Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The mol­ecule of 3,5-bis­{4-[(benzimidazol-1-yl)methyl]phenyl}-4H-1,2,4-triazol-4-amine (L), C30H24N8, has an antiperiplanar conformation of the two terminal benzimidazole groups and forms two-dimensional networks along the crystallographic b axis via two types of inter­molecular hy­drogen bonds. However, in catena-poly[[[dichloridomercury(II)]-[mu]-3,5-bis­{4-[(benzimidazol-1-yl)methyl]phenyl}-4H-1,2,4-triazol-4-amine] dichloro­methane hemisolvate], {[HgCl2(C30H24N8)]·0.5CH2Cl2}n, synthesized by the combination of L with HgCl2, the L ligand adopts a synperiplanar conformation. The HgII cation lies in a distorted tetra­hedral environment, which is defined by two N atoms and two Cl atoms to form a one-dimensional zigzag chain. These zigzag chains stack via hydrogen bonds which expand the dimensionality of the structure from one to two.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112019233/ov3013sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112019233/ov3013Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112019233/ov3013IIsup3.hkl
Contains datablock II

CCDC references: 889367; 889368

Comment top

Organometallic complexes have attracted considerable attention because of their fascinating topological structures (Eddaoudi et al., 2002) and potential applications as functional materials in gas storage (Ma & Zhou, 2010), host–guest chemistry (Yoshizawa et al., 2006), catalysis (Kim et al., 2010) and luminescence (Cui et al., 2012). Over the past decade, the design and construction of rigid organic ligands bridged by 1,2,4-triazol-4-amine has been pursued, due to their diversity in coordination chemistry and model applications in functional materials (Wang et al., 2007, 2009; Liu et al., 2009, 2010).

To date, various organic ligands have been used as molecular building blocks, but the use of 1,2,4-triazol-4-amine-based bent organic ligands as semi-rigid components has remained rare until recently. In order to investigate how the semi-rigid organic ligands bridged by 1,2,4-triazol-4-amine affect the arrangement of molecular complexes in self-assembled aggregates, we synthesized a new 1,2,4-triazol-4-amine bridging ligand, namely 3,5-bis{4-[(benzimidazol-1-yl)methyl]phenyl}-4H-1,2,4-triazol-4-amine, denoted L or (I). This compound introduces two large aromatic benzimidazole groups to the ligand. The combination of (I) with HgCl2 afforded {[HgCl2L].CH2Cl2}n, (II), which features hydrogen-bonded stacking-driven two-dimensional networks.

Within the free ligand, (I) (Fig. 1), the terminal benzimidazole groups adopt a trans conformation with respect to the central bridging 1,2,4-triazol-4-amine group. The dihedral angles between the planes of the benzimidazole and triazole rings are 58.328 (2) and 89.328 (2)° [For which sides of the molecule?], and the dihedral angles between the benzimidazole and adjacent benzene rings are 78.663 (1) and 78.934 (2)° [For which sides of the molecule?]. The two benzene rings of (I) are almost coplanar, with a dihedral angle of 7.288 (1)°.

In the crystal structure, molecules of (I) are arranged in chains via N4—H4A···N8i hydrogen bonds along the crystallographic a axis (Table 1; symmetry codes given in Table 1). The chains stack via a second hydrogen-bond interaction (N4—H4B···N1ii) to form a two-dimensional network (Fig. 2). This is in contrast with 3,5-bis(2-chlorophenyl)-1H-1,2,4-triazol-4-amine (Zachara et al., 2004), the molecules of which are linked by hydrogen bonds to form a one-dimensional chain.

Compound (II) crystallizes with one unique four-coordinated HgII centre in a distorted tetrahedral {HgCl2N2} environment involving two Cl atoms (Cl1 and Cl2) and two N atoms [N1 and N6i; symmetry code: (i) x, -y + 3/2, z - 1/2] from two different ligands (Fig. 3). Neighbouring HgII cations are bound together by triazole atom N1 and the terminal benzimidazole N atoms of the L ligands to form an {HgCl2L} one-dimensional zigzag chain. The coordination behaviour of the HgII cation is similar to that observed in Hg[1-(pyridin-2-ylmethyl)-1H-benzotriazole]Cl2 (Liu et al., 2008), where the 1-(pyridin-2-ylmethyl)-1H-benzotriazole ligand (L2) is also coordinated to an HgII centre to form a single chain. Similarly, in Hg(L2)Cl2 there are no bonding interactions observed between adjacent chains.

The ligand L adopts different conformations under different conditions. In the solid state, the benzimidazole moieties adopt a trans geometry about the triazole core in the free ligand, whereas after coordination to HgII the benzimidazole groups adopt a cis conformation. Compared with those given above for (I), the dihedral angles in (II) between the planes of the benzimidazole groups and the adjacent benzene rings change to 89.328 (2) and 75.986 (2)° [For which sides of the molecule?]. These are nearly perpendicular, clearly as a result of coordination to HgII. Additionally, the dihedral angle formed by the two benzene rings changes from 7.288 (1)° in the free ligand, (I), to 18.829 (2)° in (II).

In the solid state, the zigzag chains in (II) are arranged along the a axis, where they interact via N4—H4A···Cl2iii hydrogen-bond interactions, as shown in Fig. 4 (details in Table 2; symmetry code given in Table 2). The result is that a two-dimensional sheet is generated in the bc plane. The dichloromethane solvent molecules are located within the cavities formed by the layered stacking of (II) (Fig. 5).

In summary, a new compound with a common zigzag chain motif has been successfully obtained based on a new 1,2,4-triazol-4-amine bridging bent organic ligand, (I), and HgCl2. The chains assemble through hydrogen bonds to form a two-dimensional network. The hydrogen-bond interactions play an important role in constructing high-dimensional supramolecular compounds.

Related literature top

For related literature, see: Cui et al. (2012); Eddaoudi et al. (2002); Kim et al. (2010); Liu et al. (2008, 2009, 2010); Müller et al. (2006); Ma & Zhou (2010); Wang et al. (2007, 2009); Yoshizawa et al. (2006); Zachara et al. (2004).

Experimental top

For the preparation of (I), 80% hydrazine hydrate (2.8 g, 45 mmol) was added with stirring to a solution of 3,5-bis{4-[(benzimidazol-1-yl)methyl]phenyl}-1,3,4-oxadiazole (1.49 g, 3.0 mmol) in N,N-dimethylformamide (DMF; 20 ml). The mixture was stirred for 4 h at 423 K, then cooled to room temperature and poured into water (100 ml). The product was obtained as a white solid and purified on a silica-gel column using tetrahydrofuran as the eluent to afford L, (I), as a white crystalline solid (yield 1.00 g, 67%). A solution of L (5.00 mg, 0.010 mmol) in CH2Cl2 (10 ml) was left for about 2 d at room temperature, after which time colourless crystals were obtained (yield 3.24 mg, 65%). IR (KBr pellet, ν, cm-): 3442 (s), 1633 (s), 1496 (s), 1385 (s), 1295 (m), 1200 (w), 1123 (w), 974 (w), 765 (s), 619 (m); 1H NMR (300 MHz, DMSO, 298 K, TMS, δ, p.p.m.): 8.44 (s, 2H, –C3H2N2–), 7.96–7.94, 7.47–7.44 (aabb, 8H, –C6H4–), 7.67–7.64 (d, 2H, –C3H2N2–, 7.56–7.53 (d, 2H, –C6H3–), 7.23–7.18 (m, 4H, –C6H3–), 6.17 (s, 2H, –NH2), 5.57 (s, 4H, –CH2–). Elemental analysis, calculated for C30H24N8: C 72.32, H 4.91, N 22.77%; found: C 72.56, H 4.87, N 22.57%.

For the synthesis of (II), a solution of HgCl2 (5.42 mg, 0.020 mmol) in CH3OH (5 ml) was layered on to a solution of (I) (9.93 mg, 0.020 mmol) in CH2Cl2 (8 ml). The mixture was left for about a week at room temperature and colourless crystals of (II) were obtained (yield 8.64 mg, 62%). IR (KBr pellet, ν, cm-): 3447 (w), 1636 (s), 1509 (w), 1459 (m), 1384 (w), 1266 (m), 1193 (m), 740 (s). Elemental analysis, calculated for C61H50Cl6Hg2N16: C 45.34, H 3.23, N 13.66%; found: C 45.20, H 3.11, N 13.82%.

Refinement top

The H atoms on N4 were located in a difference map and their positions were initially refined subject to an N—H distance restraint of 0.89 Å. Subsequently, these H atoms were treated in fixed positions, with Uiso(H) = 1.2Ueq(N). The remaining H atoms were placed in geometrically idealized positions and included as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) (aromatic) or C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) (methylene).

In noncentrosymmetric (I), Friedel pairs were merged in the final refinement. In (II), Cl atoms bonded to C33 were located in a difference Fourier map and were subsequently restrained to a C—Cl distance of 1.78 (1) Å and a Cl···Cl distance of 2.80 (2) Å to retain a tetrahedral geometry. The main directions of movement of covalently bonded atoms C29, C30 and C31 were likewise restrained with an s.u. value of 0.005 Å2 (Müller et al., 2006).

Computing details top

For both compounds, data collection: SMART (Bruker, 2003); cell refinement: SMART (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Poor quality; please revise]
[Figure 2] Fig. 2. The two-dimensional structure of (I), constructed by hydrogen bonds (dashed lines). H atoms have been omitted for clarity. [Symmetry codes: (i) x - 1/2, -y + 1/2, z - 1/2; (ii) x - 1, y, z.]
[Figure 3] Fig. 3. The molecular structure of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) x, -y + 3/2, z - 1/2; (ii) x, -y + 3/2, z + 1/2.]
[Figure 4] Fig. 4. The two-dimensional structure of (II), constructed by hydrogen bonds (dashed lines). H atoms have been omitted for clarity. [Symmetry codes: (ii) x, -y + 3/2, z + 1/2; (iii) x, y - 1, z.]
[Figure 5] Fig. 5. The crystal packing of (II), viewed along the b axis. The dichloromethane solvent molecules are located in channels. [Poor quality; please revise]
(I) 3,5-Bis{4-[(benzimidazol-1-yl)methyl]phenyl}-4H-1,2,4-triazol-4-amine top
Crystal data top
C30H24N8F(000) = 1040
Mr = 496.57Dx = 1.364 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 815 reflections
a = 6.141 (2) Åθ = 2.3–19.6°
b = 19.914 (6) ŵ = 0.09 mm1
c = 19.910 (6) ÅT = 298 K
β = 96.537 (6)°Plate, colourless
V = 2418.8 (13) Å30.17 × 0.11 × 0.09 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2748 independent reflections
Radiation source: fine-focus sealed tube2008 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
Detector resolution: 8.33 pixels mm-1θmax = 25.6°, θmin = 2.1°
ϕ and ω scansh = 67
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
k = 2223
Tmin = 0.986, Tmax = 0.992l = 2024
5790 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0369P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2748 reflectionsΔρmax = 0.14 e Å3
343 parametersΔρmin = 0.15 e Å3
2 restraintsAbsolute structure: Flack (1983), with how many Friedel pairs?
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 6 (3)
Crystal data top
C30H24N8V = 2418.8 (13) Å3
Mr = 496.57Z = 4
Monoclinic, CcMo Kα radiation
a = 6.141 (2) ŵ = 0.09 mm1
b = 19.914 (6) ÅT = 298 K
c = 19.910 (6) Å0.17 × 0.11 × 0.09 mm
β = 96.537 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2748 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
2008 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.992Rint = 0.063
5790 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.116Δρmax = 0.14 e Å3
S = 1.00Δρmin = 0.15 e Å3
2748 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs?
343 parametersAbsolute structure parameter: 6 (3)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0844 (9)0.7758 (3)0.1891 (3)0.0642 (15)
H10.01970.80990.19190.077*
C20.2671 (8)0.7767 (2)0.1404 (2)0.0449 (12)
C30.4198 (8)0.7254 (2)0.1388 (2)0.0427 (11)
C40.4001 (9)0.6719 (2)0.1827 (2)0.0635 (15)
H40.50480.63800.18060.076*
C50.2176 (10)0.6709 (3)0.2299 (3)0.0694 (17)
H50.19700.63530.26020.083*
C60.0656 (10)0.7218 (3)0.2329 (3)0.0703 (16)
H60.05460.71990.26580.084*
C70.5107 (11)0.8003 (2)0.0606 (2)0.0574 (15)
H70.59070.82260.02490.069*
C80.7913 (9)0.7097 (3)0.0689 (3)0.0701 (15)
H8A0.87660.73680.03490.084*
H8B0.86700.71010.10900.084*
C90.7883 (8)0.6390 (2)0.0433 (2)0.0471 (11)
C100.9736 (8)0.5995 (3)0.0493 (2)0.0556 (13)
H101.08760.61660.07110.067*
C110.9893 (8)0.5349 (2)0.0229 (2)0.0530 (12)
H111.11460.50950.02640.064*
C120.8171 (7)0.5080 (2)0.00876 (19)0.0404 (11)
C130.6322 (8)0.5467 (2)0.0121 (2)0.0451 (11)
H130.51490.52910.03210.054*
C140.6186 (8)0.6113 (2)0.0138 (2)0.0472 (12)
H140.49200.63630.01100.057*
C150.8474 (7)0.4422 (2)0.03978 (19)0.0386 (10)
C160.7993 (7)0.3416 (2)0.08063 (19)0.0403 (11)
C170.7076 (7)0.2776 (2)0.0998 (2)0.0407 (11)
C180.8355 (8)0.2208 (2)0.0985 (2)0.0505 (12)
H180.96890.22320.08070.061*
C190.7687 (9)0.1605 (2)0.1232 (2)0.0542 (13)
H190.85800.12300.12160.065*
C200.5727 (8)0.1546 (2)0.1501 (2)0.0466 (12)
C210.4440 (9)0.2110 (3)0.1501 (3)0.0624 (14)
H210.31090.20830.16800.075*
C220.5062 (8)0.2719 (3)0.1243 (2)0.0536 (13)
H220.41300.30880.12340.064*
C230.5040 (8)0.0895 (2)0.1806 (2)0.0563 (13)
H23A0.35600.09420.19250.068*
H23B0.50350.05400.14720.068*
C240.6435 (9)0.0920 (2)0.3054 (2)0.0563 (13)
H240.52980.11830.31790.068*
C250.9393 (8)0.0366 (2)0.3092 (2)0.0457 (11)
C261.1378 (9)0.0054 (2)0.3271 (3)0.0591 (14)
H261.20570.00810.37120.071*
C271.2336 (9)0.0297 (2)0.2792 (3)0.0617 (14)
H271.36920.04990.29080.074*
C281.1312 (9)0.0358 (2)0.2129 (3)0.0598 (14)
H281.19660.06160.18180.072*
C290.9361 (9)0.0044 (2)0.1935 (2)0.0554 (14)
H290.86880.00760.14940.066*
C300.8420 (8)0.0325 (2)0.2417 (2)0.0415 (11)
N11.0373 (6)0.42256 (18)0.07188 (18)0.0493 (10)
N21.0063 (6)0.35886 (18)0.09779 (18)0.0485 (10)
N30.6930 (5)0.39314 (17)0.04478 (16)0.0393 (9)
N40.4818 (6)0.38538 (18)0.00842 (19)0.0480 (10)
H4A0.48070.39280.03550.058*
H4B0.40340.41550.02870.058*
N50.5785 (7)0.74170 (19)0.08529 (18)0.0506 (10)
N60.3272 (8)0.8236 (2)0.0900 (2)0.0618 (12)
N70.6508 (7)0.07047 (18)0.24115 (18)0.0485 (10)
N80.8080 (7)0.0730 (2)0.34802 (19)0.0585 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.058 (4)0.064 (3)0.070 (3)0.016 (3)0.006 (3)0.019 (3)
C20.053 (3)0.037 (3)0.045 (3)0.005 (2)0.008 (2)0.003 (2)
C30.054 (3)0.041 (2)0.032 (2)0.006 (2)0.006 (2)0.001 (2)
C40.079 (4)0.056 (3)0.055 (3)0.005 (3)0.004 (3)0.007 (3)
C50.091 (5)0.068 (4)0.046 (3)0.012 (3)0.004 (3)0.013 (3)
C60.073 (4)0.087 (4)0.047 (3)0.007 (4)0.014 (3)0.006 (3)
C70.086 (5)0.049 (3)0.038 (3)0.022 (3)0.011 (3)0.008 (2)
C80.048 (3)0.077 (4)0.084 (4)0.010 (3)0.001 (3)0.022 (3)
C90.038 (3)0.060 (3)0.041 (3)0.007 (3)0.006 (2)0.007 (2)
C100.039 (3)0.079 (4)0.048 (3)0.008 (3)0.002 (2)0.016 (3)
C110.026 (3)0.074 (3)0.056 (3)0.003 (3)0.003 (2)0.008 (3)
C120.035 (3)0.052 (3)0.032 (2)0.003 (2)0.0059 (19)0.008 (2)
C130.040 (3)0.053 (3)0.043 (2)0.002 (2)0.005 (2)0.001 (2)
C140.042 (3)0.052 (3)0.048 (3)0.006 (2)0.006 (2)0.004 (2)
C150.036 (3)0.048 (3)0.030 (2)0.006 (2)0.0047 (19)0.005 (2)
C160.033 (3)0.053 (3)0.034 (2)0.007 (2)0.0041 (19)0.005 (2)
C170.031 (3)0.051 (3)0.038 (2)0.003 (2)0.0043 (19)0.001 (2)
C180.040 (3)0.059 (3)0.053 (3)0.005 (3)0.011 (2)0.003 (2)
C190.052 (3)0.045 (3)0.066 (3)0.010 (2)0.010 (3)0.005 (2)
C200.035 (3)0.055 (3)0.048 (3)0.004 (2)0.004 (2)0.001 (2)
C210.040 (3)0.082 (4)0.065 (3)0.003 (3)0.004 (2)0.017 (3)
C220.032 (3)0.067 (3)0.062 (3)0.013 (3)0.003 (2)0.004 (3)
C230.041 (3)0.067 (3)0.059 (3)0.013 (3)0.000 (2)0.003 (3)
C240.054 (4)0.065 (3)0.053 (3)0.005 (3)0.016 (3)0.008 (3)
C250.056 (3)0.046 (3)0.036 (2)0.009 (2)0.006 (2)0.001 (2)
C260.066 (4)0.060 (3)0.049 (3)0.007 (3)0.006 (3)0.008 (3)
C270.062 (4)0.055 (3)0.067 (4)0.002 (3)0.003 (3)0.010 (3)
C280.068 (4)0.050 (3)0.064 (3)0.001 (3)0.018 (3)0.004 (3)
C290.072 (4)0.051 (3)0.042 (3)0.020 (3)0.007 (2)0.005 (2)
C300.053 (3)0.040 (2)0.032 (2)0.009 (2)0.006 (2)0.000 (2)
N10.037 (2)0.058 (2)0.050 (2)0.010 (2)0.0060 (19)0.0017 (19)
N20.034 (2)0.057 (2)0.051 (2)0.007 (2)0.0096 (18)0.0021 (19)
N30.022 (2)0.054 (2)0.041 (2)0.0055 (18)0.0060 (16)0.0020 (18)
N40.030 (2)0.065 (3)0.045 (2)0.0010 (19)0.0121 (17)0.0018 (18)
N50.052 (3)0.049 (2)0.049 (2)0.002 (2)0.002 (2)0.0064 (19)
N60.077 (3)0.047 (2)0.062 (3)0.003 (2)0.014 (2)0.005 (2)
N70.050 (3)0.058 (2)0.037 (2)0.008 (2)0.0005 (19)0.0016 (19)
N80.068 (3)0.065 (3)0.042 (2)0.008 (2)0.005 (2)0.007 (2)
Geometric parameters (Å, º) top
C1—C61.381 (7)C16—C171.463 (6)
C1—C21.398 (7)C17—C181.379 (6)
C1—H10.9300C17—C221.385 (6)
C2—C31.385 (6)C18—C191.377 (6)
C2—N61.388 (6)C18—H180.9300
C3—C41.374 (6)C19—C201.377 (6)
C3—N51.398 (6)C19—H190.9300
C4—C51.379 (7)C20—C211.374 (7)
C4—H40.9300C20—C231.512 (6)
C5—C61.375 (7)C21—C221.387 (7)
C5—H50.9300C21—H210.9300
C6—H60.9300C22—H220.9300
C7—N61.295 (7)C23—N71.470 (5)
C7—N51.351 (6)C23—H23A0.9700
C7—H70.9300C23—H23B0.9700
C8—N51.457 (6)C24—N81.300 (6)
C8—C91.498 (6)C24—N71.354 (5)
C8—H8A0.9700C24—H240.9300
C8—H8B0.9700C25—C261.379 (7)
C9—C141.370 (6)C25—N81.384 (6)
C9—C101.400 (7)C25—C301.408 (6)
C10—C111.387 (6)C26—C271.368 (7)
C10—H100.9300C26—H260.9300
C11—C121.398 (6)C27—C281.401 (7)
C11—H110.9300C27—H270.9300
C12—C131.380 (6)C28—C291.368 (7)
C12—C151.452 (6)C28—H280.9300
C13—C141.384 (6)C29—C301.386 (6)
C13—H130.9300C29—H290.9300
C14—H140.9300C30—N71.395 (5)
C15—N11.323 (5)N1—N21.390 (5)
C15—N31.373 (5)N3—N41.420 (4)
C16—N21.323 (5)N4—H4A0.8859
C16—N31.371 (5)N4—H4B0.8947
C6—C1—C2116.9 (5)C17—C18—H18119.5
C6—C1—H1121.6C20—C19—C18121.5 (5)
C2—C1—H1121.6C20—C19—H19119.2
C3—C2—N6110.9 (4)C18—C19—H19119.2
C3—C2—C1119.6 (4)C21—C20—C19117.3 (5)
N6—C2—C1129.5 (5)C21—C20—C23121.0 (5)
C4—C3—C2123.2 (4)C19—C20—C23121.7 (5)
C4—C3—N5131.9 (5)C20—C21—C22122.1 (5)
C2—C3—N5104.9 (4)C20—C21—H21118.9
C3—C4—C5116.8 (5)C22—C21—H21118.9
C3—C4—H4121.6C17—C22—C21119.8 (5)
C5—C4—H4121.6C17—C22—H22120.1
C6—C5—C4120.9 (5)C21—C22—H22120.1
C6—C5—H5119.6N7—C23—C20112.2 (4)
C4—C5—H5119.6N7—C23—H23A109.2
C5—C6—C1122.6 (5)C20—C23—H23A109.2
C5—C6—H6118.7N7—C23—H23B109.2
C1—C6—H6118.7C20—C23—H23B109.2
N6—C7—N5115.7 (5)H23A—C23—H23B107.9
N6—C7—H7122.2N8—C24—N7114.7 (5)
N5—C7—H7122.2N8—C24—H24122.6
N5—C8—C9116.3 (4)N7—C24—H24122.6
N5—C8—H8A108.2C26—C25—N8130.2 (4)
C9—C8—H8A108.2C26—C25—C30119.2 (4)
N5—C8—H8B108.2N8—C25—C30110.6 (4)
C9—C8—H8B108.2C27—C26—C25119.1 (5)
H8A—C8—H8B107.4C27—C26—H26120.4
C14—C9—C10118.4 (4)C25—C26—H26120.4
C14—C9—C8124.3 (4)C26—C27—C28121.3 (5)
C10—C9—C8117.3 (5)C26—C27—H27119.4
C11—C10—C9120.8 (5)C28—C27—H27119.4
C11—C10—H10119.6C29—C28—C27120.7 (5)
C9—C10—H10119.6C29—C28—H28119.6
C10—C11—C12120.1 (5)C27—C28—H28119.6
C10—C11—H11119.9C28—C29—C30117.9 (4)
C12—C11—H11119.9C28—C29—H29121.1
C13—C12—C11118.5 (4)C30—C29—H29121.1
C13—C12—C15123.4 (4)C29—C30—N7134.3 (4)
C11—C12—C15118.1 (4)C29—C30—C25121.7 (5)
C12—C13—C14121.0 (4)N7—C30—C25104.0 (4)
C12—C13—H13119.5C15—N1—N2107.4 (4)
C14—C13—H13119.5C16—N2—N1108.0 (3)
C9—C14—C13121.2 (4)C16—N3—C15106.2 (3)
C9—C14—H14119.4C16—N3—N4122.5 (3)
C13—C14—H14119.4C15—N3—N4129.7 (3)
N1—C15—N3109.4 (4)N3—N4—H4A112.9
N1—C15—C12122.4 (4)N3—N4—H4B101.7
N3—C15—C12128.1 (4)H4A—N4—H4B113.0
N2—C16—N3109.1 (4)C7—N5—C3105.1 (4)
N2—C16—C17123.1 (4)C7—N5—C8127.0 (5)
N3—C16—C17127.8 (4)C3—N5—C8126.8 (4)
C18—C17—C22118.3 (5)C7—N6—C2103.4 (4)
C18—C17—C16118.2 (4)C24—N7—C30106.4 (4)
C22—C17—C16123.3 (4)C24—N7—C23127.5 (4)
C19—C18—C17120.9 (5)C30—N7—C23125.7 (4)
C19—C18—H18119.5C24—N8—C25104.2 (4)
C6—C1—C2—C31.1 (7)C25—C26—C27—C281.6 (7)
C6—C1—C2—N6179.5 (5)C26—C27—C28—C292.8 (8)
N6—C2—C3—C4179.4 (5)C27—C28—C29—C301.2 (7)
C1—C2—C3—C41.0 (7)C28—C29—C30—N7179.7 (4)
N6—C2—C3—N50.1 (5)C28—C29—C30—C251.5 (7)
C1—C2—C3—N5179.7 (4)C26—C25—C30—C292.6 (7)
C2—C3—C4—C50.1 (7)N8—C25—C30—C29176.6 (4)
N5—C3—C4—C5179.1 (5)C26—C25—C30—N7178.3 (4)
C3—C4—C5—C60.9 (8)N8—C25—C30—N72.5 (5)
C4—C5—C6—C10.8 (9)N3—C15—N1—N20.6 (5)
C2—C1—C6—C50.2 (8)C12—C15—N1—N2177.3 (4)
N5—C8—C9—C1422.8 (7)N3—C16—N2—N10.8 (4)
N5—C8—C9—C10158.4 (4)C17—C16—N2—N1179.6 (4)
C14—C9—C10—C113.0 (7)C15—N1—N2—C160.1 (5)
C8—C9—C10—C11175.8 (4)N2—C16—N3—C151.2 (4)
C9—C10—C11—C121.3 (7)C17—C16—N3—C15179.9 (4)
C10—C11—C12—C131.0 (6)N2—C16—N3—N4167.7 (4)
C10—C11—C12—C15175.7 (4)C17—C16—N3—N413.5 (6)
C11—C12—C13—C141.5 (6)N1—C15—N3—C161.1 (4)
C15—C12—C13—C14174.9 (4)C12—C15—N3—C16177.6 (4)
C10—C9—C14—C132.5 (6)N1—C15—N3—N4166.3 (4)
C8—C9—C14—C13176.3 (4)C12—C15—N3—N417.2 (7)
C12—C13—C14—C90.2 (6)N6—C7—N5—C31.4 (6)
C13—C12—C15—N1138.9 (4)N6—C7—N5—C8170.2 (5)
C11—C12—C15—N137.5 (6)C4—C3—N5—C7180.0 (5)
C13—C12—C15—N337.1 (6)C2—C3—N5—C70.8 (5)
C11—C12—C15—N3146.5 (4)C4—C3—N5—C811.2 (8)
N2—C16—C17—C1839.0 (6)C2—C3—N5—C8169.7 (4)
N3—C16—C17—C18142.4 (4)C9—C8—N5—C7124.6 (5)
N2—C16—C17—C22135.6 (5)C9—C8—N5—C368.8 (6)
N3—C16—C17—C2242.9 (6)N5—C7—N6—C21.2 (6)
C22—C17—C18—C192.3 (7)C3—C2—N6—C70.6 (5)
C16—C17—C18—C19172.6 (4)C1—C2—N6—C7178.9 (5)
C17—C18—C19—C200.1 (7)N8—C24—N7—C300.4 (5)
C18—C19—C20—C211.3 (7)N8—C24—N7—C23172.6 (4)
C18—C19—C20—C23176.7 (4)C29—C30—N7—C24177.2 (5)
C19—C20—C21—C220.0 (7)C25—C30—N7—C241.7 (4)
C23—C20—C21—C22178.1 (4)C29—C30—N7—C239.6 (7)
C18—C17—C22—C213.6 (7)C25—C30—N7—C23171.5 (4)
C16—C17—C22—C21171.0 (4)C20—C23—N7—C2483.6 (6)
C20—C21—C22—C172.5 (8)C20—C23—N7—C3088.2 (5)
C21—C20—C23—N7113.4 (5)N7—C24—N8—C251.1 (6)
C19—C20—C23—N764.5 (6)C26—C25—N8—C24178.6 (5)
N8—C25—C26—C27178.1 (4)C30—C25—N8—C242.2 (5)
C30—C25—C26—C271.0 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N8i0.892.533.354 (5)155
N4—H4B···N1ii0.892.503.222 (6)138
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x1, y, z.
(II) catena-poly[[[dichloridomercury(II)]-µ-3,5-bis{4-[(benzimidazol-1- yl)methyl]phenyl}-4H-1,2,4-triazol-4-amine] dichloromethane hemisolvate] top
Crystal data top
[HgCl2(C30H24N8)]·0.5CH2Cl2F(000) = 1580
Mr = 810.53Dx = 1.657 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5424 reflections
a = 16.627 (3) Åθ = 2.2–24.9°
b = 10.6199 (18) ŵ = 5.02 mm1
c = 20.082 (3) ÅT = 298 K
β = 113.586 (2)°Block, colourless
V = 3249.9 (10) Å30.40 × 0.38 × 0.34 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
6097 independent reflections
Radiation source: fine-focus sealed tube4599 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 8.33 pixels mm-1θmax = 25.6°, θmin = 2.1°
ϕ and ω scansh = 2020
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
k = 1112
Tmin = 0.239, Tmax = 0.280l = 2421
16724 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.050P)2 + 0.9206P]
where P = (Fo2 + 2Fc2)/3
6097 reflections(Δ/σ)max = 0.002
397 parametersΔρmax = 1.22 e Å3
6 restraintsΔρmin = 0.64 e Å3
Crystal data top
[HgCl2(C30H24N8)]·0.5CH2Cl2V = 3249.9 (10) Å3
Mr = 810.53Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.627 (3) ŵ = 5.02 mm1
b = 10.6199 (18) ÅT = 298 K
c = 20.082 (3) Å0.40 × 0.38 × 0.34 mm
β = 113.586 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6097 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
4599 reflections with I > 2σ(I)
Tmin = 0.239, Tmax = 0.280Rint = 0.040
16724 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0386 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.04Δρmax = 1.22 e Å3
6097 reflectionsΔρmin = 0.64 e Å3
397 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2929 (4)0.1686 (6)0.7716 (3)0.0679 (17)
H10.27040.12870.80170.081*
C20.3518 (4)0.2680 (5)0.7960 (3)0.0473 (13)
C30.3825 (3)0.3279 (6)0.7500 (3)0.0495 (13)
C40.3583 (4)0.2890 (6)0.6783 (3)0.0646 (17)
H40.38030.32840.64780.078*
C50.3018 (5)0.1923 (7)0.6551 (4)0.082 (2)
H50.28390.16490.60730.098*
C60.2694 (5)0.1321 (7)0.7008 (4)0.083 (2)
H60.23070.06520.68270.099*
C70.4375 (4)0.4134 (5)0.8577 (3)0.0505 (13)
H70.46960.46710.89560.061*
C80.4972 (4)0.4987 (6)0.7699 (3)0.0666 (17)
H8A0.53620.44470.75750.080*
H8B0.53300.54950.81130.080*
C90.4485 (3)0.5848 (6)0.7062 (3)0.0544 (15)
C100.3975 (4)0.6818 (6)0.7121 (3)0.0542 (14)
H100.38890.69210.75480.065*
C110.3583 (4)0.7649 (5)0.6546 (3)0.0522 (14)
H110.32370.83060.65900.063*
C120.3706 (4)0.7502 (5)0.5915 (3)0.0457 (13)
C130.4207 (4)0.6519 (6)0.5858 (3)0.0579 (15)
H130.42840.64100.54280.069*
C140.4596 (4)0.5695 (6)0.6417 (3)0.0594 (15)
H140.49340.50340.63660.071*
C150.3380 (3)0.8477 (5)0.5345 (3)0.0455 (12)
C160.2797 (3)0.9393 (5)0.4296 (2)0.0428 (12)
C170.2339 (3)0.9643 (5)0.3522 (2)0.0439 (12)
C180.1805 (4)1.0706 (5)0.3297 (3)0.0582 (15)
H180.17241.12220.36390.070*
C190.1394 (4)1.0992 (5)0.2559 (3)0.0605 (15)
H190.10481.17110.24100.073*
C200.1498 (3)1.0212 (5)0.2048 (3)0.0494 (13)
C210.2011 (4)0.9170 (5)0.2269 (3)0.0596 (15)
H210.20780.86440.19240.072*
C220.2446 (4)0.8873 (5)0.3013 (3)0.0528 (14)
H220.28010.81630.31590.063*
C230.1038 (5)1.0571 (6)0.1257 (3)0.0731 (19)
H23A0.04331.07800.11560.088*
H23B0.13151.13190.11680.088*
C240.1647 (4)0.9441 (7)0.0470 (3)0.0694 (17)
H240.21100.99970.05570.083*
C250.0777 (5)0.7911 (6)0.0073 (4)0.0733 (18)
C260.0486 (4)0.8590 (6)0.0517 (3)0.0634 (17)
C270.0272 (5)0.8288 (9)0.0619 (4)0.088 (2)
H270.04660.87670.09140.106*
C280.0717 (7)0.7234 (11)0.0254 (7)0.119 (4)
H280.12260.69920.03070.143*
C290.0438 (7)0.6535 (9)0.0182 (6)0.120 (4)
H290.07570.58310.04190.144*
C300.0314 (7)0.6859 (8)0.0277 (5)0.102 (3)
H300.05050.63760.05720.122*
C310.0981 (11)0.9236 (17)0.7769 (8)0.145 (10)0.50
H31A0.15510.92850.81710.174*0.50
H31B0.06100.86510.78880.174*0.50
Cl10.51584 (11)1.22810 (16)0.56785 (9)0.0722 (4)
Cl20.26955 (13)1.38869 (17)0.45231 (11)0.0874 (5)
Cl30.0483 (6)1.0747 (10)0.7525 (6)0.265 (5)0.50
Cl40.1068 (10)0.8832 (9)0.6947 (7)0.358 (9)0.50
Hg10.371973 (15)1.22327 (2)0.467698 (11)0.05320 (11)
N10.3515 (3)0.9673 (4)0.5471 (2)0.0507 (11)
N20.3141 (3)1.0265 (4)0.4796 (2)0.0504 (11)
N30.2942 (3)0.8264 (4)0.4617 (2)0.0431 (10)
N40.2625 (3)0.7124 (4)0.4262 (2)0.0561 (13)
H4B0.22370.68050.44190.084*
H4A0.30700.65900.43610.084*
N50.4387 (3)0.4201 (4)0.7905 (2)0.0494 (11)
N60.3877 (3)0.3256 (4)0.8638 (2)0.0452 (10)
N70.1055 (3)0.9591 (5)0.0766 (2)0.0597 (13)
N80.1522 (4)0.8465 (6)0.0057 (3)0.0791 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.073 (4)0.070 (4)0.062 (4)0.014 (4)0.028 (3)0.013 (3)
C20.053 (3)0.049 (3)0.041 (3)0.000 (3)0.019 (3)0.002 (2)
C30.045 (3)0.064 (3)0.037 (3)0.010 (3)0.014 (2)0.007 (3)
C40.067 (4)0.088 (5)0.044 (4)0.008 (4)0.028 (3)0.003 (3)
C50.086 (5)0.097 (6)0.059 (4)0.005 (4)0.026 (4)0.023 (4)
C60.085 (5)0.082 (5)0.075 (5)0.017 (4)0.027 (4)0.035 (4)
C70.054 (3)0.059 (3)0.032 (3)0.002 (3)0.009 (3)0.005 (2)
C80.047 (3)0.089 (4)0.053 (3)0.011 (3)0.010 (3)0.030 (3)
C90.039 (3)0.074 (4)0.044 (3)0.006 (3)0.011 (3)0.020 (3)
C100.053 (3)0.075 (4)0.032 (3)0.007 (3)0.015 (3)0.008 (3)
C110.056 (3)0.057 (3)0.038 (3)0.007 (3)0.015 (3)0.002 (2)
C120.055 (3)0.046 (3)0.032 (3)0.007 (2)0.012 (2)0.004 (2)
C130.069 (4)0.064 (4)0.040 (3)0.002 (3)0.022 (3)0.009 (3)
C140.069 (4)0.061 (4)0.052 (3)0.008 (3)0.028 (3)0.015 (3)
C150.052 (3)0.052 (3)0.028 (3)0.004 (3)0.012 (2)0.004 (2)
C160.048 (3)0.045 (3)0.034 (3)0.001 (2)0.015 (2)0.004 (2)
C170.042 (3)0.053 (3)0.031 (3)0.005 (2)0.009 (2)0.004 (2)
C180.070 (4)0.054 (3)0.043 (3)0.008 (3)0.015 (3)0.001 (3)
C190.065 (4)0.052 (3)0.050 (3)0.018 (3)0.009 (3)0.012 (3)
C200.046 (3)0.062 (3)0.035 (3)0.010 (3)0.011 (2)0.013 (3)
C210.078 (4)0.060 (4)0.043 (3)0.020 (3)0.027 (3)0.006 (3)
C220.058 (3)0.060 (3)0.032 (3)0.014 (3)0.009 (3)0.009 (2)
C230.093 (5)0.076 (4)0.038 (3)0.021 (4)0.014 (3)0.014 (3)
C240.062 (4)0.092 (5)0.052 (4)0.005 (4)0.021 (3)0.017 (4)
C250.080 (5)0.075 (4)0.049 (4)0.022 (3)0.008 (4)0.015 (3)
C260.058 (4)0.080 (5)0.043 (3)0.016 (3)0.010 (3)0.027 (3)
C270.076 (5)0.110 (6)0.074 (5)0.016 (5)0.025 (4)0.035 (5)
C280.091 (7)0.120 (9)0.120 (9)0.016 (6)0.017 (6)0.052 (7)
C290.115 (7)0.075 (6)0.123 (8)0.002 (5)0.003 (6)0.030 (5)
C300.117 (6)0.074 (4)0.081 (5)0.028 (4)0.004 (5)0.004 (4)
C310.061 (10)0.21 (3)0.136 (17)0.012 (13)0.012 (11)0.086 (18)
Cl10.0664 (10)0.0896 (11)0.0531 (9)0.0014 (8)0.0162 (8)0.0094 (8)
Cl20.1004 (14)0.0686 (10)0.1054 (14)0.0271 (10)0.0540 (12)0.0017 (10)
Cl30.220 (9)0.299 (12)0.321 (12)0.151 (9)0.155 (9)0.056 (10)
Cl40.50 (2)0.145 (8)0.298 (14)0.040 (11)0.021 (14)0.026 (9)
Hg10.06895 (18)0.04852 (15)0.04283 (15)0.00558 (10)0.02311 (12)0.00091 (9)
N10.064 (3)0.053 (3)0.029 (2)0.006 (2)0.012 (2)0.0017 (19)
N20.067 (3)0.047 (2)0.031 (2)0.002 (2)0.014 (2)0.0024 (19)
N30.049 (2)0.046 (2)0.031 (2)0.005 (2)0.0129 (19)0.0003 (19)
N40.074 (3)0.047 (3)0.040 (3)0.017 (2)0.015 (2)0.003 (2)
N50.045 (3)0.063 (3)0.036 (2)0.003 (2)0.010 (2)0.013 (2)
N60.052 (3)0.051 (2)0.035 (2)0.008 (2)0.020 (2)0.002 (2)
N70.066 (3)0.074 (3)0.031 (2)0.008 (3)0.010 (2)0.013 (2)
N80.082 (4)0.095 (5)0.060 (4)0.023 (4)0.028 (3)0.007 (3)
Geometric parameters (Å, º) top
C1—C61.371 (8)C19—C201.382 (7)
C1—C21.390 (8)C19—H190.9300
C1—H10.9300C20—C211.359 (8)
C2—C31.376 (8)C20—C231.510 (7)
C2—N61.390 (7)C21—C221.411 (7)
C3—N51.373 (7)C21—H210.9300
C3—C41.394 (8)C22—H220.9300
C4—C51.344 (10)C23—N71.442 (7)
C4—H40.9300C23—H23A0.9700
C5—C61.390 (10)C23—H23B0.9700
C5—H50.9300C24—N81.292 (9)
C6—H60.9300C24—N71.348 (8)
C7—N61.284 (7)C24—H240.9300
C7—N51.360 (6)C25—C261.377 (9)
C7—H70.9300C25—C301.379 (11)
C8—N51.462 (7)C25—N81.383 (10)
C8—C91.517 (7)C26—N71.376 (8)
C8—H8A0.9700C26—C271.393 (9)
C8—H8B0.9700C27—C281.380 (13)
C9—C101.369 (8)C27—H270.9300
C9—C141.389 (7)C28—C291.363 (14)
C10—C111.391 (8)C28—H280.9300
C10—H100.9300C29—C301.382 (13)
C11—C121.371 (8)C29—H290.9300
C11—H110.9300C30—H300.9300
C12—C131.368 (8)C31—Cl41.766 (9)
C12—C151.477 (7)C31—Cl31.782 (9)
C13—C141.364 (7)C31—H31A0.9700
C13—H130.9300C31—H31B0.9700
C14—H140.9300Cl1—Hg12.4331 (17)
C15—N11.297 (7)Cl2—Hg12.3793 (17)
C15—N31.367 (6)Hg1—N6i2.265 (4)
C16—N21.316 (6)Hg1—N22.353 (4)
C16—N31.337 (6)N1—N21.395 (5)
C16—C171.455 (6)N3—N41.397 (6)
C17—C221.374 (7)N4—H4B0.8900
C17—C181.394 (8)N4—H4A0.8900
C18—C191.396 (7)N6—Hg1ii2.265 (4)
C18—H180.9300
C6—C1—C2116.6 (6)C20—C21—H21119.5
C6—C1—H1121.7C22—C21—H21119.5
C2—C1—H1121.7C17—C22—C21119.4 (5)
C3—C2—N6108.9 (5)C17—C22—H22120.3
C3—C2—C1120.8 (5)C21—C22—H22120.3
N6—C2—C1130.3 (5)N7—C23—C20113.4 (5)
N5—C3—C2106.2 (4)N7—C23—H23A108.9
N5—C3—C4132.0 (5)C20—C23—H23A108.9
C2—C3—C4121.7 (6)N7—C23—H23B108.9
C5—C4—C3117.2 (6)C20—C23—H23B108.9
C5—C4—H4121.4H23A—C23—H23B107.7
C3—C4—H4121.4N8—C24—N7114.8 (7)
C4—C5—C6121.6 (6)N8—C24—H24122.6
C4—C5—H5119.2N7—C24—H24122.6
C6—C5—H5119.2C26—C25—C30119.0 (8)
C1—C6—C5122.0 (7)C26—C25—N8110.0 (6)
C1—C6—H6119.0C30—C25—N8130.9 (8)
C5—C6—H6119.0N7—C26—C25105.8 (6)
N6—C7—N5113.5 (5)N7—C26—C27130.9 (7)
N6—C7—H7123.3C25—C26—C27123.2 (8)
N5—C7—H7123.3C28—C27—C26115.7 (9)
N5—C8—C9113.0 (4)C28—C27—H27122.2
N5—C8—H8A109.0C26—C27—H27122.2
C9—C8—H8A109.0C29—C28—C27122.3 (10)
N5—C8—H8B109.0C29—C28—H28118.8
C9—C8—H8B109.0C27—C28—H28118.8
H8A—C8—H8B107.8C28—C29—C30120.9 (10)
C10—C9—C14119.1 (5)C28—C29—H29119.6
C10—C9—C8121.4 (5)C30—C29—H29119.6
C14—C9—C8119.4 (6)C25—C30—C29118.8 (9)
C9—C10—C11120.4 (5)C25—C30—H30120.6
C9—C10—H10119.8C29—C30—H30120.6
C11—C10—H10119.8Cl4—C31—Cl399.5 (6)
C12—C11—C10120.1 (6)Cl4—C31—H31A111.9
C12—C11—H11120.0Cl3—C31—H31A111.9
C10—C11—H11120.0Cl4—C31—H31B111.9
C13—C12—C11119.1 (5)Cl3—C31—H31B111.9
C13—C12—C15121.1 (5)H31A—C31—H31B109.6
C11—C12—C15119.5 (5)N6i—Hg1—N295.32 (15)
C14—C13—C12121.6 (5)N6i—Hg1—Cl2112.97 (12)
C14—C13—H13119.2N2—Hg1—Cl2111.62 (13)
C12—C13—H13119.2N6i—Hg1—Cl1109.17 (12)
C13—C14—C9119.7 (6)N2—Hg1—Cl1103.99 (11)
C13—C14—H14120.1Cl2—Hg1—Cl1120.51 (7)
C9—C14—H14120.1C15—N1—N2106.1 (4)
N1—C15—N3110.3 (4)C16—N2—N1108.3 (4)
N1—C15—C12123.7 (5)C16—N2—Hg1128.2 (3)
N3—C15—C12126.0 (5)N1—N2—Hg1117.2 (3)
N2—C16—N3108.9 (4)C16—N3—C15106.5 (4)
N2—C16—C17124.6 (4)C16—N3—N4125.0 (4)
N3—C16—C17126.5 (4)C15—N3—N4128.3 (4)
C22—C17—C18119.8 (5)N3—N4—H4B109.2
C22—C17—C16121.1 (5)N3—N4—H4A109.1
C18—C17—C16119.1 (5)H4B—N4—H4A109.5
C17—C18—C19119.9 (5)C7—N5—C3105.9 (4)
C17—C18—H18120.1C7—N5—C8125.9 (5)
C19—C18—H18120.1C3—N5—C8127.8 (5)
C20—C19—C18120.3 (5)C7—N6—C2105.5 (4)
C20—C19—H19119.9C7—N6—Hg1ii124.8 (3)
C18—C19—H19119.9C2—N6—Hg1ii129.7 (3)
C21—C20—C19119.6 (5)C24—N7—C26105.4 (6)
C21—C20—C23122.4 (5)C24—N7—C23127.1 (6)
C19—C20—C23117.9 (5)C26—N7—C23127.5 (6)
C20—C21—C22121.1 (5)C24—N8—C25104.0 (6)
C6—C1—C2—C31.7 (10)C26—C25—C30—C291.4 (11)
C6—C1—C2—N6179.9 (6)N8—C25—C30—C29177.7 (7)
N6—C2—C3—N51.4 (6)C28—C29—C30—C250.5 (13)
C1—C2—C3—N5179.9 (5)N3—C15—N1—N20.6 (6)
N6—C2—C3—C4179.1 (5)C12—C15—N1—N2177.3 (5)
C1—C2—C3—C42.2 (9)N3—C16—N2—N10.9 (6)
N5—C3—C4—C5178.7 (6)C17—C16—N2—N1179.4 (5)
C2—C3—C4—C51.6 (9)N3—C16—N2—Hg1149.8 (4)
C3—C4—C5—C60.8 (11)C17—C16—N2—Hg129.9 (8)
C2—C1—C6—C50.9 (11)C15—N1—N2—C160.2 (6)
C4—C5—C6—C10.4 (12)C15—N1—N2—Hg1154.2 (4)
N5—C8—C9—C1067.2 (8)N6i—Hg1—N2—C1617.7 (5)
N5—C8—C9—C14116.4 (6)Cl2—Hg1—N2—C1699.6 (5)
C14—C9—C10—C110.9 (9)Cl1—Hg1—N2—C16128.9 (4)
C8—C9—C10—C11175.5 (5)N6i—Hg1—N2—N1130.9 (3)
C9—C10—C11—C120.0 (9)Cl2—Hg1—N2—N1111.9 (3)
C10—C11—C12—C130.9 (9)Cl1—Hg1—N2—N119.6 (4)
C10—C11—C12—C15172.5 (5)N2—C16—N3—C151.2 (6)
C11—C12—C13—C141.0 (9)C17—C16—N3—C15179.1 (5)
C15—C12—C13—C14172.3 (5)N2—C16—N3—N4175.9 (5)
C12—C13—C14—C90.0 (9)C17—C16—N3—N44.4 (8)
C10—C9—C14—C130.9 (9)N1—C15—N3—C161.1 (6)
C8—C9—C14—C13175.6 (5)C12—C15—N3—C16177.8 (5)
C13—C12—C15—N1125.5 (6)N1—C15—N3—N4175.5 (5)
C11—C12—C15—N147.8 (8)C12—C15—N3—N47.8 (9)
C13—C12—C15—N350.8 (8)N6—C7—N5—C31.1 (6)
C11—C12—C15—N3136.0 (6)N6—C7—N5—C8171.6 (5)
N2—C16—C17—C22140.7 (6)C2—C3—N5—C71.4 (6)
N3—C16—C17—C2238.9 (8)C4—C3—N5—C7178.9 (6)
N2—C16—C17—C1837.2 (8)C2—C3—N5—C8171.0 (5)
N3—C16—C17—C18143.1 (6)C4—C3—N5—C86.4 (10)
C22—C17—C18—C191.0 (9)C9—C8—N5—C7124.7 (6)
C16—C17—C18—C19177.0 (5)C9—C8—N5—C364.2 (8)
C17—C18—C19—C201.4 (9)N5—C7—N6—C20.2 (6)
C18—C19—C20—C210.7 (9)N5—C7—N6—Hg1ii177.1 (3)
C18—C19—C20—C23179.9 (6)C3—C2—N6—C70.7 (6)
C19—C20—C21—C220.4 (9)C1—C2—N6—C7179.3 (6)
C23—C20—C21—C22178.8 (6)C3—C2—N6—Hg1ii177.9 (4)
C18—C17—C22—C210.1 (8)C1—C2—N6—Hg1ii3.6 (9)
C16—C17—C22—C21178.0 (5)N8—C24—N7—C260.4 (7)
C20—C21—C22—C170.8 (9)N8—C24—N7—C23178.7 (5)
C21—C20—C23—N711.6 (9)C25—C26—N7—C240.9 (6)
C19—C20—C23—N7169.2 (6)C27—C26—N7—C24176.9 (6)
C30—C25—C26—N7178.1 (6)C25—C26—N7—C23179.2 (5)
N8—C25—C26—N71.1 (6)C27—C26—N7—C234.9 (9)
C30—C25—C26—C271.8 (9)C20—C23—N7—C2493.4 (7)
N8—C25—C26—C27177.5 (6)C20—C23—N7—C2684.6 (7)
N7—C26—C27—C28176.6 (7)N7—C24—N8—C250.3 (7)
C25—C26—C27—C281.3 (10)C26—C25—N8—C240.9 (7)
C26—C27—C28—C290.4 (13)C30—C25—N8—C24178.3 (7)
C27—C28—C29—C300.0 (15)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···N8ii0.892.092.940 (8)160
N4—H4A···Cl2iii0.892.983.473 (5)117
Symmetry codes: (ii) x, y+3/2, z+1/2; (iii) x, y1, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC30H24N8[HgCl2(C30H24N8)]·0.5CH2Cl2
Mr496.57810.53
Crystal system, space groupMonoclinic, CcMonoclinic, P21/c
Temperature (K)298298
a, b, c (Å)6.141 (2), 19.914 (6), 19.910 (6)16.627 (3), 10.6199 (18), 20.082 (3)
β (°) 96.537 (6) 113.586 (2)
V3)2418.8 (13)3249.9 (10)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.095.02
Crystal size (mm)0.17 × 0.11 × 0.090.40 × 0.38 × 0.34
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Multi-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.986, 0.9920.239, 0.280
No. of measured, independent and
observed [I > 2σ(I)] reflections
5790, 2748, 2008 16724, 6097, 4599
Rint0.0630.040
(sin θ/λ)max1)0.6080.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.116, 1.00 0.038, 0.102, 1.04
No. of reflections27486097
No. of parameters343397
No. of restraints26
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.151.22, 0.64
Absolute structureFlack (1983), with how many Friedel pairs??
Absolute structure parameter6 (3)?

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N8i0.892.533.354 (5)154.7
N4—H4B···N1ii0.892.503.222 (6)138.1
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x1, y, z.
Selected geometric parameters (Å, º) for (II) top
Cl1—Hg12.4331 (17)Hg1—N6i2.265 (4)
Cl2—Hg12.3793 (17)Hg1—N22.353 (4)
N6i—Hg1—N295.32 (15)N6i—Hg1—Cl1109.17 (12)
N6i—Hg1—Cl2112.97 (12)N2—Hg1—Cl1103.99 (11)
N2—Hg1—Cl2111.62 (13)Cl2—Hg1—Cl1120.51 (7)
Symmetry code: (i) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···N8ii0.892.092.940 (8)160.2
N4—H4A···Cl2iii0.892.983.473 (5)116.5
Symmetry codes: (ii) x, y+3/2, z+1/2; (iii) x, y1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds