
N1—H1A0.9000C2—H2A0.9700
N1—H1B0.9000C2—H2B0.9700
N1—Pd1—N1i93.52 (13)N1—C1—C2112.1 (2)
N1—Pd1—Cl186.42 (9)N1—C1—H1C109.2
N1i—Pd1—Cl1177.09 (5)C2—C1—H1C109.2
N1—Pd1—Cl1i177.09 (5)N1—C1—H1D109.2
N1i—Pd1—Cl1i86.42 (9)C2—C1—H1D109.2
Cl1—Pd1—Cl1i93.49 (8)H1C—C1—H1D107.9
C1—N1—Pd1121.34 (16)C1—C2—C1i113.9 (3)
C1—N1—H1A107.0C1—C2—H2A108.8
Pd1—N1—H1A107.0C1i—C2—H2A108.8
C1—N1—H1B107.0C1—C2—H2B108.8
Pd1—N1—H1B107.0C1i—C2—H2B108.8
H1A—N1—H1B106.7H2A—C2—H2B107.7
N1i—Pd1—N1—C126.0 (2)Pd1—N1—C1—C249.0 (2)
Cl1—Pd1—N1—C1156.92 (16)N1—C1—C2—C1i70.6 (3)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1ii0.902.613.359 (3)141
N1—H1B···Cl1iii0.902.473.334 (3)162
Symmetry codes: (ii) x, y, z; (iii) x, y+1/2, z.
(III) µ-4,9-diazadodecane-1,12-diamine-κ2N1,N4;κ2N9,N12– bis[dichlorodiplatinum(II)] top
Crystal data top
[Pt2Cl4(C10H26N4)]F(000) = 676.00
Mr = 734.31Dx = 2.657 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ynCell parameters from 8101 reflections
a = 8.86 (1) Åθ = 3.1–27.5°
b = 8.018 (6) ŵ = 15.80 mm1
c = 12.93 (1) ÅT = 123 K
β = 92.09 (4)°Platelet, colorless
V = 917.9 (14) Å30.10 × 0.10 × 0.05 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1725 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.040
ω scansθmax = 27.5°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1111
Tmin = 0.089, Tmax = 0.455k = 1010
9030 measured reflectionsl = 1615
2105 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0438P)2 + 0.3492P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.076(Δ/σ)max = 0.001
S = 1.05Δρmax = 2.61 e Å3
2105 reflectionsΔρmin = 2.71 e Å3
92 parameters
Crystal data top
[Pt2Cl4(C10H26N4)]V = 917.9 (14) Å3
Mr = 734.31Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.86 (1) ŵ = 15.80 mm1
b = 8.018 (6) ÅT = 123 K
c = 12.93 (1) Å0.10 × 0.10 × 0.05 mm
β = 92.09 (4)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2105 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1725 reflections with F2 > 2.0σ(F2)
Tmin = 0.089, Tmax = 0.455Rint = 0.040
9030 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02992 parameters
wR(F2) = 0.076H-atom parameters constrained
S = 1.05Δρmax = 2.61 e Å3
2105 reflectionsΔρmin = 2.71 e Å3
Special details top

Refinement. Refinement using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.19858 (2)0.16739 (2)0.825909 (16)0.02137 (10)
Cl10.45049 (17)0.16947 (15)0.78547 (15)0.0351 (4)
Cl20.24417 (15)0.03880 (16)0.98396 (11)0.0291 (3)
N10.1493 (5)0.2662 (6)0.6856 (4)0.0283 (10)
H1A0.11900.37240.69390.034*
H1B0.23390.26820.64920.034*
N20.0242 (5)0.1749 (5)0.8627 (4)0.0226 (10)
H20.03210.10750.91880.027*
C10.0288 (8)0.1737 (7)0.6241 (5)0.0353 (15)
H1C0.05780.05760.61750.042*
H1D0.01840.22110.55520.042*
C20.1197 (7)0.1848 (7)0.6765 (5)0.0331 (14)
H2A0.14400.30170.68570.040*
H2B0.19740.13720.63070.040*
C30.1262 (6)0.0997 (7)0.7794 (5)0.0287 (12)
H3A0.09920.01660.77100.034*
H3B0.22940.10340.80200.034*
C40.0748 (7)0.3426 (6)0.8963 (5)0.0276 (13)
H4A0.17730.33470.91990.033*
H4B0.07550.41810.83770.033*
C50.0268 (6)0.4140 (7)0.9830 (5)0.0317 (13)
H5A0.12920.42260.95960.038*
H5B0.02760.33881.04180.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.02145 (14)0.01958 (15)0.02336 (16)0.00114 (6)0.00473 (9)0.00127 (7)
Cl10.0241 (7)0.0303 (8)0.0515 (11)0.0006 (4)0.0121 (7)0.0017 (6)
Cl20.0305 (7)0.0335 (7)0.0232 (7)0.0054 (5)0.0003 (5)0.0003 (5)
N10.033 (3)0.026 (2)0.027 (3)0.0010 (18)0.014 (2)0.006 (2)
N20.027 (3)0.020 (2)0.021 (3)0.0009 (15)0.005 (2)0.0025 (17)
C10.045 (4)0.036 (4)0.024 (3)0.001 (2)0.001 (3)0.000 (2)
C20.033 (3)0.033 (3)0.032 (4)0.001 (2)0.009 (3)0.003 (2)
C30.024 (3)0.028 (3)0.034 (3)0.005 (2)0.001 (2)0.003 (3)
C40.027 (3)0.024 (3)0.032 (3)0.0083 (18)0.005 (2)0.003 (2)
C50.037 (3)0.034 (3)0.024 (3)0.010 (2)0.002 (2)0.005 (2)
Geometric parameters (Å, º) top
Pt1—N12.013 (5)C1—H1D0.9700
Pt1—N22.047 (5)C2—C31.499 (9)
Pt1—Cl12.310 (3)C2—H2A0.9700
Pt1—Cl22.312 (2)C2—H2B0.9700
N1—C11.503 (8)C3—H3A0.9700
N1—H1A0.9000C3—H3B0.9700
N1—H1B0.9000C4—C51.524 (8)
N2—C41.488 (6)C4—H4A0.9700
N2—C31.506 (7)C4—H4B0.9700
N2—H20.9100C5—C5i1.527 (11)
C1—C21.504 (10)C5—H5A0.9700
C1—H1C0.9700C5—H5B0.9700
N1—Pt1—N291.0 (2)C3—C2—C1115.8 (5)
N1—Pt1—Cl188.44 (14)C3—C2—H2A108.3
N2—Pt1—Cl1177.87 (11)C1—C2—H2A108.3
N1—Pt1—Cl2176.04 (13)C3—C2—H2B108.3
N2—Pt1—Cl286.94 (15)C1—C2—H2B108.3
Cl1—Pt1—Cl293.69 (7)H2A—C2—H2B107.4
C1—N1—Pt1114.2 (3)C2—C3—N2114.3 (4)
C1—N1—H1A108.7C2—C3—H3A108.7
Pt1—N1—H1A108.7N2—C3—H3A108.7
C1—N1—H1B108.7C2—C3—H3B108.7
Pt1—N1—H1B108.7N2—C3—H3B108.7
H1A—N1—H1B107.6H3A—C3—H3B107.6
C4—N2—C3113.1 (4)N2—C4—C5112.3 (5)
C4—N2—Pt1113.4 (3)N2—C4—H4A109.1
C3—N2—Pt1112.4 (4)C5—C4—H4A109.1
C4—N2—H2105.7N2—C4—H4B109.1
C3—N2—H2105.7C5—C4—H4B109.1
Pt1—N2—H2105.7H4A—C4—H4B107.9
N1—C1—C2110.4 (5)C4—C5—C5i111.7 (6)
N1—C1—H1C109.6C4—C5—H5A109.3
C2—C1—H1C109.6C5i—C5—H5A109.3
N1—C1—H1D109.6C4—C5—H5B109.3
C2—C1—H1D109.6C5i—C5—H5B109.3
H1C—C1—H1D108.1H5A—C5—H5B107.9
N2—Pt1—N1—C153.6 (4)N1—C1—C2—C365.7 (6)
Cl1—Pt1—N1—C1128.5 (4)C1—C2—C3—N265.1 (7)
N1—Pt1—N2—C480.2 (4)C4—N2—C3—C269.7 (6)
Cl2—Pt1—N2—C4103.3 (4)Pt1—N2—C3—C260.3 (5)
N1—Pt1—N2—C349.7 (3)C3—N2—C4—C5178.1 (5)
Cl2—Pt1—N2—C3126.9 (3)Pt1—N2—C4—C552.5 (6)
Pt1—N1—C1—C265.1 (5)N2—C4—C5—C5i179.9 (6)
Symmetry code: (i) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1ii0.902.483.376 (5)177
N1—H1B···Cl2ii0.902.783.261 (5)115
N2—H2···Cl2iii0.912.583.309 (6)138
Symmetry codes: (ii) x+1/2, y+1/2, z+3/2; (iii) x, y, z+2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formula[PtCl2(C3H10N2)][PdCl2(C3H10N2)][Pt2Cl4(C10H26N4)]
Mr340.11251.45734.31
Crystal system, space groupOrthorhombic, PbcmOrthorhombic, PbcmMonoclinic, P21/n
Temperature (K)296296123
a, b, c (Å)8.36 (1), 7.292 (8), 12.950 (5)8.386 (7), 7.167 (5), 12.88 (1)8.86 (1), 8.018 (6), 12.93 (1)
α, β, γ (°)90, 90, 9090, 90, 9090, 92.09 (4), 90
V3)789.5 (13)774.1 (10)917.9 (14)
Z442
Radiation typeMo KαMo KαMo Kα
µ (mm1)18.363.0015.80
Crystal size (mm)0.20 × 0.10 × 0.050.15 × 0.05 × 0.050.10 × 0.10 × 0.05
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Rigaku R-AXIS RAPID
diffractometer
Rigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Multi-scan
(ABSCOR; Higashi, 1995)
Multi-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.152, 0.4010.645, 0.8610.089, 0.455
No. of measured, independent and
observed [F2 > 2.0σ(F2)] reflections
7821, 945, 573 7656, 923, 650 9030, 2105, 1725
Rint0.0200.0220.040
(sin θ/λ)max1)0.6480.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.042, 1.10 0.017, 0.043, 1.02 0.029, 0.076, 1.05
No. of reflections9459232105
No. of parameters414192
No. of restraints???
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.88, 0.810.26, 0.602.61, 2.71

Computer programs: RAPID-AUTO (Rigaku Corporation, 1998), RAPID-AUTO, CrystalStructure (Rigaku/MSC, 2005) and CRYSTALS (Watkin et al., 1996), SIR97 (Altomare et al., 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), CrystalStructure.

Selected geometric parameters (Å, º) for (I) top
Pt1—N12.040 (3)Pt1—Cl12.3295 (17)
N1—Pt1—N1i93.0 (2)Cl1—Pt1—Cl1i92.99 (9)
N1—Pt1—Cl186.98 (13)
N1i—Pt1—N1—C128.3 (4)Pt1—N1—C1—C250.5 (5)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1ii0.902.653.369 (5)138
N1—H1B···Cl1iii0.902.483.349 (6)164
Symmetry codes: (ii) x, y, z; (iii) x, y+1/2, z.
Selected geometric parameters (Å, º) for (II) top
Pd1—N12.036 (2)Pd1—Cl12.3296 (15)
N1—Pd1—N1i93.52 (13)N1—Pd1—Cl1i177.09 (5)
N1—Pd1—Cl186.42 (9)Cl1—Pd1—Cl1i93.49 (8)
N1i—Pd1—N1—C126.0 (2)Pd1—N1—C1—C249.0 (2)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1ii0.902.613.359 (3)141
N1—H1B···Cl1iii0.902.473.334 (3)162
Symmetry codes: (ii) x, y, z; (iii) x, y+1/2, z.
Selected geometric parameters (Å, º) for (III) top
Pt1—N12.013 (5)Pt1—Cl12.310 (3)
Pt1—N22.047 (5)Pt1—Cl22.312 (2)
N1—Pt1—N291.0 (2)N2—Pt1—Cl286.94 (15)
N1—Pt1—Cl188.44 (14)Cl1—Pt1—Cl293.69 (7)
N2—Pt1—N1—C153.6 (4)Pt1—N1—C1—C265.1 (5)
N1—Pt1—N2—C349.7 (3)Pt1—N2—C3—C260.3 (5)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.902.483.376 (5)177
N1—H1B···Cl2i0.902.783.261 (5)115
N2—H2···Cl2ii0.912.583.309 (6)138
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x, y, z+2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds