Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the asymmetric unit of N-(3,5-di­amino-6-chloro­pyrazin-2-yl­carbonyl)-N-(di­amino­methyl­ene)­ammonium chloride methanol hemisolvate, C6H9ClN7O+·Cl-·0.5CH4O, there are two crystallographically different amiloride mol­ecules. Crystallographically identical amiloride mol­ecules are stacked one above the other, alternately rotated by 180°. These stacks are arranged parallel to each other, forming layer A. The least-squares plane of the non-H atoms of the other mol­ecules lying in layer B is tilted against the corresponding plane of the mol­ecules in layer A by an angle of 79.89 (3)°. The methanol mol­ecules and Cl- anions are located between these layers, although the methanol mol­ecules are closer to layer A.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101012550/os1141sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101012550/os1141Isup2.hkl
Contains datablock I

CCDC reference: 174846

Comment top

Amiloride hydrochloride, a pyrazinecarboxamide derivate of guanidine, is a potassium-sparing diuretic. Selective binding to the mucosal membrane of distal tubular cells causes reduced potassium and hydrogen secretion and induces mild natriuresis. The area of application for amiloride is congestive heart failure and hypertension. It is often used in combination with thiazide and loop diuretics to prevent hypokalemia and metabolic alkalosis, the characteristic side effects of thiazide and loop diuretics (Laragh, 1982). In the 1960 s, the first patents were registered on the dihydrate, the form in which amiloride is used in drug preparations (Mazzo, 1986). It has been reported that amiloride dihydrate exists in two polymorphic forms (Jozwiakowski et al., 1993). The crystal structures thereof are unknown, probably because the polymorphs are difficult to grow as single crystals. Amiloride crystallizes better in the presence of methanol, whereby two moles of amiloride accommodate one mole of methanol in the crystal, and it is the structure of this, (I), which is described in the present paper. \sch

A perspective view of the molecules of (I) and the atom-labelling scheme is shown in Fig. 1, and Table 1 gives some selected geometric parameters. The least-squares plane through the 11 non-H atoms making up the ring system and a part of the side chain (C11, C12, N12, C13, C14, N11, C15, O11, N13, N14 and Cl11) indicates that this part of the molecule is planar. The r.m.s. deviation of the atoms is 0.0290 Å, with a maximum deviation of 0.0556 (8) Å for Cl11 lying on one side of the plane, and a maximum deviation of 0.0291 (14) Å for C14 lying on the other side. Furthermore, the least-squares plane through the four atoms of the guanidine group (N15, C16, N16 and N17) shows that they also lie in a plane, with an r.m.s deviation of 0.0000 Å. The angle between these two planes is 5.66 (9)°; therefore, the whole molecule is almost planar.

For the second amiloride molecule, the least-square planes through the 11 non-H atoms involved in the pyrazine ring and the carbonyl group of the side chain (C21, C22, N22, C23, C24, N21, C25, O21, N23, N24 and Cl21), and the four atoms from the guanidine side chain (N25, C26, N26 and N27), indicate planarity as well. The r.m.s. deviation for the former is 0.0670 Å, with a maximum deviation of 0.1219 (17) Å for N24 lying on one side, and a maximum deviation of 0.1215 (15) Å for N23 lying on the other side of the plane. For the latter, the r.m.s. deviation is 0.0014 Å. The pyrazine ring and the guanidine group form an angle of 11.63 (7)°. Therefore, this molecule may also be regarded as planar.

The planarity of the two molecules is manifested through intramolecular hydrogen bonds between the carbonyl O atom and the H atoms of two amino groups, one belonging to the guanidine system and the other to the pyrazine ring, all taking part in stabilization effects. In addition, there is a hydrogen bond between N11 of the pyrazine ring and H15 of the protonated amide group, and between N21 and H25 (Table 2).

The two amiloride molecules are connected by a hydrogen bond between the carbonyl O atom and atom H262 of the amino group. The amiloride molecules are protonated on N15 and N25, respectively. The bond distances shown in Table 1, involving C15, N15, C16, N16 and N17 for the first molecule, and C25, N25, C26, N27 and N26 for the second molecule, indicate that the positive charge is delocalized over all the atoms of the guanidine group.

The Cl3 ion is hydrogen bonded to two amiloride molecules and to the methanol molecule. The closest distance to the first amiloride molecule is 2.50 (2) Å, to the second 2.46 (2) Å and to the hydroxyl group of the methanol molecule 2.38 (4) Å. The Cl4 ion, however, forms hydrogen bonds only to the two amiloride molecules. The closest distance between the Cl4 ion and the first amiloride molecule is 2.23 (3) Å, and 2.44 (3) Å for the second (Table 2).

Fig. 2 shows the crystal packing in (I) along the b axis. The Cl- ions and the methanol molecules lie between layers A and B, which are obtained by rotating amiloride molecules alternately by 180° and stacking one upon the other. The methanol molecules are not placed exactly between the two layers, but closer to layer A. The non-H atoms of the amiloride molecules in the least-squares plane B are tilted against the corresponding plane A by an angle of about 79.89 (3)°. There is an N—H···O intermolecular bond from the protonated atom N25 to the methanol molecule, and a similar but weaker interaction from atom N26 through H262 to the same methanol O atom.

Experimental top

Yellow needlelike crystals of (I) were obtained by dissolving amiloride hydrochloride (200 mg) in methanol (6 g). The warm solution was cooled down to room temperature. As soon as the first crystals appeared, the beaker was sealed.

Computing details top

Data collection: CAD-4-PC Software (Enraf-Nonius, 1992); cell refinement: CAD-4-PC Software; data reduction: SHELXS97 (Sheldrick, 1997) and OSCAIL (McArdle, 2001, 1995); program(s) used to solve structure: SHELXS97 and OSCAIL; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) and OSCAIL; molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 (Farrugia, 2000, 1997), PLATON (Spek, 2001) and DIAMOND (Pennington, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The numbering scheme was chosen in such a way that a 1 is in front of all numbers in the first amiloride molecule and a 2 for the second.
[Figure 2] Fig. 2. A packing diagram for (I) viewed along the b axis.
N-(3,5-diamino-6-chloropyrazin-2-ylcarbonyl)-N-(diaminomethylene)ammonium chloride methanol hemisolvate top
Crystal data top
C6H9ClN7O+·Cl·0.5CH4OF(000) = 1160
Mr = 282.12Dx = 1.568 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71069 Å
a = 18.044 (3) ÅCell parameters from 25 reflections
b = 7.486 (3) Åθ = 12–18°
c = 19.052 (5) ŵ = 0.54 mm1
β = 111.764 (15)°T = 293 K
V = 2390.1 (13) Å3Needle, yellow
Z = 80.6 × 0.3 × 0.3 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.015
Radiation source: fine-focus sealed tubeθmax = 27.0°, θmin = 1.2°
Graphite monochromatorh = 2321
ω/2θ scansk = 09
5461 measured reflectionsl = 024
5201 independent reflections2 standard reflections every 120 min
4093 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032All H-atom parameters refined
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0515P)2 + 0.5534P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.037
5201 reflectionsΔρmax = 0.38 e Å3
396 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0051 (6)
Crystal data top
C6H9ClN7O+·Cl·0.5CH4OV = 2390.1 (13) Å3
Mr = 282.12Z = 8
Monoclinic, P21/aMo Kα radiation
a = 18.044 (3) ŵ = 0.54 mm1
b = 7.486 (3) ÅT = 293 K
c = 19.052 (5) Å0.6 × 0.3 × 0.3 mm
β = 111.764 (15)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.015
5461 measured reflections2 standard reflections every 120 min
5201 independent reflections intensity decay: none
4093 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.093All H-atom parameters refined
S = 1.11Δρmax = 0.38 e Å3
5201 reflectionsΔρmin = 0.25 e Å3
396 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl110.80571 (3)0.11717 (6)0.33691 (2)0.04885 (14)
Cl40.72079 (3)0.38684 (6)0.36882 (2)0.04518 (13)
Cl210.73044 (3)0.29421 (11)0.05042 (3)0.0689 (2)
Cl30.87986 (2)0.48970 (6)0.24122 (2)0.04012 (12)
O31.06120 (10)0.1727 (3)0.82549 (10)0.0682 (5)
N260.39456 (12)0.3859 (3)0.22527 (10)0.0541 (5)
N250.43944 (9)0.2890 (2)0.10341 (8)0.0385 (3)
O110.96392 (8)0.18892 (17)0.65728 (7)0.0434 (3)
N120.96971 (7)0.27777 (18)0.53170 (7)0.0302 (3)
N130.91875 (9)0.4131 (2)0.41567 (9)0.0392 (3)
N110.87465 (7)0.01867 (18)0.47164 (7)0.0299 (3)
N141.01910 (10)0.1470 (2)0.64899 (8)0.0422 (4)
O210.36913 (7)0.2099 (2)0.03020 (8)0.0586 (4)
N150.87447 (8)0.31054 (19)0.54849 (8)0.0351 (3)
N220.58790 (9)0.1666 (2)0.15864 (8)0.0409 (3)
N210.57720 (8)0.2595 (2)0.01374 (7)0.0365 (3)
N160.80125 (9)0.5672 (2)0.53167 (10)0.0428 (4)
N230.72302 (11)0.2150 (3)0.20206 (10)0.0500 (4)
N170.89474 (11)0.5067 (2)0.64888 (9)0.0459 (4)
N270.30421 (10)0.3376 (3)0.16845 (12)0.0555 (5)
N240.45286 (12)0.1186 (3)0.11596 (12)0.0591 (5)
H3W1.076 (2)0.243 (5)0.7995 (19)0.106 (12)*
H3A1.169 (2)0.117 (6)0.886 (2)0.125 (14)*
H3B1.146 (3)0.016 (7)0.818 (3)0.157 (18)*
H3C1.114 (3)0.018 (9)0.883 (3)0.21 (3)*
H150.8510 (11)0.290 (3)0.5004 (11)0.036 (5)*
H1310.8935 (12)0.407 (3)0.3700 (13)0.041 (5)*
H1411.0204 (15)0.054 (4)0.6781 (14)0.063 (7)*
H1421.0432 (15)0.239 (4)0.6659 (14)0.059 (7)*
H1320.9504 (12)0.501 (3)0.4338 (11)0.040 (5)*
H250.4828 (14)0.289 (3)0.1021 (12)0.045 (6)*
H2620.4422 (15)0.386 (3)0.2245 (13)0.054 (7)*
H1610.7853 (14)0.666 (3)0.5545 (13)0.061 (6)*
H2710.2725 (15)0.380 (3)0.2001 (15)0.060 (7)*
H1620.7760 (13)0.538 (3)0.4868 (13)0.048 (6)*
H2310.7214 (14)0.214 (3)0.2456 (15)0.063 (7)*
H2610.3635 (17)0.420 (4)0.2671 (17)0.077 (8)*
H2720.2998 (16)0.317 (4)0.1253 (16)0.073 (8)*
H2420.4560 (13)0.092 (3)0.1620 (14)0.055 (6)*
H2410.4099 (15)0.125 (3)0.0808 (14)0.054 (7)*
H2320.7630 (16)0.267 (3)0.1983 (14)0.062 (7)*
H1710.8772 (16)0.599 (4)0.6682 (15)0.075 (8)*
H1720.9293 (16)0.443 (4)0.6765 (14)0.067 (8)*
C110.87169 (9)0.1195 (2)0.43056 (8)0.0305 (3)
C120.92071 (8)0.2739 (2)0.45901 (8)0.0288 (3)
C130.97158 (9)0.1361 (2)0.57585 (8)0.0300 (3)
C140.92442 (9)0.0167 (2)0.54512 (8)0.0295 (3)
C150.92443 (9)0.1741 (2)0.58954 (9)0.0324 (3)
C160.85701 (9)0.4642 (2)0.57762 (9)0.0337 (3)
C210.64480 (10)0.2513 (3)0.06868 (9)0.0382 (4)
C220.65247 (10)0.2105 (2)0.14475 (9)0.0373 (4)
C230.51640 (10)0.1693 (2)0.10072 (10)0.0385 (4)
C240.51010 (9)0.2205 (2)0.02725 (9)0.0348 (3)
C250.43430 (10)0.2376 (3)0.03534 (10)0.0395 (4)
C260.37755 (10)0.3384 (2)0.16748 (10)0.0404 (4)
C31.1268 (2)0.0555 (5)0.8505 (2)0.0791 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl110.0517 (3)0.0495 (3)0.0285 (2)0.0140 (2)0.00468 (18)0.00484 (17)
Cl40.0516 (3)0.0448 (2)0.0334 (2)0.00319 (19)0.00907 (18)0.00620 (17)
Cl210.0303 (2)0.1311 (6)0.0445 (3)0.0022 (3)0.01282 (19)0.0140 (3)
Cl30.0388 (2)0.0510 (3)0.0298 (2)0.00381 (18)0.01190 (16)0.00247 (17)
O30.0496 (9)0.0826 (12)0.0678 (10)0.0000 (8)0.0165 (8)0.0249 (9)
N260.0508 (10)0.0711 (12)0.0330 (8)0.0134 (9)0.0069 (7)0.0100 (8)
N250.0273 (7)0.0527 (9)0.0325 (7)0.0052 (6)0.0075 (6)0.0039 (6)
O110.0515 (7)0.0416 (7)0.0297 (6)0.0003 (6)0.0063 (5)0.0046 (5)
N120.0274 (6)0.0335 (7)0.0281 (6)0.0017 (5)0.0084 (5)0.0002 (5)
N130.0404 (8)0.0435 (9)0.0273 (7)0.0124 (7)0.0051 (6)0.0038 (6)
N110.0272 (6)0.0332 (7)0.0277 (6)0.0009 (5)0.0082 (5)0.0004 (5)
N140.0472 (9)0.0406 (9)0.0276 (7)0.0059 (7)0.0008 (6)0.0002 (6)
O210.0295 (6)0.0912 (12)0.0547 (8)0.0016 (7)0.0151 (6)0.0123 (8)
N150.0387 (7)0.0344 (7)0.0296 (7)0.0009 (6)0.0097 (6)0.0054 (6)
N220.0457 (8)0.0452 (8)0.0313 (7)0.0012 (7)0.0136 (6)0.0043 (6)
N210.0310 (6)0.0483 (8)0.0298 (7)0.0014 (6)0.0110 (5)0.0022 (6)
N160.0336 (7)0.0448 (9)0.0474 (9)0.0038 (6)0.0122 (7)0.0119 (7)
N230.0432 (9)0.0682 (12)0.0309 (8)0.0011 (8)0.0047 (7)0.0075 (8)
N170.0552 (10)0.0412 (9)0.0383 (8)0.0026 (8)0.0139 (7)0.0107 (7)
N270.0321 (8)0.0727 (13)0.0490 (10)0.0116 (8)0.0001 (8)0.0033 (9)
N240.0471 (10)0.0906 (15)0.0453 (10)0.0067 (9)0.0239 (9)0.0144 (10)
C110.0271 (7)0.0368 (8)0.0243 (7)0.0022 (6)0.0056 (6)0.0001 (6)
C120.0259 (7)0.0331 (8)0.0279 (7)0.0012 (6)0.0105 (6)0.0011 (6)
C130.0265 (7)0.0354 (8)0.0269 (7)0.0031 (6)0.0085 (6)0.0008 (6)
C140.0280 (7)0.0326 (8)0.0274 (7)0.0003 (6)0.0097 (6)0.0007 (6)
C150.0331 (8)0.0333 (8)0.0307 (7)0.0039 (6)0.0117 (6)0.0013 (6)
C160.0318 (8)0.0347 (8)0.0378 (8)0.0048 (6)0.0165 (7)0.0052 (7)
C210.0304 (7)0.0520 (10)0.0314 (8)0.0010 (7)0.0106 (6)0.0035 (7)
C220.0389 (9)0.0387 (9)0.0305 (8)0.0029 (7)0.0084 (7)0.0027 (7)
C230.0398 (9)0.0430 (9)0.0356 (8)0.0003 (7)0.0172 (7)0.0028 (7)
C240.0303 (7)0.0424 (9)0.0318 (8)0.0008 (7)0.0116 (6)0.0023 (7)
C250.0326 (8)0.0473 (10)0.0384 (9)0.0018 (7)0.0131 (7)0.0031 (7)
C260.0365 (8)0.0408 (9)0.0347 (8)0.0067 (7)0.0027 (7)0.0043 (7)
C30.0745 (18)0.085 (2)0.0758 (19)0.0178 (16)0.0253 (16)0.0093 (17)
Geometric parameters (Å, º) top
N11—C111.286 (2)C21—C221.437 (2)
N11—C141.3544 (19)N23—C221.335 (2)
Cl11—C111.7395 (16)N23—H2310.84 (3)
C11—C121.434 (2)N23—H2320.84 (3)
N13—C121.322 (2)N22—C221.328 (2)
N13—H1310.82 (2)N22—C231.352 (2)
N13—H1320.85 (2)N24—C231.338 (2)
N12—C121.3388 (19)N24—H2410.82 (2)
N12—C131.346 (2)N24—H2420.88 (2)
N14—C131.341 (2)C23—C241.415 (2)
N14—H1410.88 (3)C24—C251.449 (2)
N14—H1420.81 (3)O21—C251.233 (2)
C13—C141.416 (2)N25—C251.388 (2)
C14—C151.451 (2)N25—H250.77 (2)
O11—C151.226 (2)N25—C261.365 (2)
N15—C151.394 (2)N26—C261.298 (3)
N15—H150.87 (2)N26—H2610.83 (3)
N15—C161.364 (2)N26—H2620.85 (2)
N16—C161.311 (2)N27—C261.316 (3)
N16—H1610.96 (3)N27—H2710.73 (3)
N16—H1620.84 (2)N27—H2720.87 (3)
N17—C161.313 (2)O3—C31.407 (4)
N17—H1710.90 (3)O3—H3W0.84 (4)
N17—H1720.81 (3)C3—H3A0.93 (4)
N21—C211.281 (2)C3—H3B0.88 (5)
N21—C241.359 (2)C3—H3C0.92 (6)
Cl21—C211.7352 (17)
C11—N11—C14118.85 (13)N22—C22—N23118.95 (16)
N11—C11—C12122.51 (14)N22—C22—C21119.35 (15)
N11—C11—Cl11118.33 (12)N23—C22—C21121.70 (17)
C12—C11—Cl11119.16 (12)C22—N23—H231115.8 (17)
N13—C12—C11121.97 (14)C22—N23—H232121.9 (17)
N13—C12—N12118.90 (15)H231—N23—H232116 (2)
N12—C12—C11119.13 (14)C22—N22—C23118.41 (14)
C12—N13—H131119.7 (15)N22—C23—C24120.94 (15)
C12—N13—H132119.6 (13)N24—C23—N22116.99 (16)
H131—N13—H132120 (2)N24—C23—C24122.05 (17)
C12—N12—C13118.89 (13)C23—N24—H242122.4 (15)
N12—C13—C14120.39 (14)C23—N24—H241115.8 (17)
N14—C13—N12117.36 (15)H242—N24—H241121 (2)
N14—C13—C14122.25 (15)C23—C24—C25122.91 (15)
C13—N14—H141117.5 (16)N21—C24—C23119.67 (14)
C13—N14—H142120.3 (17)N21—C24—C25117.41 (14)
H141—N14—H142122 (2)O21—C25—C24123.83 (16)
C13—C14—C15123.00 (14)O21—C25—N25121.11 (16)
N11—C14—C13120.16 (14)N25—C25—C24115.06 (15)
N11—C14—C15116.81 (14)C25—N25—H25112.9 (16)
O11—C15—C14124.18 (15)C26—N25—C25126.48 (16)
O11—C15—N15121.78 (15)C26—N25—H25120.7 (16)
N15—C15—C14114.04 (14)N26—C26—N25117.43 (17)
C15—N15—H15114.9 (13)N27—C26—N25119.74 (18)
C16—N15—C15126.04 (14)N26—C26—N27122.83 (18)
C16—N15—H15118.9 (13)C26—N26—H261127.9 (19)
N16—C16—N15117.39 (15)C26—N26—H262122.6 (16)
N17—C16—N15121.07 (16)H262—N26—H261110 (2)
N16—C16—N17121.54 (17)C26—N27—H271119 (2)
C16—N16—H161116.0 (14)C26—N27—H272115.6 (18)
C16—N16—H162121.5 (16)H271—N27—H272123 (3)
H161—N16—H162122 (2)C3—O3—H3W100 (2)
C16—N17—H171119.1 (18)O3—C3—H3A107 (3)
C16—N17—H172120.6 (19)O3—C3—H3B119 (3)
H171—N17—H172120 (3)O3—C3—H3C102 (4)
C21—N21—C24118.70 (14)H3A—C3—H3B105 (4)
N21—C21—C22122.74 (15)H3A—C3—H3C99 (4)
N21—C21—Cl21118.45 (13)H3B—C3—H3C123 (5)
C22—C21—Cl21118.80 (12)
C14—N11—C11—C121.8 (2)C24—N21—C21—C222.9 (3)
C14—N11—C11—Cl11178.45 (11)C24—N21—C21—Cl21177.99 (13)
C13—N12—C12—N13179.89 (14)C23—N22—C22—N23177.43 (18)
C13—N12—C12—C110.2 (2)C23—N22—C22—C212.7 (3)
N11—C11—C12—N13178.07 (15)N21—C21—C22—N225.0 (3)
Cl11—C11—C12—N131.7 (2)Cl21—C21—C22—N22175.88 (14)
N11—C11—C12—N122.2 (2)N21—C21—C22—N23175.19 (19)
Cl11—C11—C12—N12177.98 (11)Cl21—C21—C22—N233.9 (3)
C12—N12—C13—N14177.61 (14)C22—N22—C23—N24177.81 (18)
C12—N12—C13—C142.1 (2)C22—N22—C23—C241.1 (3)
C11—N11—C14—C130.6 (2)C21—N21—C24—C231.1 (3)
C11—N11—C14—C15178.75 (14)C21—N21—C24—C25177.67 (17)
N14—C13—C14—N11177.10 (15)N24—C23—C24—N21175.65 (19)
N12—C13—C14—N112.6 (2)N22—C23—C24—N213.2 (3)
N14—C13—C14—C150.9 (2)N24—C23—C24—C255.7 (3)
N12—C13—C14—C15179.37 (14)N22—C23—C24—C25175.50 (17)
C16—N15—C15—O116.8 (3)C26—N25—C25—O219.7 (3)
C16—N15—C15—C14172.82 (15)C26—N25—C25—C24170.18 (17)
N11—C14—C15—O11177.11 (15)N21—C24—C25—O21178.47 (18)
C13—C14—C15—O111.0 (3)C23—C24—C25—O210.2 (3)
N11—C14—C15—N152.5 (2)N21—C24—C25—N251.4 (2)
C13—C14—C15—N15179.39 (14)C23—C24—C25—N25179.91 (17)
C15—N15—C16—N16171.84 (15)C25—N25—C26—N26178.54 (19)
C15—N15—C16—N178.2 (3)C25—N25—C26—N271.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N13—H131···Cl110.82 (2)2.62 (2)3.0083 (18)110.5 (17)
N13—H131···Cl3i0.82 (2)2.50 (2)3.2155 (18)147.1 (18)
N13—H132···N12ii0.85 (2)2.13 (2)2.986 (2)174.2 (19)
N14—H141···O110.88 (3)2.05 (3)2.731 (2)133 (2)
N14—H142···Cl3iii0.82 (3)2.60 (3)3.384 (2)162 (2)
N15—H15···N110.87 (2)2.19 (2)2.631 (2)111.5 (15)
N15—H15···Cl40.87 (2)2.823 (19)3.5629 (18)144.2 (16)
N16—H161···Cl4iv0.96 (3)2.23 (3)3.1684 (19)165 (2)
N16—H162···Cl40.84 (2)2.38 (2)3.196 (2)166 (2)
N17—H171···Cl4iv0.90 (3)2.71 (3)3.469 (2)144 (2)
N17—H172···O110.81 (3)2.08 (3)2.664 (3)130 (2)
N23—H231···Cl40.84 (3)2.69 (3)3.441 (2)150 (2)
N23—H232···Cl30.84 (3)2.57 (3)3.350 (2)153 (2)
N24—H241···O210.82 (2)2.07 (2)2.718 (3)137 (2)
N24—H242···Cl3v0.88 (2)2.46 (2)3.2278 (19)145.2 (19)
N25—H25···N210.77 (2)2.24 (2)2.664 (2)114.9 (19)
N25—H25···O3vi0.77 (2)2.33 (2)2.992 (2)144 (2)
N26—H261···Cl4vii0.83 (3)2.44 (3)3.238 (2)161 (3)
N26—H262···O11vi0.85 (2)2.49 (2)2.994 (2)118.7 (19)
N26—H262···O3vi0.85 (2)2.05 (3)2.831 (3)152 (2)
N27—H271···Cl3vii0.73 (3)2.74 (3)3.3483 (19)142 (2)
N27—H272···O210.87 (3)1.95 (3)2.633 (3)134 (2)
O3—H3W···Cl3viii0.83 (4)2.38 (4)3.184 (2)161 (3)
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+1, z+1; (iii) x+2, y, z+1; (iv) x+3/2, y1/2, z+1; (v) x1/2, y1/2, z; (vi) x1/2, y1/2, z1; (vii) x+1, y1, z; (viii) x+2, y1, z+1.

Experimental details

Crystal data
Chemical formulaC6H9ClN7O+·Cl·0.5CH4O
Mr282.12
Crystal system, space groupMonoclinic, P21/a
Temperature (K)293
a, b, c (Å)18.044 (3), 7.486 (3), 19.052 (5)
β (°) 111.764 (15)
V3)2390.1 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.54
Crystal size (mm)0.6 × 0.3 × 0.3
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5461, 5201, 4093
Rint0.015
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.093, 1.11
No. of reflections5201
No. of parameters396
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.38, 0.25

Computer programs: CAD-4-PC Software (Enraf-Nonius, 1992), CAD-4-PC Software, SHELXS97 (Sheldrick, 1997) and OSCAIL (McArdle, 2001, 1995), SHELXS97 and OSCAIL, SHELXL97 (Sheldrick, 1997) and OSCAIL, ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 (Farrugia, 2000, 1997), PLATON (Spek, 2001) and DIAMOND (Pennington, 1999).

Selected geometric parameters (Å, º) top
N15—H150.87 (2)N25—H250.77 (2)
N15—C161.364 (2)N25—C261.365 (2)
N16—C161.311 (2)N26—C261.298 (3)
N16—H1610.96 (3)N26—H2610.83 (3)
N16—H1620.84 (2)N26—H2620.85 (2)
N17—C161.313 (2)N27—C261.316 (3)
N17—H1710.90 (3)N27—H2710.73 (3)
N17—H1720.81 (3)N27—H2720.87 (3)
C16—N15—H15118.9 (13)C26—N25—H25120.7 (16)
N16—C16—N15117.39 (15)N26—C26—N25117.43 (17)
N17—C16—N15121.07 (16)N27—C26—N25119.74 (18)
N16—C16—N17121.54 (17)N26—C26—N27122.83 (18)
C16—N16—H161116.0 (14)C26—N26—H261127.9 (19)
C16—N16—H162121.5 (16)C26—N26—H262122.6 (16)
H161—N16—H162122 (2)H262—N26—H261110 (2)
C16—N17—H171119.1 (18)C26—N27—H271119 (2)
C16—N17—H172120.6 (19)C26—N27—H272115.6 (18)
H171—N17—H172120 (3)H271—N27—H272123 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N13—H131···Cl110.82 (2)2.62 (2)3.0083 (18)110.5 (17)
N13—H131···Cl3i0.82 (2)2.50 (2)3.2155 (18)147.1 (18)
N13—H132···N12ii0.85 (2)2.13 (2)2.986 (2)174.2 (19)
N14—H141···O110.88 (3)2.05 (3)2.731 (2)133 (2)
N14—H142···Cl3iii0.82 (3)2.60 (3)3.384 (2)162 (2)
N15—H15···N110.87 (2)2.19 (2)2.631 (2)111.5 (15)
N15—H15···Cl40.87 (2)2.823 (19)3.5629 (18)144.2 (16)
N16—H161···Cl4iv0.96 (3)2.23 (3)3.1684 (19)165 (2)
N16—H162···Cl40.84 (2)2.38 (2)3.196 (2)166 (2)
N17—H171···Cl4iv0.90 (3)2.71 (3)3.469 (2)144 (2)
N17—H172···O110.81 (3)2.08 (3)2.664 (3)130 (2)
N23—H231···Cl40.84 (3)2.69 (3)3.441 (2)150 (2)
N23—H232···Cl30.84 (3)2.57 (3)3.350 (2)153 (2)
N24—H241···O210.82 (2)2.07 (2)2.718 (3)137 (2)
N24—H242···Cl3v0.88 (2)2.46 (2)3.2278 (19)145.2 (19)
N25—H25···N210.77 (2)2.24 (2)2.664 (2)114.9 (19)
N25—H25···O3vi0.77 (2)2.33 (2)2.992 (2)144 (2)
N26—H261···Cl4vii0.83 (3)2.44 (3)3.238 (2)161 (3)
N26—H262···O11vi0.85 (2)2.49 (2)2.994 (2)118.7 (19)
N26—H262···O3vi0.85 (2)2.05 (3)2.831 (3)152 (2)
N27—H271···Cl3vii0.73 (3)2.74 (3)3.3483 (19)142 (2)
N27—H272···O210.87 (3)1.95 (3)2.633 (3)134 (2)
O3—H3W···Cl3viii0.83 (4)2.38 (4)3.184 (2)161 (3)
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+1, z+1; (iii) x+2, y, z+1; (iv) x+3/2, y1/2, z+1; (v) x1/2, y1/2, z; (vi) x1/2, y1/2, z1; (vii) x+1, y1, z; (viii) x+2, y1, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds