Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Single crystals of tetracalcium iridium hexaoxide, Ca4IrO6, tricalcium magnesium iridium hexaoxide, Ca3MgIrO6, and tricalcium zinc iridium hexaoxide, Ca3ZnIrO6, were prepared via high-temperature flux growth and structurally characterized by single-crystal X-ray diffraction. The three compounds are isostructural and adopt the K4CdCl6 structure type, comprised of chains of alternating face-shared [CaO6], [MgO6] or [ZnO6] trigonal prisms and [IrO6] octahedra, surrounded by columns of Ca2+ ions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101013282/os1140sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101013282/os1140Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101013282/os1140IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101013282/os1140IIIsup4.hkl
Contains datablock III

Comment top

Ternary and quaternary transition metal oxides belonging to a family of pseudo-one-dimensional oxides derived from the K4CdCl6 structure type (Bergerhoff & Schmitz-Dumont, 1959), with the general formula A3A'BO6, have attracted widespread attention in recent years. This interest can be attributed to their compositional flexibility (Smith & zur Loye, 2000), their low dimensionality, the intriguing magnetic properties exhibited by members of this family of oxides (Nguyen & zur Loye, 1995) and their ability to stabilize high oxidation states (Carlson & Stacy, 1992). While there are several powder X-ray diffraction studies for these materials, only a few calcium iridates with this structure type, for example Ca3CuIrO6 (Tomaszewska & Müller-Buschbaum, 1993), Ca3NaIrO6 (Claridge et al., 1997), and Ca3.75Ni0.25IrO6 (Claridge et al., 1998), have been characterized by single-crystal X-ray diffraction.

In an effort to synthesize novel compounds with the general formula A3A'BO6, exploratory work has been carried out in the calcium-(metal)-iridium-oxygen phase space, which has resulted in the preparation of single crystals of Ca4IrO6, (I), Ca3MgIrO6, (II) and Ca3ZnIrO6, (III) (nominal compositions). Small dark rhombohedral-shaped crystals of (I), (II) and (III) were grown from a eutectic halide flux of CaCl2, KCl and NaCl at high temperatures. While the structure of (I) has previously been determined by powder X-ray diffraction (Sarkozy et al., 1974; Segal et al., 1996), (II) and (III) have not been structurally characterized prior to the present work. The occurrence of zinc in the trigonal prismatic coordination is notable in (III), since the common coordination environment in oxides is tetrahedral (Greenwood & Earnshaw, 1989). \sch

The structure of the title compounds consists of infinite one-dimensional chains of alternating face-shared [A'O6] trigonal prisms and rhombohedrally elongated [BO6] octahedra running parallel to the c axis (Fig. 1). These chains are surrounded by six spiral columns of distorted square [CaO8] antiprisms, and these Ca2+ columns are in turn surrounded by three one-dimensional chains (Fig. 2). Located just off the threefold axis, the Ca—O square antiprisms are highly distorted [Ca—O 2.371 (2)–2.699 (3) Å for (I), 2.359 (2)–2.689 (2) Å for (II) and 2.349 (3)–2.675 (3) Å for (III)].

The [IrO6] octahedra are regular, with Ir—O distances ranging from 2.012 (3) to 2.020 (2) Å, in agreement with other octahedral Ir4+ compounds, e.g. 1.98 (1) Å in Ca3SrIrO6 (Segal et al., 1996) and 2.024 (3) Å in Ca3.5Ni0.5IrO6 (Claridge et al., 1998). The CaO6 [in (I)], MgO6 [in (II)] or ZnO6 [in (III)] trigonal prisms are also regular (Tables 1–3), although they exhibit a significant twisting distortion from an ideal eclipsed conformation [ϕ = 19.4 (2), 15.8 (2) and 17.7 (2)° for (I)-(III), respectively]. These distances are also typical for M—O bond lengths for elements in trigonal prismatic coordination in this structure type, e.g. 2.20 (1) Å in Sr3MgIrO6 (Nguyen & zur Loye, 1995) and 2.199 (4) Å in Sr3ZnPtO6 (Lampe-Önnerud & zur Loye, 1996).

One would expect that the substitution of either Mg or Zn for Ca would affect the lattice parameters and the unit cell size. Since the ionic radii for these elements in sixfold coordination are 0.72 Å for Mg2+, 0.74 Å for Zn2+ and 1.00 Å for Ca2+ (Shannon, 1976), we would expect a decrease in the overall unit cell volume. Two recent studies of the size effect of the A' cation using a series of rare earths (Layland et al., 1998; Smith & zur Loye, 2000) indicated that both the unit cell volume and the ratio of c/a tend to decrease when smaller cations are substituted for larger ones. In this particular case, we find that indeed the unit cell volume decreases, as expected, and the c/a ratio also decreases. The unit cell volume change, however, is not the same for Mg and Zn, as one might have expected from their very similar ionic radii. Sr analogues of this structure type exhibit a similar trend (Segal et al., 1996; Núñez et al., 1997). There seems to be a difference between main group (filled d shell) elements and either transition metals or alkaline earth metals. In the study by Layland et al. (1998), In also did not follow the expected trend.

Related literature top

For related literature, see: Bergerhoff & Schmitz-Dumont (1959); Carlson & Stacy (1992); Claridge et al. (1997, 1998); Greenwood & Earnshaw (1989); Lampe-Önnerud & zur Loye (1996); Layland et al. (1998); Núñez et al. (1997); Nguyen & zur Loye (1995); Sarkozy et al. (1974); Segal et al. (1996); Shannon (1976); Smith & zur Loye (2000); Tomaszewska & Müller-Buschbaum (1993).

Experimental top

Single crystals of the title compounds were grown with a tenfold excess eutectic flux of CaCl2, KCl and NaCl (all Fisher, reagent grade). Ca(OH)2 (Mallinckrodt, reagent grade), either MgO (Alfa, 99.998%) or ZnO (Alfa, 99.998%), for (II) and (III), respectively, and Ir (Engelhard, 99.95%) were used as reagents. The starting materials were placed in covered alumina crucibles and heated in air at 1198 K for 24 h, and then cooled to 873 K at a rate of 15 K h-1, at which point the furnace was shut off. The flux was dissolved with distilled water and dark rhombohedral crystals were isolated for analysis.

Refinement top

The patterns of systematic absences in the data confirmed a c glide operation, indicating the space groups R3c and R3c. Preliminary powder X-ray diffraction showed the compounds to be isostructural with K4CdCl6 (space group R3c). Therefore, the expected centrosymmetric space group was chosen and confirmed by the solution of the structures. Structure solution and refinement of compound (I) proceeded without incident, and all atomic positions were found to be fully occupied by the constituent atoms. However, refinement of compound (II) using a fully occupied Ca3MgIrO6 model resulted in an isotropic displacement parameter value of zero for the Mg atom in the trigonal prismatic site (Wyckoff symbol 6a). Previous reports of quaternary calcium iridium oxides have shown mixing of alkaline earth cations and the metal on the trigonal prismatic site (Claridge et al., 1998), and therefore this model was adopted for (II). The final refinement yielded site occupancy factors (SOF) of 0.662 (10) for Mg and 0.338 (10) for Ca on the 6a site. Both the SOF and anisotropic displacement parameters for these atoms could be refined simultaneously, subject to the constraints that the total SOF was equal to 1.0, and that the anisotropic displacement parameters for both atoms were set equal. Similar mixing on the trigonal prismatic site was also observed for compound (III). Values for the SOF of 50% Zn and 50% Ca on the trigonal prismatic site were obtained from refinement with isotropic displacement parameters. However, since even constrained simultaneous refinement of the SOF with the anisotropic displacement factors proved unstable, the SOF values were fixed at 0.5 Ca and 0.5 Zn before the final anisotropic refinement was completed. The largest difference peaks for the three compounds were 3.25 e Å-3 for (I), 2.19 e Å-3 for (II) and 4.57 e Å-3 for (III), all located less than 0.8 Å from Ir.

Computing details top

For all compounds, data collection: SMART (Bruker, 2000); cell refinement: SAINT+ (Bruker, 1998); data reduction: SAINT+; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The [001] projection of Ca4IrO6.
[Figure 2] Fig. 2. The structure of a chain in Ca4IrO6 showing 80% probability displacement ellipsoids.
(I) Tetracalcium iridium hexaoxide top
Crystal data top
Ca4IrO6Dx = 5.378 Mg m3
Mr = 448.52Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3cCell parameters from 1993 reflections
a = 9.3030 (5) Åθ = 3.1–36.3°
c = 11.0864 (8) ŵ = 27.77 mm1
V = 830.93 (9) Å3T = 293 K
Z = 6Irregular, black
F(000) = 12300.08 × 0.06 × 0.04 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
450 independent reflections
Radiation source: fine-focus sealed tube408 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 36.3°, θmin = 4.4°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1014
Tmin = 0.112, Tmax = 0.168k = 1413
2592 measured reflectionsl = 818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0428P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.061(Δ/σ)max < 0.001
S = 1.07Δρmax = 3.25 e Å3
450 reflectionsΔρmin = 3.59 e Å3
20 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00062 (14)
Crystal data top
Ca4IrO6Z = 6
Mr = 448.52Mo Kα radiation
Trigonal, R3cµ = 27.77 mm1
a = 9.3030 (5) ÅT = 293 K
c = 11.0864 (8) Å0.08 × 0.06 × 0.04 mm
V = 830.93 (9) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
450 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
408 reflections with I > 2σ(I)
Tmin = 0.112, Tmax = 0.168Rint = 0.026
2592 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02420 parameters
wR(F2) = 0.0610 restraints
S = 1.07Δρmax = 3.25 e Å3
450 reflectionsΔρmin = 3.59 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.36207 (10)0.00000.25000.00693 (17)
Ca21.00000.00000.25000.0122 (4)
Ir1.00000.00000.00000.00359 (12)
O10.1588 (3)0.0285 (3)0.1081 (2)0.0098 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0070 (3)0.0062 (3)0.0073 (3)0.00310 (17)0.00039 (13)0.0008 (3)
Ca20.0134 (6)0.0134 (6)0.0098 (8)0.0067 (3)0.0000.000
Ir0.00327 (13)0.00327 (13)0.00422 (16)0.00164 (7)0.0000.000
O10.0090 (10)0.0100 (10)0.0119 (9)0.0060 (9)0.0053 (8)0.0003 (8)
Geometric parameters (Å, º) top
Ca1—O1i2.371 (2)Ca2—Ca1xiv3.3683 (9)
Ca1—O12.371 (2)Ca2—Ca1xiii3.3683 (9)
Ca1—O1ii2.493 (2)Ca2—Ca1xv3.3683 (9)
Ca1—O1iii2.493 (2)Ca2—Ca1xix3.5032 (4)
Ca1—O1iv2.519 (2)Ir—O1xiv2.020 (2)
Ca1—O1v2.519 (2)Ir—O1xx2.020 (2)
Ca1—O1vi2.699 (3)Ir—O1xiii2.020 (2)
Ca1—O1vii2.699 (3)Ir—O1xv2.020 (2)
Ca1—Irviii3.1164 (4)Ir—O1xxi2.020 (2)
Ca1—Irix3.1165 (4)Ir—O1xxii2.020 (2)
Ca1—Ca2x3.3683 (9)Ir—Ca2xxiii2.7716 (2)
Ca1—Ca1xi3.5032 (4)Ir—Ca1xxiv3.1164 (4)
Ca2—O1xii2.263 (2)Ir—Ca1xxv3.1164 (4)
Ca2—O1xiii2.263 (2)Ir—Ca1xxvi3.1164 (4)
Ca2—O1xiv2.263 (2)Ir—Ca1xxvii3.1164 (4)
Ca2—O1xv2.263 (2)O1—Irx2.020 (2)
Ca2—O1xvi2.263 (2)O1—Ca2x2.263 (2)
Ca2—O1xvii2.263 (2)O1—Ca1ii2.493 (2)
Ca2—Ir2.7716 (2)O1—Ca1xxviii2.519 (2)
Ca2—Irxviii2.7716 (2)O1—Ca1xi2.699 (3)
O1i—Ca1—O184.23 (12)O1xvii—Ca2—Ca1xiii105.53 (6)
O1i—Ca1—O1ii94.09 (8)Ir—Ca2—Ca1xiii90.0
O1—Ca1—O1ii74.60 (9)Irxviii—Ca2—Ca1xiii90.0
O1i—Ca1—O1iii74.59 (9)Ca1xiv—Ca2—Ca1xiii120.0
O1—Ca1—O1iii94.09 (8)O1xii—Ca2—Ca1xv105.53 (6)
O1ii—Ca1—O1iii164.95 (12)O1xiii—Ca2—Ca1xv105.53 (6)
O1i—Ca1—O1iv135.49 (5)O1xiv—Ca2—Ca1xv116.34 (6)
O1—Ca1—O1iv71.68 (10)O1xv—Ca2—Ca1xv44.65 (6)
O1ii—Ca1—O1iv113.75 (8)O1xvi—Ca2—Ca1xv116.34 (6)
O1iii—Ca1—O1iv70.59 (9)O1xvii—Ca2—Ca1xv44.65 (6)
O1i—Ca1—O1v71.69 (10)Ir—Ca2—Ca1xv90.0
O1—Ca1—O1v135.49 (5)Irxviii—Ca2—Ca1xv90.0
O1ii—Ca1—O1v70.59 (9)Ca1xiv—Ca2—Ca1xv120.0
O1iii—Ca1—O1v113.75 (8)Ca1xiii—Ca2—Ca1xv120.0
O1iv—Ca1—O1v148.80 (12)O1xii—Ca2—Ca1xix45.15 (6)
O1i—Ca1—O1vi120.71 (4)O1xiii—Ca2—Ca1xix164.29 (6)
O1—Ca1—O1vi138.29 (8)O1xiv—Ca2—Ca1xix100.61 (6)
O1ii—Ca1—O1vi129.47 (3)O1xv—Ca2—Ca1xix87.34 (6)
O1iii—Ca1—O1vi65.56 (11)O1xvi—Ca2—Ca1xix104.03 (6)
O1iv—Ca1—O1vi67.31 (9)O1xvii—Ca2—Ca1xix50.38 (6)
O1v—Ca1—O1vi85.99 (7)Ir—Ca2—Ca1xix121.832 (4)
O1i—Ca1—O1vii138.29 (8)Irxviii—Ca2—Ca1xix58.168 (4)
O1—Ca1—O1vii120.71 (4)Ca1xiv—Ca2—Ca1xix68.513 (14)
O1ii—Ca1—O1vii65.56 (11)Ca1xiii—Ca2—Ca1xix147.889 (6)
O1iii—Ca1—O1vii129.47 (3)Ca1xv—Ca2—Ca1xix61.266 (11)
O1iv—Ca1—O1vii85.99 (7)O1xiv—Ir—O1xx180.00 (16)
O1v—Ca1—O1vii67.31 (9)O1xiv—Ir—O1xiii88.40 (10)
O1vi—Ca1—O1vii64.15 (11)O1xx—Ir—O1xiii91.60 (10)
O1i—Ca1—Irviii114.75 (6)O1xiv—Ir—O1xv88.40 (10)
O1—Ca1—Irviii101.08 (6)O1xx—Ir—O1xv91.60 (10)
O1ii—Ca1—Irviii150.50 (6)O1xiii—Ir—O1xv88.40 (10)
O1iii—Ca1—Irviii40.31 (5)O1xiv—Ir—O1xxi91.60 (10)
O1iv—Ca1—Irviii40.28 (5)O1xx—Ir—O1xxi88.40 (10)
O1v—Ca1—Irviii122.79 (6)O1xiii—Ir—O1xxi180.00 (17)
O1vi—Ca1—Irviii39.84 (5)O1xv—Ir—O1xxi91.60 (10)
O1vii—Ca1—Irviii94.02 (6)O1xiv—Ir—O1xxii91.60 (10)
O1i—Ca1—Irix101.08 (6)O1xx—Ir—O1xxii88.40 (10)
O1—Ca1—Irix114.75 (6)O1xiii—Ir—O1xxii91.60 (10)
O1ii—Ca1—Irix40.31 (5)O1xv—Ir—O1xxii180.00 (14)
O1iii—Ca1—Irix150.50 (6)O1xxi—Ir—O1xxii88.40 (10)
O1iv—Ca1—Irix122.79 (6)O1xiv—Ir—Ca253.61 (7)
O1v—Ca1—Irix40.28 (5)O1xx—Ir—Ca2126.39 (7)
O1vi—Ca1—Irix94.02 (6)O1xiii—Ir—Ca253.61 (7)
O1vii—Ca1—Irix39.84 (5)O1xv—Ir—Ca253.61 (7)
Irviii—Ca1—Irix131.37 (3)O1xxi—Ir—Ca2126.39 (7)
O1i—Ca1—Ca2x42.12 (6)O1xxii—Ir—Ca2126.39 (7)
O1—Ca1—Ca2x42.12 (6)O1xiv—Ir—Ca2xxiii126.39 (7)
O1ii—Ca1—Ca2x82.48 (6)O1xx—Ir—Ca2xxiii53.61 (7)
O1iii—Ca1—Ca2x82.48 (6)O1xiii—Ir—Ca2xxiii126.39 (7)
O1iv—Ca1—Ca2x105.60 (6)O1xv—Ir—Ca2xxiii126.39 (7)
O1v—Ca1—Ca2x105.60 (6)O1xxi—Ir—Ca2xxiii53.61 (7)
O1vi—Ca1—Ca2x147.93 (5)O1xxii—Ir—Ca2xxiii53.61 (7)
O1vii—Ca1—Ca2x147.93 (5)Ca2—Ir—Ca2xxiii180.0
Irviii—Ca1—Ca2x114.313 (15)O1xiv—Ir—Ca1xxiv52.98 (7)
Irix—Ca1—Ca2x114.315 (15)O1xx—Ir—Ca1xxiv127.02 (7)
O1i—Ca1—Ca1xi85.73 (6)O1xiii—Ir—Ca1xxiv58.87 (7)
O1—Ca1—Ca1xi50.30 (6)O1xv—Ir—Ca1xxiv126.25 (7)
O1ii—Ca1—Ca1xi124.69 (6)O1xxi—Ir—Ca1xxiv121.13 (7)
O1iii—Ca1—Ca1xi45.97 (6)O1xxii—Ir—Ca1xxiv53.75 (7)
O1iv—Ca1—Ca1xi50.04 (6)Ca2—Ir—Ca1xxiv72.755 (3)
O1v—Ca1—Ca1xi154.26 (5)Ca2xxiii—Ir—Ca1xxiv107.245 (3)
O1vi—Ca1—Ca1xi95.50 (5)O1xiv—Ir—Ca1xxv127.02 (7)
O1vii—Ca1—Ca1xi135.96 (5)O1xx—Ir—Ca1xxv52.98 (7)
Irviii—Ca1—Ca1xi55.800 (1)O1xiii—Ir—Ca1xxv121.13 (7)
Irix—Ca1—Ca1xi163.325 (15)O1xv—Ir—Ca1xxv53.75 (7)
Ca2x—Ca1—Ca1xi61.266 (11)O1xxi—Ir—Ca1xxv58.87 (7)
O1xii—Ca2—O1xiii148.94 (12)O1xxii—Ir—Ca1xxv126.25 (7)
O1xii—Ca2—O1xiv89.31 (12)Ca2—Ir—Ca1xxv107.245 (3)
O1xiii—Ca2—O1xiv76.97 (9)Ca2xxiii—Ir—Ca1xxv72.755 (3)
O1xii—Ca2—O1xv127.33 (12)Ca1xxiv—Ir—Ca1xxv180.00 (3)
O1xiii—Ca2—O1xv76.97 (9)O1xiv—Ir—Ca1xxvi53.75 (7)
O1xiv—Ca2—O1xv76.97 (9)O1xx—Ir—Ca1xxvi126.25 (7)
O1xii—Ca2—O1xvi76.97 (9)O1xiii—Ir—Ca1xxvi127.02 (7)
O1xiii—Ca2—O1xvi89.31 (12)O1xv—Ir—Ca1xxvi121.13 (7)
O1xiv—Ca2—O1xvi127.33 (12)O1xxi—Ir—Ca1xxvi52.98 (7)
O1xv—Ca2—O1xvi148.94 (12)O1xxii—Ir—Ca1xxvi58.87 (7)
O1xii—Ca2—O1xvii76.97 (9)Ca2—Ir—Ca1xxvi107.245 (3)
O1xiii—Ca2—O1xvii127.33 (12)Ca2xxiii—Ir—Ca1xxvi72.755 (3)
O1xiv—Ca2—O1xvii148.94 (12)Ca1xxiv—Ir—Ca1xxvi68.396 (2)
O1xv—Ca2—O1xvii89.31 (12)Ca1xxv—Ir—Ca1xxvi111.604 (2)
O1xvi—Ca2—O1xvii76.97 (9)O1xiv—Ir—Ca1xxvii126.25 (7)
O1xii—Ca2—Ir134.06 (6)O1xx—Ir—Ca1xxvii53.75 (7)
O1xiii—Ca2—Ir45.94 (6)O1xiii—Ir—Ca1xxvii52.98 (7)
O1xiv—Ca2—Ir45.94 (6)O1xv—Ir—Ca1xxvii58.87 (7)
O1xv—Ca2—Ir45.94 (6)O1xxi—Ir—Ca1xxvii127.02 (7)
O1xvi—Ca2—Ir134.06 (6)O1xxii—Ir—Ca1xxvii121.13 (7)
O1xvii—Ca2—Ir134.06 (6)Ca2—Ir—Ca1xxvii72.755 (3)
O1xii—Ca2—Irxviii45.94 (6)Ca2xxiii—Ir—Ca1xxvii107.245 (3)
O1xiii—Ca2—Irxviii134.06 (6)Ca1xxiv—Ir—Ca1xxvii111.604 (2)
O1xiv—Ca2—Irxviii134.06 (6)Ca1xxv—Ir—Ca1xxvii68.396 (2)
O1xv—Ca2—Irxviii134.06 (6)Ca1xxvi—Ir—Ca1xxvii180.00 (3)
O1xvi—Ca2—Irxviii45.94 (6)Irx—O1—Ca2x80.45 (9)
O1xvii—Ca2—Irxviii45.94 (6)Irx—O1—Ca1166.86 (12)
Ir—Ca2—Irxviii180.0Ca2x—O1—Ca193.23 (8)
O1xii—Ca2—Ca1xiv44.65 (6)Irx—O1—Ca1ii86.70 (9)
O1xiii—Ca2—Ca1xiv116.34 (6)Ca2x—O1—Ca1ii94.79 (9)
O1xiv—Ca2—Ca1xiv44.65 (6)Ca1—O1—Ca1ii105.40 (9)
O1xv—Ca2—Ca1xiv105.53 (6)Irx—O1—Ca1xxviii85.98 (8)
O1xvi—Ca2—Ca1xiv105.53 (6)Ca2x—O1—Ca1xxviii165.76 (11)
O1xvii—Ca2—Ca1xiv116.34 (6)Ca1—O1—Ca1xxviii99.16 (9)
Ir—Ca2—Ca1xiv90.0Ca1ii—O1—Ca1xxviii88.69 (8)
Irxviii—Ca2—Ca1xiv90.0Irx—O1—Ca1xi81.29 (8)
O1xii—Ca2—Ca1xiii116.34 (6)Ca2x—O1—Ca1xi89.39 (8)
O1xiii—Ca2—Ca1xiii44.65 (6)Ca1—O1—Ca1xi87.16 (8)
O1xiv—Ca2—Ca1xiii105.53 (6)Ca1ii—O1—Ca1xi166.46 (10)
O1xv—Ca2—Ca1xiii116.34 (6)Ca1xxviii—O1—Ca1xi84.27 (7)
O1xvi—Ca2—Ca1xiii44.65 (6)
Symmetry codes: (i) xy, y, z+1/2; (ii) x1/3, y+1/3, z+1/3; (iii) x+y2/3, y1/3, z+1/6; (iv) x2/3, x+y1/3, z+1/6; (v) y1/3, xy+1/3, z+1/3; (vi) y2/3, x1/3, z+1/6; (vii) xy1/3, x+1/3, z+1/3; (viii) y2/3, x4/3, z+1/6; (ix) x4/3, y+1/3, z+1/3; (x) x1, y, z; (xi) y1/3, x+y2/3, z+1/3; (xii) x+1, x+y, z+1/2; (xiii) y+1, xy, z; (xiv) x+y+1, x, z; (xv) x+1, y, z; (xvi) y+1, x, z+1/2; (xvii) xy+1, y, z+1/2; (xviii) y+1, x1, z+1/2; (xix) xy+4/3, x+2/3, z+2/3; (xx) xy+1, x, z; (xxi) y+1, x+y, z; (xxii) x+1, y, z; (xxiii) x+2, y, z; (xxiv) xy+5/3, x+1/3, z+1/3; (xxv) x+y+1/3, x1/3, z1/3; (xxvi) y+4/3, xy+2/3, z1/3; (xxvii) y+2/3, x+y2/3, z+1/3; (xxviii) x+y2/3, x1/3, z1/3.
(II) Tricalcium magnesium iridium hexaoxide top
Crystal data top
Ca3.34Mg0.66IrO6Dx = 5.303 Mg m3
Mr = 438.16Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3cCell parameters from 1830 reflections
a = 9.2876 (4) Åθ = 3.1–33.1°
c = 11.0200 (8) ŵ = 27.49 mm1
V = 823.23 (8) Å3T = 293 K
Z = 6Rhombohedron, black
F(000) = 11980.10 × 0.06 × 0.05 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
350 independent reflections
Radiation source: fine-focus sealed tube326 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 33.1°, θmin = 4.4°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 914
Tmin = 0.104, Tmax = 0.137k = 1312
2382 measured reflectionsl = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.015Secondary atom site location: difference Fourier map
wR(F2) = 0.034 w = 1/[σ2(Fo2) + (0.0203P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
350 reflectionsΔρmax = 2.19 e Å3
20 parametersΔρmin = 1.13 e Å3
Crystal data top
Ca3.34Mg0.66IrO6Z = 6
Mr = 438.16Mo Kα radiation
Trigonal, R3cµ = 27.49 mm1
a = 9.2876 (4) ÅT = 293 K
c = 11.0200 (8) Å0.10 × 0.06 × 0.05 mm
V = 823.23 (8) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
350 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
326 reflections with I > 2σ(I)
Tmin = 0.104, Tmax = 0.137Rint = 0.023
2382 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01520 parameters
wR(F2) = 0.0340 restraints
S = 1.09Δρmax = 2.19 e Å3
350 reflectionsΔρmin = 1.13 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ca10.30466 (7)0.33330.08330.00731 (13)
Ca20.00000.00000.75000.0047 (6)0.338 (10)
Mg0.00000.00000.75000.0047 (6)0.66
Ir0.00000.00001.00000.00436 (8)
O0.1853 (2)0.0275 (2)1.10975 (16)0.0110 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0065 (2)0.0058 (3)0.0094 (3)0.00292 (15)0.00044 (11)0.0009 (2)
Ca20.0045 (7)0.0045 (7)0.0050 (9)0.0023 (4)0.0000.000
Mg0.0045 (7)0.0045 (7)0.0050 (9)0.0023 (4)0.0000.000
Ir0.00302 (9)0.00302 (9)0.00705 (11)0.00151 (4)0.0000.000
O0.0075 (9)0.0114 (9)0.0146 (8)0.0051 (8)0.0058 (7)0.0012 (6)
Geometric parameters (Å, º) top
Ca1—Oi2.3590 (19)Mg—Oxiii2.2310 (19)
Ca1—Oii2.3591 (19)Mg—Oxiv2.231 (2)
Ca1—Oiii2.4967 (19)Mg—Oxv2.2310 (19)
Ca1—Oiv2.4967 (19)Mg—Oxvi2.2310 (19)
Ca1—Ov2.5301 (19)Mg—Ir2.7550 (2)
Ca1—Ovi2.5302 (19)Mg—Irxvii2.7550 (2)
Ca1—Ovii2.689 (2)Mg—Ca1xviii3.3621 (7)
Ca1—Oviii2.689 (2)Mg—Ca1xix3.3622 (7)
Ca1—Irix3.1103 (3)Mg—Ca1xx3.3622 (7)
Ca1—Iriv3.1103 (3)Mg—Ca1xxi3.4934 (3)
Ca1—Ca2x3.3621 (7)Ir—Oxv2.0128 (18)
Ca1—Mgx3.3621 (7)Ir—O2.0128 (18)
Ca2—Oxi2.2310 (19)Ir—Oxvi2.0128 (18)
Ca2—Oxii2.231 (2)Ir—Oxii2.0128 (18)
Ca2—Oxiii2.2310 (19)Ir—Oxxii2.0128 (18)
Ca2—Oxiv2.231 (2)Ir—Oxxiii2.0128 (18)
Ca2—Oxv2.2310 (19)Ir—Mgxv2.7550 (2)
Ca2—Oxvi2.2310 (19)Ir—Ca2xv2.7550 (2)
Ca2—Ir2.7550 (2)Ir—Ca1xxiv3.1103 (3)
Ca2—Irxvii2.7550 (2)Ir—Ca1xxv3.1103 (3)
Ca2—Ca1xviii3.3621 (7)O—Mgxv2.2310 (19)
Ca2—Ca1xix3.3622 (7)O—Ca2xv2.2310 (19)
Ca2—Ca1xx3.3622 (7)O—Ca1ii2.3591 (19)
Ca2—Ca1xxi3.4934 (3)O—Ca1xxiv2.4967 (19)
Mg—Oxi2.2310 (19)O—Ca1xxvi2.5302 (19)
Mg—Oxii2.231 (2)O—Ca1xxvii2.6888 (19)
Oi—Ca1—Oii82.88 (10)Oxii—Mg—Oxvi77.30 (7)
Oi—Ca1—Oiii74.78 (7)Oxiii—Mg—Oxvi148.51 (10)
Oii—Ca1—Oiii94.30 (6)Oxiv—Mg—Oxvi127.41 (9)
Oi—Ca1—Oiv94.31 (6)Oxv—Mg—Oxvi77.30 (7)
Oii—Ca1—Oiv74.78 (7)Oxi—Mg—Ir133.85 (4)
Oiii—Ca1—Oiv165.64 (9)Oxii—Mg—Ir46.15 (5)
Oi—Ca1—Ov135.01 (4)Oxiii—Mg—Ir133.85 (4)
Oii—Ca1—Ov72.15 (8)Oxiv—Mg—Ir133.85 (4)
Oiii—Ca1—Ov70.61 (7)Oxv—Mg—Ir46.15 (4)
Oiv—Ca1—Ov113.51 (6)Oxvi—Mg—Ir46.15 (4)
Oi—Ca1—Ovi72.15 (8)Oxi—Mg—Irxvii46.15 (4)
Oii—Ca1—Ovi135.01 (4)Oxii—Mg—Irxvii133.85 (5)
Oiii—Ca1—Ovi113.51 (6)Oxiii—Mg—Irxvii46.15 (4)
Oiv—Ca1—Ovi70.61 (7)Oxiv—Mg—Irxvii46.15 (4)
Ov—Ca1—Ovi148.99 (9)Oxv—Mg—Irxvii133.85 (4)
Oi—Ca1—Ovii120.85 (3)Oxvi—Mg—Irxvii133.85 (4)
Oii—Ca1—Ovii138.85 (6)Ir—Mg—Irxvii180.0
Oiii—Ca1—Ovii64.89 (9)Oxi—Mg—Ca1xviii105.74 (5)
Oiv—Ca1—Ovii129.45 (2)Oxii—Mg—Ca1xviii105.74 (5)
Ov—Ca1—Ovii67.57 (7)Oxiii—Mg—Ca1xviii44.41 (5)
Ovi—Ca1—Ovii86.00 (6)Oxiv—Mg—Ca1xviii116.30 (5)
Oi—Ca1—Oviii138.85 (6)Oxv—Mg—Ca1xviii44.41 (5)
Oii—Ca1—Oviii120.85 (3)Oxvi—Mg—Ca1xviii116.30 (5)
Oiii—Ca1—Oviii129.45 (2)Ir—Mg—Ca1xviii90.0
Oiv—Ca1—Oviii64.89 (9)Irxvii—Mg—Ca1xviii90.0
Ov—Ca1—Oviii86.00 (6)Oxi—Mg—Ca1xix116.30 (5)
Ovi—Ca1—Oviii67.57 (7)Oxii—Mg—Ca1xix44.41 (5)
Ovii—Ca1—Oviii64.82 (9)Oxiii—Mg—Ca1xix105.74 (5)
Oi—Ca1—Irix114.93 (5)Oxiv—Mg—Ca1xix44.41 (5)
Oii—Ca1—Irix101.32 (5)Oxv—Mg—Ca1xix116.30 (5)
Oiii—Ca1—Irix40.24 (4)Oxvi—Mg—Ca1xix105.74 (5)
Oiv—Ca1—Irix150.04 (5)Ir—Mg—Ca1xix90.0
Ov—Ca1—Irix40.18 (4)Irxvii—Mg—Ca1xix90.0
Ovi—Ca1—Irix122.94 (4)Ca1xviii—Mg—Ca1xix120.0
Ovii—Ca1—Irix39.79 (4)Oxi—Mg—Ca1xx44.41 (5)
Oviii—Ca1—Irix94.17 (5)Oxii—Mg—Ca1xx116.30 (5)
Oi—Ca1—Iriv101.32 (5)Oxiii—Mg—Ca1xx116.30 (5)
Oii—Ca1—Iriv114.93 (5)Oxiv—Mg—Ca1xx105.74 (5)
Oiii—Ca1—Iriv150.04 (5)Oxv—Mg—Ca1xx105.74 (5)
Oiv—Ca1—Iriv40.24 (4)Oxvi—Mg—Ca1xx44.41 (5)
Ov—Ca1—Iriv122.94 (4)Ir—Mg—Ca1xx90.0
Ovi—Ca1—Iriv40.18 (4)Irxvii—Mg—Ca1xx90.0
Ovii—Ca1—Iriv94.17 (5)Ca1xviii—Mg—Ca1xx120.0
Oviii—Ca1—Iriv39.79 (4)Ca1xix—Mg—Ca1xx120.0
Irix—Ca1—Iriv131.33 (2)Oxi—Mg—Ca1xxi104.37 (5)
Oi—Ca1—Ca2x41.44 (5)Oxii—Mg—Ca1xxi87.19 (4)
Oii—Ca1—Ca2x41.44 (5)Oxiii—Mg—Ca1xxi45.38 (5)
Oiii—Ca1—Ca2x82.82 (5)Oxiv—Mg—Ca1xxi50.32 (5)
Oiv—Ca1—Ca2x82.82 (5)Oxv—Mg—Ca1xxi100.27 (5)
Ov—Ca1—Ca2x105.50 (5)Oxvi—Mg—Ca1xxi164.47 (5)
Ovi—Ca1—Ca2x105.50 (5)Ir—Mg—Ca1xxi121.719 (3)
Ovii—Ca1—Ca2x147.59 (4)Irxvii—Mg—Ca1xxi58.281 (3)
Oviii—Ca1—Ca2x147.59 (4)Ca1xviii—Mg—Ca1xxi68.478 (11)
Irix—Ca1—Ca2x114.333 (12)Ca1xix—Mg—Ca1xxi61.236 (9)
Iriv—Ca1—Ca2x114.334 (12)Ca1xx—Mg—Ca1xxi148.002 (5)
Oi—Ca1—Mgx41.44 (5)Oxv—Ir—O180.000 (1)
Oii—Ca1—Mgx41.44 (5)Oxv—Ir—Oxvi87.62 (8)
Oiii—Ca1—Mgx82.82 (5)O—Ir—Oxvi92.38 (8)
Oiv—Ca1—Mgx82.82 (5)Oxv—Ir—Oxii87.62 (8)
Ov—Ca1—Mgx105.50 (5)O—Ir—Oxii92.38 (8)
Ovi—Ca1—Mgx105.50 (5)Oxvi—Ir—Oxii87.62 (8)
Ovii—Ca1—Mgx147.59 (4)Oxv—Ir—Oxxii92.38 (8)
Oviii—Ca1—Mgx147.59 (4)O—Ir—Oxxii87.62 (8)
Irix—Ca1—Mgx114.333 (12)Oxvi—Ir—Oxxii180.000 (1)
Iriv—Ca1—Mgx114.334 (12)Oxii—Ir—Oxxii92.38 (8)
Ca2x—Ca1—Mgx0.0Oxv—Ir—Oxxiii92.38 (8)
Oxi—Ca2—Oxii148.51 (10)O—Ir—Oxxiii87.62 (8)
Oxi—Ca2—Oxiii77.30 (7)Oxvi—Ir—Oxxiii92.38 (8)
Oxii—Ca2—Oxiii127.41 (9)Oxii—Ir—Oxxiii180.0
Oxi—Ca2—Oxiv77.30 (7)Oxxii—Ir—Oxxiii87.62 (8)
Oxii—Ca2—Oxiv88.82 (9)Oxv—Ir—Mg53.07 (5)
Oxiii—Ca2—Oxiv77.30 (7)O—Ir—Mg126.93 (5)
Oxi—Ca2—Oxv127.41 (9)Oxvi—Ir—Mg53.07 (5)
Oxii—Ca2—Oxv77.30 (7)Oxii—Ir—Mg53.07 (5)
Oxiii—Ca2—Oxv88.82 (9)Oxxii—Ir—Mg126.93 (5)
Oxiv—Ca2—Oxv148.51 (10)Oxxiii—Ir—Mg126.93 (5)
Oxi—Ca2—Oxvi88.82 (9)Oxv—Ir—Ca253.07 (5)
Oxii—Ca2—Oxvi77.30 (7)O—Ir—Ca2126.93 (5)
Oxiii—Ca2—Oxvi148.51 (10)Oxvi—Ir—Ca253.07 (5)
Oxiv—Ca2—Oxvi127.41 (9)Oxii—Ir—Ca253.07 (5)
Oxv—Ca2—Oxvi77.30 (7)Oxxii—Ir—Ca2126.93 (5)
Oxi—Ca2—Ir133.85 (4)Oxxiii—Ir—Ca2126.93 (5)
Oxii—Ca2—Ir46.15 (5)Mg—Ir—Ca20.0
Oxiii—Ca2—Ir133.85 (4)Oxv—Ir—Mgxv126.93 (5)
Oxiv—Ca2—Ir133.85 (4)O—Ir—Mgxv53.07 (5)
Oxv—Ca2—Ir46.15 (4)Oxvi—Ir—Mgxv126.93 (5)
Oxvi—Ca2—Ir46.15 (4)Oxii—Ir—Mgxv126.93 (5)
Oxi—Ca2—Irxvii46.15 (4)Oxxii—Ir—Mgxv53.07 (5)
Oxii—Ca2—Irxvii133.85 (5)Oxxiii—Ir—Mgxv53.07 (5)
Oxiii—Ca2—Irxvii46.15 (4)Mg—Ir—Mgxv180.0
Oxiv—Ca2—Irxvii46.15 (4)Ca2—Ir—Mgxv180.0
Oxv—Ca2—Irxvii133.85 (4)Oxv—Ir—Ca2xv126.93 (5)
Oxvi—Ca2—Irxvii133.85 (4)O—Ir—Ca2xv53.07 (5)
Ir—Ca2—Irxvii180.0Oxvi—Ir—Ca2xv126.93 (5)
Oxi—Ca2—Ca1xviii105.74 (5)Oxii—Ir—Ca2xv126.93 (5)
Oxii—Ca2—Ca1xviii105.74 (5)Oxxii—Ir—Ca2xv53.07 (5)
Oxiii—Ca2—Ca1xviii44.41 (5)Oxxiii—Ir—Ca2xv53.07 (5)
Oxiv—Ca2—Ca1xviii116.30 (5)Mg—Ir—Ca2xv180.0
Oxv—Ca2—Ca1xviii44.41 (5)Ca2—Ir—Ca2xv180.0
Oxvi—Ca2—Ca1xviii116.30 (5)Mgxv—Ir—Ca2xv0.0
Ir—Ca2—Ca1xviii90.0Oxv—Ir—Ca1xxiv126.75 (5)
Irxvii—Ca2—Ca1xviii90.0O—Ir—Ca1xxiv53.25 (5)
Oxi—Ca2—Ca1xix116.30 (5)Oxvi—Ir—Ca1xxiv121.25 (6)
Oxii—Ca2—Ca1xix44.41 (5)Oxii—Ir—Ca1xxiv54.20 (6)
Oxiii—Ca2—Ca1xix105.74 (5)Oxxii—Ir—Ca1xxiv58.75 (6)
Oxiv—Ca2—Ca1xix44.41 (5)Oxxiii—Ir—Ca1xxiv125.80 (6)
Oxv—Ca2—Ca1xix116.30 (5)Mg—Ir—Ca1xxiv107.173 (2)
Oxvi—Ca2—Ca1xix105.74 (5)Ca2—Ir—Ca1xxiv107.173 (2)
Ir—Ca2—Ca1xix90.0Mgxv—Ir—Ca1xxiv72.827 (2)
Irxvii—Ca2—Ca1xix90.0Ca2xv—Ir—Ca1xxiv72.827 (2)
Ca1xviii—Ca2—Ca1xix120.0Oxv—Ir—Ca1xxv53.25 (5)
Oxi—Ca2—Ca1xx44.41 (5)O—Ir—Ca1xxv126.75 (5)
Oxii—Ca2—Ca1xx116.30 (5)Oxvi—Ir—Ca1xxv58.75 (6)
Oxiii—Ca2—Ca1xx116.30 (5)Oxii—Ir—Ca1xxv125.80 (6)
Oxiv—Ca2—Ca1xx105.74 (5)Oxxii—Ir—Ca1xxv121.25 (6)
Oxv—Ca2—Ca1xx105.74 (5)Oxxiii—Ir—Ca1xxv54.20 (6)
Oxvi—Ca2—Ca1xx44.41 (5)Mg—Ir—Ca1xxv72.827 (2)
Ir—Ca2—Ca1xx90.0Ca2—Ir—Ca1xxv72.827 (2)
Irxvii—Ca2—Ca1xx90.0Mgxv—Ir—Ca1xxv107.173 (2)
Ca1xviii—Ca2—Ca1xx120.0Ca2xv—Ir—Ca1xxv107.173 (2)
Ca1xix—Ca2—Ca1xx120.0Ca1xxiv—Ir—Ca1xxv180.0
Oxi—Ca2—Ca1xxi104.37 (5)Ir—O—Mgxv80.78 (7)
Oxii—Ca2—Ca1xxi87.19 (4)Ir—O—Ca2xv80.78 (7)
Oxiii—Ca2—Ca1xxi45.38 (5)Mgxv—O—Ca2xv0.0
Oxiv—Ca2—Ca1xxi50.32 (5)Ir—O—Ca1ii167.66 (10)
Oxv—Ca2—Ca1xxi100.27 (5)Mgxv—O—Ca1ii94.15 (6)
Oxvi—Ca2—Ca1xxi164.47 (5)Ca2xv—O—Ca1ii94.15 (6)
Ir—Ca2—Ca1xxi121.719 (3)Ir—O—Ca1xxiv86.52 (7)
Irxvii—Ca2—Ca1xxi58.281 (3)Mgxv—O—Ca1xxiv95.12 (7)
Ca1xviii—Ca2—Ca1xxi68.478 (11)Ca2xv—O—Ca1xxiv95.12 (7)
Ca1xix—Ca2—Ca1xxi61.236 (9)Ca1ii—O—Ca1xxiv105.22 (7)
Ca1xx—Ca2—Ca1xxi148.002 (5)Ir—O—Ca1xxvi85.61 (6)
Oxi—Mg—Oxii148.51 (10)Mgxv—O—Ca1xxvi165.80 (8)
Oxi—Mg—Oxiii77.30 (7)Ca2xv—O—Ca1xxvi165.80 (8)
Oxii—Mg—Oxiii127.41 (9)Ca1ii—O—Ca1xxvi98.38 (7)
Oxi—Mg—Oxiv77.30 (7)Ca1xxiv—O—Ca1xxvi88.04 (6)
Oxii—Mg—Oxiv88.82 (9)Ir—O—Ca1xxvii81.46 (6)
Oxiii—Mg—Oxiv77.30 (7)Mgxv—O—Ca1xxvii89.99 (6)
Oxi—Mg—Oxv127.41 (9)Ca2xv—O—Ca1xxvii89.99 (6)
Oxii—Mg—Oxv77.30 (7)Ca1ii—O—Ca1xxvii87.33 (6)
Oxiii—Mg—Oxv88.82 (9)Ca1xxiv—O—Ca1xxvii166.03 (7)
Oxiv—Mg—Oxv148.51 (10)Ca1xxvi—O—Ca1xxvii83.98 (6)
Oxi—Mg—Oxvi88.82 (9)
Symmetry codes: (i) x+y+2/3, y+1/3, z7/6; (ii) x+2/3, y+1/3, z+4/3; (iii) xy+1/3, y+2/3, z+7/6; (iv) x, y, z1; (v) y+1/3, x+2/3, z5/6; (vi) xy, x, z+1; (vii) x+1/3, x+y+2/3, z+7/6; (viii) y, xy, z1; (ix) y+1/3, x+2/3, z+7/6; (x) x+2/3, y+1/3, z2/3; (xi) y, x, z1/2; (xii) xy, x, z+2; (xiii) x+y, y, z1/2; (xiv) x, xy, z1/2; (xv) x, y, z+2; (xvi) y, x+y, z+2; (xvii) y, x, z+3/2; (xviii) x2/3, y1/3, z+2/3; (xix) x+y+1/3, x+2/3, z+2/3; (xx) y+1/3, xy1/3, z+2/3; (xxi) x+1/3, y+2/3, z+2/3; (xxii) y, xy, z; (xxiii) x+y, x, z; (xxiv) x, y, z+1; (xxv) x, y, z+1; (xxvi) y, x+y, z+1; (xxvii) x+y, x, z+1.
(III) Tricalcium zinc iridium hexaoxide top
Crystal data top
Ca3.50Zn0.50IrO6Dx = 5.605 Mg m3
Mr = 461.17Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3cCell parameters from 1927 reflections
a = 9.2641 (3) Åθ = 4.4–36.3°
c = 11.0298 (5) ŵ = 29.82 mm1
V = 819.79 (5) Å3T = 293 K
Z = 6Block, black
F(000) = 12600.10 × 0.06 × 0.05 mm
Data collection top
Bruker SMART APEX CCD are-detector
diffractometer
448 independent reflections
Radiation source: fine-focus sealed tube398 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 36.3°, θmin = 4.4°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 147
Tmin = 0.171, Tmax = 0.344k = 1015
2889 measured reflectionsl = 1018
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.031Secondary atom site location: difference Fourier map
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0496P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
448 reflectionsΔρmax = 4.57 e Å3
19 parametersΔρmin = 3.54 e Å3
Crystal data top
Ca3.50Zn0.50IrO6Z = 6
Mr = 461.17Mo Kα radiation
Trigonal, R3cµ = 29.82 mm1
a = 9.2641 (3) ÅT = 293 K
c = 11.0298 (5) Å0.10 × 0.06 × 0.05 mm
V = 819.79 (5) Å3
Data collection top
Bruker SMART APEX CCD are-detector
diffractometer
448 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
398 reflections with I > 2σ(I)
Tmin = 0.171, Tmax = 0.344Rint = 0.034
2889 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03119 parameters
wR(F2) = 0.0770 restraints
S = 1.13Δρmax = 4.57 e Å3
448 reflectionsΔρmin = 3.54 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O0.1585 (4)0.9738 (4)0.3897 (3)0.0115 (6)
Ir0.00001.00000.50000.00439 (13)
Ca10.97173 (12)0.66670.41670.0073 (2)
Zn0.00001.00000.25000.0087 (3)0.50
Ca20.00001.00000.25000.0087 (3)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.0103 (13)0.0126 (13)0.0137 (13)0.0073 (12)0.0054 (11)0.0016 (10)
Ir0.00377 (14)0.00377 (14)0.00563 (19)0.00188 (7)0.0000.000
Ca10.0066 (3)0.0065 (4)0.0088 (4)0.0033 (2)0.00040 (18)0.0008 (4)
Zn0.0099 (5)0.0099 (5)0.0064 (6)0.0050 (2)0.0000.000
Ca20.0099 (5)0.0099 (5)0.0064 (6)0.0050 (2)0.0000.000
Geometric parameters (Å, º) top
O—Ir2.012 (3)Ca1—Oxvii2.675 (3)
O—Ca22.223 (3)Ca1—Irxvii3.1049 (5)
O—Zn2.223 (3)Ca1—Irxiii3.1049 (5)
O—Ca1i2.349 (3)Ca1—Ca2i3.3499 (11)
O—Ca1ii2.501 (3)Ca1—Zni3.3499 (11)
O—Ca1iii2.536 (3)Zn—Oxviii2.223 (3)
O—Ca1iv2.675 (3)Zn—Oix2.223 (3)
Ir—Ov2.012 (3)Zn—Ov2.223 (3)
Ir—Ovi2.012 (3)Zn—Oxix2.223 (3)
Ir—Ovii2.012 (3)Zn—Oxx2.223 (3)
Ir—Oviii2.012 (3)Zn—Irxx2.7575 (1)
Ir—Oix2.012 (3)Zn—Ca1xxi3.3499 (11)
Ir—Ca2viii2.7575 (1)Zn—Ca1xxii3.3499 (11)
Ir—Ca22.7575 (1)Zn—Ca1i3.3499 (11)
Ir—Zn2.7575 (1)Zn—Ca1xxiii3.4893 (4)
Ir—Znviii2.7575 (1)Ca2—Oxviii2.223 (3)
Ir—Ca1x3.1049 (5)Ca2—Oix2.223 (3)
Ir—Ca1iv3.1049 (5)Ca2—Ov2.223 (3)
Ca1—Oxi2.349 (3)Ca2—Oxix2.223 (3)
Ca1—Oi2.349 (3)Ca2—Oxx2.223 (3)
Ca1—Oxii2.501 (3)Ca2—Irxx2.7575 (1)
Ca1—Oxiii2.501 (3)Ca2—Ca1xxi3.3499 (11)
Ca1—Oxiv2.536 (3)Ca2—Ca1xxii3.3499 (11)
Ca1—Oxv2.536 (3)Ca2—Ca1i3.3499 (11)
Ca1—Oxvi2.675 (3)Ca2—Ca1xxiii3.4893 (4)
Ir—O—Ca281.07 (11)Oi—Ca1—Zni41.45 (8)
Ir—O—Zn81.07 (11)Oxii—Ca1—Zni82.95 (8)
Ca2—O—Zn0.0Oxiii—Ca1—Zni82.95 (8)
Ir—O—Ca1i168.27 (17)Oxiv—Ca1—Zni105.30 (8)
Ca2—O—Ca1i94.17 (12)Oxv—Ca1—Zni105.30 (8)
Zn—O—Ca1i94.17 (12)Oxvi—Ca1—Zni147.58 (7)
Ir—O—Ca1ii86.22 (11)Oxvii—Ca1—Zni147.58 (7)
Ca2—O—Ca1ii95.03 (12)Irxvii—Ca1—Zni114.390 (19)
Zn—O—Ca1ii95.03 (12)Irxiii—Ca1—Zni114.390 (19)
Ca1i—O—Ca1ii104.95 (11)Ca2i—Ca1—Zni0.0
Ir—O—Ca1iii85.27 (11)Oxviii—Zn—Oix148.01 (17)
Ca2—O—Ca1iii165.85 (14)Oxviii—Zn—O127.90 (16)
Zn—O—Ca1iii165.85 (14)Oix—Zn—O77.27 (12)
Ca1i—O—Ca1iii98.55 (12)Oxviii—Zn—Ov88.76 (16)
Ca1ii—O—Ca1iii87.68 (10)Oix—Zn—Ov77.27 (12)
Ir—O—Ca1iv81.63 (10)O—Zn—Ov77.27 (12)
Ca2—O—Ca1iv90.35 (11)Oxviii—Zn—Oxix77.27 (12)
Zn—O—Ca1iv90.35 (11)Oix—Zn—Oxix127.90 (16)
Ca1i—O—Ca1iv87.71 (10)O—Zn—Oxix88.76 (16)
Ca1ii—O—Ca1iv165.79 (13)Ov—Zn—Oxix148.01 (17)
Ca1iii—O—Ca1iv84.01 (10)Oxviii—Zn—Oxx77.27 (12)
Ov—Ir—Ovi180.000 (1)Oix—Zn—Oxx88.76 (16)
Ov—Ir—O87.24 (14)O—Zn—Oxx148.01 (17)
Ovi—Ir—O92.76 (14)Ov—Zn—Oxx127.90 (16)
Ov—Ir—Ovii92.76 (14)Oxix—Zn—Oxx77.27 (12)
Ovi—Ir—Ovii87.24 (14)Oxviii—Zn—Irxx46.13 (8)
O—Ir—Ovii92.76 (14)Oix—Zn—Irxx133.87 (8)
Ov—Ir—Oviii92.76 (14)O—Zn—Irxx133.87 (8)
Ovi—Ir—Oviii87.24 (14)Ov—Zn—Irxx133.87 (8)
O—Ir—Oviii180.000 (1)Oxix—Zn—Irxx46.13 (8)
Ovii—Ir—Oviii87.24 (14)Oxx—Zn—Irxx46.13 (8)
Ov—Ir—Oix87.24 (14)Oxviii—Zn—Ir133.87 (8)
Ovi—Ir—Oix92.76 (14)Oix—Zn—Ir46.13 (8)
O—Ir—Oix87.24 (14)O—Zn—Ir46.13 (8)
Ovii—Ir—Oix180.000 (1)Ov—Zn—Ir46.13 (8)
Oviii—Ir—Oix92.76 (14)Oxix—Zn—Ir133.87 (8)
Ov—Ir—Ca2viii127.20 (9)Oxx—Zn—Ir133.87 (8)
Ovi—Ir—Ca2viii52.80 (10)Irxx—Zn—Ir180.0
O—Ir—Ca2viii127.20 (9)Oxviii—Zn—Ca1xxi116.05 (8)
Ovii—Ir—Ca2viii52.80 (9)Oix—Zn—Ca1xxi44.38 (8)
Oviii—Ir—Ca2viii52.80 (9)O—Zn—Ca1xxi116.05 (8)
Oix—Ir—Ca2viii127.20 (9)Ov—Zn—Ca1xxi106.00 (8)
Ov—Ir—Ca252.80 (9)Oxix—Zn—Ca1xxi106.00 (8)
Ovi—Ir—Ca2127.20 (10)Oxx—Zn—Ca1xxi44.38 (8)
O—Ir—Ca252.80 (9)Irxx—Zn—Ca1xxi90.0
Ovii—Ir—Ca2127.20 (9)Ir—Zn—Ca1xxi90.0
Oviii—Ir—Ca2127.20 (9)Oxviii—Zn—Ca1xxii44.38 (8)
Oix—Ir—Ca252.80 (9)Oix—Zn—Ca1xxii116.05 (8)
Ca2viii—Ir—Ca2180.0O—Zn—Ca1xxii106.00 (8)
Ov—Ir—Zn52.80 (9)Ov—Zn—Ca1xxii44.38 (8)
Ovi—Ir—Zn127.20 (10)Oxix—Zn—Ca1xxii116.05 (8)
O—Ir—Zn52.80 (9)Oxx—Zn—Ca1xxii106.00 (8)
Ovii—Ir—Zn127.20 (9)Irxx—Zn—Ca1xxii90.0
Oviii—Ir—Zn127.20 (9)Ir—Zn—Ca1xxii90.0
Oix—Ir—Zn52.80 (9)Ca1xxi—Zn—Ca1xxii120.0
Ca2viii—Ir—Zn180.0Oxviii—Zn—Ca1i106.00 (8)
Ca2—Ir—Zn0.0Oix—Zn—Ca1i106.00 (8)
Ov—Ir—Znviii127.20 (9)O—Zn—Ca1i44.38 (8)
Ovi—Ir—Znviii52.80 (10)Ov—Zn—Ca1i116.05 (8)
O—Ir—Znviii127.20 (9)Oxix—Zn—Ca1i44.38 (8)
Ovii—Ir—Znviii52.80 (9)Oxx—Zn—Ca1i116.05 (8)
Oviii—Ir—Znviii52.80 (9)Irxx—Zn—Ca1i90.0
Oix—Ir—Znviii127.20 (9)Ir—Zn—Ca1i90.0
Ca2viii—Ir—Znviii0.0Ca1xxi—Zn—Ca1i120.0
Ca2—Ir—Znviii180.0Ca1xxii—Zn—Ca1i120.0
Zn—Ir—Znviii180.0Oxviii—Zn—Ca1xxiii50.06 (8)
Ov—Ir—Ca1x54.50 (10)Oix—Zn—Ca1xxiii100.07 (8)
Ovi—Ir—Ca1x125.50 (10)O—Zn—Ca1xxiii164.73 (8)
O—Ir—Ca1x121.52 (9)Ov—Zn—Ca1xxiii87.47 (8)
Ovii—Ir—Ca1x53.49 (9)Oxix—Zn—Ca1xxiii104.28 (8)
Oviii—Ir—Ca1x58.48 (9)Oxx—Zn—Ca1xxiii45.57 (8)
Oix—Ir—Ca1x126.51 (9)Irxx—Zn—Ca1xxiii58.207 (4)
Ca2viii—Ir—Ca1x72.781 (3)Ir—Zn—Ca1xxiii121.793 (5)
Ca2—Ir—Ca1x107.219 (3)Ca1xxi—Zn—Ca1xxiii68.442 (17)
Zn—Ir—Ca1x107.219 (3)Ca1xxii—Zn—Ca1xxiii61.313 (14)
Znviii—Ir—Ca1x72.781 (3)Ca1i—Zn—Ca1xxiii147.937 (7)
Ov—Ir—Ca1iv125.50 (10)Oxviii—Ca2—Oix148.01 (17)
Ovi—Ir—Ca1iv54.50 (10)Oxviii—Ca2—O127.90 (16)
O—Ir—Ca1iv58.48 (9)Oix—Ca2—O77.27 (12)
Ovii—Ir—Ca1iv126.51 (9)Oxviii—Ca2—Ov88.76 (16)
Oviii—Ir—Ca1iv121.52 (9)Oix—Ca2—Ov77.27 (12)
Oix—Ir—Ca1iv53.49 (9)O—Ca2—Ov77.27 (12)
Ca2viii—Ir—Ca1iv107.219 (3)Oxviii—Ca2—Oxix77.27 (12)
Ca2—Ir—Ca1iv72.781 (3)Oix—Ca2—Oxix127.90 (16)
Zn—Ir—Ca1iv72.781 (3)O—Ca2—Oxix88.76 (16)
Znviii—Ir—Ca1iv107.219 (3)Ov—Ca2—Oxix148.01 (17)
Ca1x—Ir—Ca1iv180.0Oxviii—Ca2—Oxx77.27 (12)
Oxi—Ca1—Oi82.90 (17)Oix—Ca2—Oxx88.76 (16)
Oxi—Ca1—Oxii75.05 (11)O—Ca2—Oxx148.01 (17)
Oi—Ca1—Oxii94.25 (10)Ov—Ca2—Oxx127.90 (16)
Oxi—Ca1—Oxiii94.25 (10)Oxix—Ca2—Oxx77.27 (12)
Oi—Ca1—Oxiii75.05 (11)Oxviii—Ca2—Irxx46.13 (8)
Oxii—Ca1—Oxiii165.90 (15)Oix—Ca2—Irxx133.87 (8)
Oxi—Ca1—Oxiv135.08 (6)O—Ca2—Irxx133.87 (8)
Oi—Ca1—Oxiv71.79 (13)Ov—Ca2—Irxx133.87 (8)
Oxii—Ca1—Oxiv70.67 (12)Oxix—Ca2—Irxx46.13 (8)
Oxiii—Ca1—Oxiv113.31 (11)Oxx—Ca2—Irxx46.13 (8)
Oxi—Ca1—Oxv71.79 (13)Oxviii—Ca2—Ir133.87 (8)
Oi—Ca1—Oxv135.08 (6)Oix—Ca2—Ir46.13 (8)
Oxii—Ca1—Oxv113.31 (11)O—Ca2—Ir46.13 (8)
Oxiii—Ca1—Oxv70.67 (12)Ov—Ca2—Ir46.13 (8)
Oxiv—Ca1—Oxv149.39 (15)Oxix—Ca2—Ir133.87 (8)
Oxi—Ca1—Oxvi138.81 (11)Oxx—Ca2—Ir133.87 (8)
Oi—Ca1—Oxvi120.86 (5)Irxx—Ca2—Ir180.0
Oxii—Ca1—Oxvi129.31 (4)Oxviii—Ca2—Ca1xxi116.05 (8)
Oxiii—Ca1—Oxvi64.77 (14)Oix—Ca2—Ca1xxi44.38 (8)
Oxiv—Ca1—Oxvi86.00 (10)O—Ca2—Ca1xxi116.05 (8)
Oxv—Ca1—Oxvi67.92 (12)Ov—Ca2—Ca1xxi106.00 (8)
Oxi—Ca1—Oxvii120.86 (5)Oxix—Ca2—Ca1xxi106.00 (8)
Oi—Ca1—Oxvii138.81 (11)Oxx—Ca2—Ca1xxi44.38 (8)
Oxii—Ca1—Oxvii64.77 (14)Irxx—Ca2—Ca1xxi90.0
Oxiii—Ca1—Oxvii129.31 (4)Ir—Ca2—Ca1xxi90.0
Oxiv—Ca1—Oxvii67.92 (13)Oxviii—Ca2—Ca1xxii44.38 (8)
Oxv—Ca1—Oxvii86.00 (10)Oix—Ca2—Ca1xxii116.05 (8)
Oxvi—Ca1—Oxvii64.83 (14)O—Ca2—Ca1xxii106.00 (8)
Oxi—Ca1—Irxvii115.26 (8)Ov—Ca2—Ca1xxii44.38 (8)
Oi—Ca1—Irxvii101.09 (8)Oxix—Ca2—Ca1xxii116.05 (8)
Oxii—Ca1—Irxvii40.29 (7)Oxx—Ca2—Ca1xxii106.00 (8)
Oxiii—Ca1—Irxvii149.78 (8)Irxx—Ca2—Ca1xxii90.0
Oxiv—Ca1—Irxvii40.23 (7)Ir—Ca2—Ca1xxii90.0
Oxv—Ca1—Irxvii123.06 (8)Ca1xxi—Ca2—Ca1xxii120.0
Oxvi—Ca1—Irxvii94.02 (8)Oxviii—Ca2—Ca1i106.00 (8)
Oxvii—Ca1—Irxvii39.88 (7)Oix—Ca2—Ca1i106.00 (8)
Oxi—Ca1—Irxiii101.09 (8)O—Ca2—Ca1i44.38 (8)
Oi—Ca1—Irxiii115.26 (8)Ov—Ca2—Ca1i116.05 (8)
Oxii—Ca1—Irxiii149.78 (8)Oxix—Ca2—Ca1i44.38 (8)
Oxiii—Ca1—Irxiii40.29 (7)Oxx—Ca2—Ca1i116.05 (8)
Oxiv—Ca1—Irxiii123.06 (8)Irxx—Ca2—Ca1i90.0
Oxv—Ca1—Irxiii40.23 (7)Ir—Ca2—Ca1i90.0
Oxvi—Ca1—Irxiii39.88 (7)Ca1xxi—Ca2—Ca1i120.0
Oxvii—Ca1—Irxiii94.02 (7)Ca1xxii—Ca2—Ca1i120.0
Irxvii—Ca1—Irxiii131.22 (4)Oxviii—Ca2—Ca1xxiii50.06 (8)
Oxi—Ca1—Ca2i41.45 (8)Oix—Ca2—Ca1xxiii100.07 (8)
Oi—Ca1—Ca2i41.45 (8)O—Ca2—Ca1xxiii164.73 (8)
Oxii—Ca1—Ca2i82.95 (8)Ov—Ca2—Ca1xxiii87.47 (8)
Oxiii—Ca1—Ca2i82.95 (8)Oxix—Ca2—Ca1xxiii104.28 (8)
Oxiv—Ca1—Ca2i105.30 (8)Oxx—Ca2—Ca1xxiii45.57 (8)
Oxv—Ca1—Ca2i105.30 (8)Irxx—Ca2—Ca1xxiii58.207 (4)
Oxvi—Ca1—Ca2i147.58 (7)Ir—Ca2—Ca1xxiii121.793 (5)
Oxvii—Ca1—Ca2i147.58 (7)Ca1xxi—Ca2—Ca1xxiii68.442 (17)
Irxvii—Ca1—Ca2i114.390 (19)Ca1xxii—Ca2—Ca1xxiii61.313 (14)
Irxiii—Ca1—Ca2i114.390 (19)Ca1i—Ca2—Ca1xxiii147.937 (7)
Oxi—Ca1—Zni41.45 (8)
Symmetry codes: (i) x+4/3, y+5/3, z+2/3; (ii) x1, y, z; (iii) xy, x, z+1; (iv) y+1, xy+1, z; (v) x+y1, x+1, z; (vi) xy+1, x+1, z+1; (vii) y1, x+y, z+1; (viii) x, y+2, z+1; (ix) y+1, xy+2, z; (x) y1, x+y+1, z+1; (xi) x+y+1/3, y1/3, z+1/6; (xii) xy+5/3, y+4/3, z+5/6; (xiii) x+1, y, z; (xiv) x+2/3, xy+4/3, z1/6; (xv) y, x+y, z+1; (xvi) x+y, x+1, z; (xvii) y1/3, x+1/3, z+5/6; (xviii) x, x+y, z+1/2; (xix) xy+1, y+2, z+1/2; (xx) y1, x+1, z+1/2; (xxi) y2/3, x+y+5/3, z+2/3; (xxii) xy2/3, x1/3, z+2/3; (xxiii) y+1/3, xy+2/3, z1/3.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaCa4IrO6Ca3.34Mg0.66IrO6Ca3.50Zn0.50IrO6
Mr448.52438.16461.17
Crystal system, space groupTrigonal, R3cTrigonal, R3cTrigonal, R3c
Temperature (K)293293293
a, c (Å)9.3030 (5), 11.0864 (8)9.2876 (4), 11.0200 (8)9.2641 (3), 11.0298 (5)
V3)830.93 (9)823.23 (8)819.79 (5)
Z666
Radiation typeMo KαMo KαMo Kα
µ (mm1)27.7727.4929.82
Crystal size (mm)0.08 × 0.06 × 0.040.10 × 0.06 × 0.050.10 × 0.06 × 0.05
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Bruker SMART APEX CCD area-detector
diffractometer
Bruker SMART APEX CCD are-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Multi-scan
(SADABS; Bruker, 1997)
Multi-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.112, 0.1680.104, 0.1370.171, 0.344
No. of measured, independent and
observed [I > 2σ(I)] reflections
2592, 450, 408 2382, 350, 326 2889, 448, 398
Rint0.0260.0230.034
(sin θ/λ)max1)0.8320.7670.833
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.061, 1.07 0.015, 0.034, 1.09 0.031, 0.077, 1.13
No. of reflections450350448
No. of parameters202019
Δρmax, Δρmin (e Å3)3.25, 3.592.19, 1.134.57, 3.54

Computer programs: SMART (Bruker, 2000), SAINT+ (Bruker, 1998), SAINT+, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1997), SHELXTL.

Selected bond lengths (Å) for (I) top
Ca1—O12.371 (2)Ca2—O1iv2.263 (2)
Ca1—O1i2.493 (2)Ca2—Ir2.7716 (2)
Ca1—O1ii2.519 (2)Ir—O1v2.020 (2)
Ca1—O1iii2.699 (3)
Symmetry codes: (i) x1/3, y+1/3, z+1/3; (ii) y1/3, xy+1/3, z+1/3; (iii) xy1/3, x+1/3, z+1/3; (iv) x+1, x+y, z+1/2; (v) x+y+1, x, z.
Selected bond lengths (Å) for (II) top
Ca1—Oi2.3590 (19)Mg—Ov2.2310 (19)
Ca1—Oii2.4967 (19)Mg—Ir2.7550 (2)
Ca1—Oiii2.5301 (19)Ir—O2.0128 (18)
Ca1—Oiv2.689 (2)
Symmetry codes: (i) x+y+2/3, y+1/3, z7/6; (ii) xy+1/3, y+2/3, z+7/6; (iii) y+1/3, x+2/3, z5/6; (iv) x+1/3, x+y+2/3, z+7/6; (v) y, x, z1/2.
Selected bond lengths (Å) for (III) top
Ir—Oi2.012 (3)Ca1—Oiv2.536 (3)
Ir—Zn2.7575 (1)Ca1—Ov2.675 (3)
Ca1—Oii2.349 (3)Zn—Ovi2.223 (3)
Ca1—Oiii2.501 (3)
Symmetry codes: (i) y+1, xy+2, z; (ii) x+4/3, y+5/3, z+2/3; (iii) x+1, y, z; (iv) y, x+y, z+1; (v) x+y, x+1, z; (vi) x, x+y, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds