Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229615018100/ov3067sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229615018100/ov30671sup2.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229615018100/ov30672sup3.hkl |
CCDC references: 1427969; 1427968
Carbon monoxide (CO) has recently been shown to impart salutary effects in mammalian physiology when applied in lower concentrations (Motterlini & Otterbien, 2010). This surprising discovery has raised inetrest in metal–carbonyl complexes as potential CO donors. Although metal carbonyl complexes have been studied extensively for their photophysical and photochemical properties (Stufkens & Vlcek, 1998), considerable research attention has now been directed toward these species as means of delivering CO to biological targets under controlled conditions as opposed to its administration in the gaseous form (Bernardes & Garcia-Gallego, 2014; Romao et al., 2012). In such attempts, the photoactive CO-releasing molecules (photoCORMs) have emerged as promising therapeutics where CO release can be triggered upon illumination (Gonzalez & Mascharak, 2014; Chakraborty et al., 2014; Schatzschneider, 2015). Herein we report the syntheses, properties and X-ray structures of two ruthenium carbonyl complexes, namely trans[RuCl2(dafo)(CO)2], (1), and fac-[RuCl2(CO)3(dafo)(CO)3], (2), where dafo is 4,5-diazafluoren-9-one. The potentially bidentate ligand dafo binds the RuII center of (1) and (2) in a bidentate and a monodentate fashion, respectively. Both steric and electronic effects play concurrent roles in dictating the mode of binding of dafo in these two complexes.
All reagents were of commercial grade and used without further purification. The solvents were purified according to a standard procedure (Armarego & Chai, 2003). 4,5-Diazafluoren-9-one (dafo) was synthesized according to a reported procedure (Eckhard & Summers, 1973). A Perkin Elmer Spectrum-One FT–IR spectrophotometer was employed to monitor the IR spectra of the compounds. UV–Vis spectra were obtained with Varian Cary 50 UV–Vis spectrophotometer. 1H NMR spectra were recorded at 298 K on a Varian Unity Inova 500 MHz instrument. Microanalyses were carried out with a Perkin Elmer Series II Elemental Analyzer.
A slurry of [RuCl2(CO)3]2 (100 mg, 0.195 mmol) in dry methanol (15 ml) was heated to reflux (338 K) while stirring for 3 h. Next, 4,5-diazafluoren-9-one (dafo; 71.1 mg, 0.370 mmol) was added and the reaction mixture was allowed to reflux for an additional 3 h. The color of the solution changed from pale yellow to bright yellow during this time. Upon cooling, a yellow precipitate was observed which was then filtetred off, washed with a minimum amount of CH2Cl2, and dried under reduced pressure. (yield 72.8 mg, 48%). Elemental analysis (%) found: C 38.11, N 6.89, H 1.52; calculated for C13H6Cl2N2O3Ru: C 38.06, N 6.83, H 1.47. IR: ν(CO) (KBr, cm-1) 2078, 1993. 1H NMR (CDCl3): δ 8.96 (d, 2H), 8.24 (d, 2H), 7.73 (t, 2H).
A batch of [RuCl2(CO)3]2 (100 mg, 0.195 mmol) in dry methanol (20 ml) was allowed to stir at 318 K for 3 h. Next, dafo (71.2 mg, 0.370 mmol) was added and the solution was allowed to stir at 318 K for an additional 3 h. The white precipitate that formed during this time was filtered off, washed with a small amount of CH2Cl2, and dried under vacuum (yield: 90.9 mg, 56%). Elemental analysis (%) found: C 38.42, N 6.43, H 1.43; calculated for C14H6Cl2N2O4Ru: C 38.37, N 6.39, H 1.38. IR ν (CO) (KBr, cm-1) 2062, 1998. 1H NMR (CDCl3): δ 9.70 (d, 1H), 8.76 (d, 1H), 8.20 (d, 1H), 8.15 (d, 1H), 7.70 (d, 1H), 7.62 (t, 1H).
Single crystals for both the complexes were obtained by layering hexanes over their CH2Cl2 solutions. One crystal for each complex was selected and affixed on top of MiTiGen micromounts using Paratone Oil and tranferred to the diffractometer.
Crystal data, data collection and structure refinement details are summarized in Table 1. The metal atoms were located by direct methods and the remaining non-H atoms emerged from successive Fourier syntheses. H atoms were included in calculated positions riding on the C atom to which they are bonded, with C—H = 0.93 Å and Uiso(H) = 1.2Uiso(C). Carbonyl atoms C1 and O1 in (2) were constrained to have equivalent atomic displacement parameters and the C6—C7 bond was restrained to emulate rigid-body motion.
The complexes trans-[RuCl2(dafo)(CO)2] (dafo is 4,5-diazafluoren-9-one), (1), and fac-[RuCl2(dafo)(CO)3], (2), were isolated from the reaction of [RuCl2(CO)3]2 with 2 equivalents of dafo in methanol. Complex (1) was isolated from the methanolic reaction mixture under refluxing conditions. Quite in contrast, stirring of the reaction mixture in methanol at 318 K resulted in (2). In accordance with our previous report on cis- and trans-[RuCl2(azpy)(CO)2] [where azpy is 2-(phenyldiazenyl)pyridine] complexes (Carrington et al., 2013), warming of [RuCl2(CO)3]2 at 318 K presumably resulted in the intermediate solvento species fac-[RuCl2(MeOH)(CO)3]. Addition of dafo displaced the solvent molecule to furnish complex (2), where the dafo ligand binds the RuII center in a monodentate fashion. This finding is unusual compared to that observed for other analogous carbonyl complexes derived from rigid heterocycles like bipyridine (bpy), where, under similar conditions, the complex isolated is of formula cis-[RuCl2(bpy)(CO)2] (Haukka et al., 1995). In the case of complex (2), the relatively larger bite distance between the two N atoms of the dafo ligand (compared to bpy) most likely restricts bidentate coordination to the metal center (Pal et al., 2014). In the case of (1), the intermediate species fac-[RuCl2(MeOH)(CO)3] undergoes a facial → meridional isomerization upon refluxing (338 K). In this meridional intermediate, trans disposition of the two CO ligands across each other facilitates removal of one CO. This vacancy finally allows binding of the dafo ligand in a bidenate fashion in (1).
The coordination geometry of RuII in both complexes is distorted octahedral (Tables 2 and 3). The two CO ligands are cis to each other in complex (1) (Fig. 1), while in complex (2) (Fig. 2), the three CO ligands are arranged in a facial disposition. The two Cl- ligands are in trans and cis dispositions in (1) and (2), respectively. In complex (1), the chelate ring composed of atoms Ru1, N1, C7, C9, and N2 is almost planar, with a mean deviation of 0.007 (3) Å. The equatorial plane of (1) is comprised of the bidentate dafo ligand and two CO ligands (atoms C1, C2, N2, and N1), with a mean deviation of 0.040 (3) Å and the RuII atom is displaced by 0.010 (3) Å towards the Cl2 atom. The coordinated dafo ligand is planar [mean deviation = 0.020 (3) Å] in complex (1). In the case of complex (2), the equatorial plane is comprised of one N atom of the monodentate dafo ligand, one chloride and two CO ligands (atoms N1, Cl2, C1, and C3), with a mean deviation of 0.034 (4) Å. The RuII atom is displaced by 0.059 (4) Å towards the carbonyl C2 atom. In this case, the dafo ligand frame is also fairly planar, with a mean deviation of 0.028 (3) Å. The monodentate dafo ligand in (2) forms a dihedral angle of 52.16 (8)° with the equatorial plane constitued by atoms C1, C3, N1, and Cl2. The crystal packing (Dolomanov et al., 2009; Spek, 2009) for the complexes reveal no significant stacking or other nonbonded interactions (Figs. 3 and 4). The distance between the two N atoms (N1 and N2) of dafo in (1) and (2) are 2.833 (4) and 3.146 (5) Å, respectively, due to different modes of binding. The bidenate coordination of dafo in (1) apprears to promote pronounced competition in π back-bonding between the dafo and CO ligands for the same metal orbitals compared to complex (2). This is corroborated by the apparent CO release rate (kCO) values of these complexes. In CH2Cl2 solution under 305 nm UV illumination, complex (1) exhibits a much higher kCO value (15.34±0.02 min-1, conc. 2.4 × 10-4 M) compared to complex (2) (6.08±0.02 min-1, conc. 2.4 × 10-4 M).
For both compounds, data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Bruker 2008) and OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).
[RuCl2(C11H6N2O)(CO)2] | F(000) = 800 |
Mr = 410.17 | Dx = 1.958 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 6.5589 (2) Å | Cell parameters from 9050 reflections |
b = 16.9199 (6) Å | θ = 2.4–26.3° |
c = 12.7585 (5) Å | µ = 1.52 mm−1 |
β = 100.69° | T = 296 K |
V = 1391.30 (8) Å3 | Block, colorless |
Z = 4 | 0.20 × 0.15 × 0.12 mm |
Bruker APEXII CCD diffractometer | 2840 independent reflections |
Radiation source: fine-focus sealed tube | 2598 reflections with I > 2σ(I) |
Detector resolution: 8.33 pixels mm-1 | Rint = 0.055 |
ω scans | θmax = 26.4°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −8→8 |
Tmin = 0.668, Tmax = 0.745 | k = −21→21 |
13644 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.076 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0393P)2 + 1.2351P] where P = (Fo2 + 2Fc2)/3 |
2840 reflections | (Δ/σ)max = 0.001 |
190 parameters | Δρmax = 1.02 e Å−3 |
0 restraints | Δρmin = −0.42 e Å−3 |
[RuCl2(C11H6N2O)(CO)2] | V = 1391.30 (8) Å3 |
Mr = 410.17 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 6.5589 (2) Å | µ = 1.52 mm−1 |
b = 16.9199 (6) Å | T = 296 K |
c = 12.7585 (5) Å | 0.20 × 0.15 × 0.12 mm |
β = 100.69° |
Bruker APEXII CCD diffractometer | 2840 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 2598 reflections with I > 2σ(I) |
Tmin = 0.668, Tmax = 0.745 | Rint = 0.055 |
13644 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.076 | H-atom parameters constrained |
S = 1.01 | Δρmax = 1.02 e Å−3 |
2840 reflections | Δρmin = −0.42 e Å−3 |
190 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ru1 | 0.70714 (3) | 0.37385 (2) | 0.63595 (2) | 0.03500 (10) | |
Cl1 | 0.94807 (12) | 0.34857 (5) | 0.79811 (6) | 0.05222 (19) | |
Cl2 | 0.49226 (13) | 0.38504 (5) | 0.46405 (7) | 0.0547 (2) | |
O3 | 0.7415 (4) | 0.01600 (13) | 0.5327 (3) | 0.0766 (8) | |
O2 | 0.9657 (4) | 0.51454 (14) | 0.6069 (2) | 0.0628 (6) | |
O1 | 0.4360 (5) | 0.47572 (18) | 0.7402 (2) | 0.0803 (8) | |
N1 | 0.5457 (3) | 0.26370 (14) | 0.66326 (18) | 0.0392 (5) | |
N2 | 0.8830 (3) | 0.29170 (13) | 0.55820 (17) | 0.0352 (5) | |
C3 | 0.3910 (4) | 0.2398 (2) | 0.7137 (2) | 0.0481 (7) | |
H3 | 0.3207 | 0.2775 | 0.7465 | 0.058* | |
C4 | 0.3349 (5) | 0.1611 (2) | 0.7178 (2) | 0.0564 (8) | |
H4 | 0.2307 | 0.1473 | 0.7548 | 0.068* | |
C5 | 0.4305 (5) | 0.1020 (2) | 0.6679 (3) | 0.0590 (9) | |
H5 | 0.3912 | 0.0493 | 0.6699 | 0.071* | |
C6 | 0.5859 (5) | 0.12555 (16) | 0.6158 (3) | 0.0489 (7) | |
C7 | 0.6332 (4) | 0.20550 (16) | 0.6183 (2) | 0.0401 (6) | |
C9 | 0.8043 (4) | 0.21970 (15) | 0.5641 (2) | 0.0373 (6) | |
C13 | 1.0409 (4) | 0.29571 (17) | 0.5048 (2) | 0.0396 (6) | |
H13 | 1.1021 | 0.3445 | 0.4978 | 0.048* | |
C12 | 1.1159 (4) | 0.23020 (18) | 0.4600 (2) | 0.0446 (6) | |
H12 | 1.2257 | 0.2360 | 0.4239 | 0.054* | |
C11 | 1.0311 (5) | 0.15600 (19) | 0.4678 (2) | 0.0474 (7) | |
H11 | 1.0814 | 0.1117 | 0.4378 | 0.057* | |
C10 | 0.8679 (4) | 0.15088 (17) | 0.5223 (2) | 0.0434 (6) | |
C8 | 0.7321 (5) | 0.08520 (17) | 0.5532 (3) | 0.0531 (8) | |
C2 | 0.8658 (5) | 0.46283 (17) | 0.6145 (2) | 0.0431 (6) | |
C1 | 0.5301 (5) | 0.43934 (19) | 0.7038 (3) | 0.0514 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ru1 | 0.03214 (14) | 0.03422 (14) | 0.04105 (15) | 0.00096 (7) | 0.01306 (10) | −0.00192 (8) |
Cl1 | 0.0427 (4) | 0.0715 (5) | 0.0438 (4) | −0.0011 (3) | 0.0117 (3) | 0.0017 (3) |
Cl2 | 0.0477 (4) | 0.0553 (4) | 0.0600 (5) | −0.0021 (3) | 0.0075 (4) | 0.0063 (3) |
O3 | 0.0714 (17) | 0.0331 (12) | 0.120 (2) | 0.0023 (11) | 0.0029 (16) | −0.0037 (13) |
O2 | 0.0662 (15) | 0.0503 (13) | 0.0734 (16) | −0.0131 (12) | 0.0170 (13) | −0.0006 (11) |
O1 | 0.0791 (19) | 0.090 (2) | 0.0798 (19) | 0.0227 (16) | 0.0357 (16) | 0.0011 (16) |
N1 | 0.0333 (11) | 0.0471 (13) | 0.0383 (11) | −0.0028 (9) | 0.0099 (9) | 0.0030 (10) |
N2 | 0.0339 (11) | 0.0349 (11) | 0.0381 (11) | 0.0020 (9) | 0.0102 (9) | −0.0008 (9) |
C3 | 0.0355 (14) | 0.071 (2) | 0.0372 (14) | −0.0094 (13) | 0.0063 (12) | 0.0048 (14) |
C4 | 0.0457 (17) | 0.078 (2) | 0.0445 (16) | −0.0208 (16) | 0.0050 (14) | 0.0157 (16) |
C5 | 0.0563 (19) | 0.0563 (19) | 0.0586 (19) | −0.0226 (16) | −0.0041 (16) | 0.0186 (16) |
C6 | 0.0472 (17) | 0.0401 (16) | 0.0555 (18) | −0.0052 (12) | −0.0009 (14) | 0.0106 (12) |
C7 | 0.0366 (13) | 0.0383 (14) | 0.0447 (15) | −0.0038 (11) | 0.0058 (11) | 0.0052 (11) |
C9 | 0.0342 (13) | 0.0361 (13) | 0.0411 (14) | 0.0025 (10) | 0.0058 (11) | 0.0006 (11) |
C13 | 0.0369 (14) | 0.0436 (14) | 0.0395 (14) | 0.0010 (11) | 0.0101 (11) | 0.0032 (11) |
C12 | 0.0421 (15) | 0.0553 (17) | 0.0376 (14) | 0.0100 (13) | 0.0104 (12) | −0.0025 (12) |
C11 | 0.0463 (16) | 0.0481 (16) | 0.0447 (15) | 0.0156 (13) | 0.0004 (13) | −0.0103 (13) |
C10 | 0.0416 (15) | 0.0366 (13) | 0.0480 (16) | 0.0055 (12) | −0.0023 (12) | −0.0023 (12) |
C8 | 0.0511 (17) | 0.0360 (15) | 0.065 (2) | 0.0023 (13) | −0.0069 (15) | 0.0035 (14) |
C2 | 0.0473 (16) | 0.0381 (14) | 0.0453 (15) | 0.0033 (12) | 0.0122 (13) | −0.0059 (12) |
C1 | 0.0531 (18) | 0.0444 (17) | 0.0552 (18) | 0.0069 (14) | 0.0063 (15) | 0.0029 (14) |
Ru1—C2 | 1.879 (3) | C4—C5 | 1.395 (5) |
Ru1—C1 | 1.923 (3) | C4—H4 | 0.9300 |
Ru1—N2 | 2.161 (2) | C5—C6 | 1.375 (5) |
Ru1—N1 | 2.203 (2) | C5—H5 | 0.9300 |
Ru1—Cl2 | 2.3844 (9) | C6—C7 | 1.387 (4) |
Ru1—Cl1 | 2.3974 (8) | C6—C8 | 1.519 (5) |
O3—C8 | 1.204 (4) | C7—C9 | 1.443 (4) |
O2—C2 | 1.108 (4) | C9—C10 | 1.377 (4) |
O1—C1 | 1.040 (4) | C13—C12 | 1.379 (4) |
N1—C7 | 1.323 (4) | C13—H13 | 0.9300 |
N1—C3 | 1.360 (3) | C12—C11 | 1.384 (4) |
N2—C9 | 1.330 (3) | C12—H12 | 0.9300 |
N2—C13 | 1.343 (3) | C11—C10 | 1.383 (4) |
C3—C4 | 1.385 (5) | C11—H11 | 0.9300 |
C3—H3 | 0.9300 | C10—C8 | 1.521 (4) |
C2—Ru1—C1 | 90.05 (13) | C6—C5—H5 | 121.6 |
C2—Ru1—N2 | 95.24 (10) | C4—C5—H5 | 121.6 |
C1—Ru1—N2 | 174.48 (11) | C5—C6—C7 | 117.0 (3) |
C2—Ru1—N1 | 175.16 (10) | C5—C6—C8 | 136.2 (3) |
C1—Ru1—N1 | 93.90 (11) | C7—C6—C8 | 106.8 (3) |
N2—Ru1—N1 | 80.89 (8) | N1—C7—C6 | 128.5 (3) |
C2—Ru1—Cl2 | 92.93 (9) | N1—C7—C9 | 121.5 (2) |
C1—Ru1—Cl2 | 93.72 (10) | C6—C7—C9 | 110.0 (3) |
N2—Ru1—Cl2 | 84.47 (6) | N2—C9—C10 | 127.1 (3) |
N1—Ru1—Cl2 | 89.61 (6) | N2—C9—C7 | 121.6 (2) |
C2—Ru1—Cl1 | 88.54 (9) | C10—C9—C7 | 111.3 (2) |
C1—Ru1—Cl1 | 94.06 (10) | N2—C13—C12 | 122.5 (3) |
N2—Ru1—Cl1 | 87.65 (6) | N2—C13—H13 | 118.7 |
N1—Ru1—Cl1 | 88.39 (6) | C12—C13—H13 | 118.7 |
Cl2—Ru1—Cl1 | 172.08 (3) | C13—C12—C11 | 121.4 (3) |
C7—N1—C3 | 114.0 (3) | C13—C12—H12 | 119.3 |
C7—N1—Ru1 | 107.51 (17) | C11—C12—H12 | 119.3 |
C3—N1—Ru1 | 138.5 (2) | C12—C11—C10 | 116.8 (3) |
C9—N2—C13 | 114.8 (2) | C12—C11—H11 | 121.6 |
C9—N2—Ru1 | 108.51 (16) | C10—C11—H11 | 121.6 |
C13—N2—Ru1 | 136.70 (18) | C9—C10—C11 | 117.4 (3) |
N1—C3—C4 | 122.0 (3) | C9—C10—C8 | 106.5 (3) |
N1—C3—H3 | 119.0 | C11—C10—C8 | 136.1 (3) |
C4—C3—H3 | 119.0 | O3—C8—C6 | 127.9 (3) |
C3—C4—C5 | 121.8 (3) | O3—C8—C10 | 126.8 (3) |
C3—C4—H4 | 119.1 | C6—C8—C10 | 105.4 (2) |
C5—C4—H4 | 119.1 | O2—C2—Ru1 | 176.3 (3) |
C6—C5—C4 | 116.7 (3) | O1—C1—Ru1 | 178.9 (3) |
[RuCl2(C11H6N2O)(CO)3] | Z = 2 |
Mr = 438.18 | F(000) = 428 |
Triclinic, P1 | Dx = 1.853 Mg m−3 |
a = 7.458 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.701 (2) Å | Cell parameters from 2934 reflections |
c = 11.594 (9) Å | θ = 2.7–26.0° |
α = 90.43 (3)° | µ = 1.36 mm−1 |
β = 108.60 (4)° | T = 296 K |
γ = 98.41 (2)° | Block, colorless |
V = 785.1 (7) Å3 | 0.15 × 0.10 × 0.08 mm |
Bruker APEXII CCD diffractometer | 2934 independent reflections |
Radiation source: fine-focus sealed tube | 2141 reflections with I > 2σ(I) |
Detector resolution: 8.33 pixels mm-1 | Rint = 0.049 |
ω scans | θmax = 25.7°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −9→9 |
Tmin = 0.682, Tmax = 0.745 | k = −11→11 |
7433 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.060 | H-atom parameters constrained |
S = 1.13 | w = 1/[σ2(Fo2)] where P = (Fo2 + 2Fc2)/3 |
2934 reflections | (Δ/σ)max = 0.001 |
202 parameters | Δρmax = 0.74 e Å−3 |
1 restraint | Δρmin = −0.60 e Å−3 |
[RuCl2(C11H6N2O)(CO)3] | γ = 98.41 (2)° |
Mr = 438.18 | V = 785.1 (7) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.458 (2) Å | Mo Kα radiation |
b = 9.701 (2) Å | µ = 1.36 mm−1 |
c = 11.594 (9) Å | T = 296 K |
α = 90.43 (3)° | 0.15 × 0.10 × 0.08 mm |
β = 108.60 (4)° |
Bruker APEXII CCD diffractometer | 2934 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 2141 reflections with I > 2σ(I) |
Tmin = 0.682, Tmax = 0.745 | Rint = 0.049 |
7433 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 1 restraint |
wR(F2) = 0.060 | H-atom parameters constrained |
S = 1.13 | Δρmax = 0.74 e Å−3 |
2934 reflections | Δρmin = −0.60 e Å−3 |
202 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ru1 | 0.34512 (5) | 0.19385 (3) | 0.80951 (3) | 0.05637 (13) | |
Cl1 | 0.31437 (16) | −0.05628 (10) | 0.78187 (11) | 0.0812 (4) | |
Cl2 | 0.01300 (14) | 0.19209 (12) | 0.69578 (13) | 0.0944 (4) | |
O1 | 0.2193 (5) | 0.1340 (3) | 1.0283 (3) | 0.0996 (9) | |
O2 | 0.3520 (4) | 0.5013 (3) | 0.8646 (2) | 0.0701 (8) | |
O4 | 0.7583 (4) | 0.4634 (3) | 0.4104 (3) | 0.0928 (10) | |
O3 | 0.7628 (4) | 0.1844 (3) | 0.9465 (3) | 0.0816 (9) | |
N1 | 0.4091 (4) | 0.2135 (3) | 0.6401 (3) | 0.0517 (8) | |
N2 | 0.7099 (4) | 0.4535 (3) | 0.8075 (3) | 0.0539 (8) | |
C1 | 0.2690 (8) | 0.1590 (5) | 0.9463 (5) | 0.0996 (9) | |
C2 | 0.3567 (5) | 0.3899 (4) | 0.8389 (3) | 0.0543 (10) | |
C14 | 0.5432 (5) | 0.3041 (4) | 0.6140 (3) | 0.0472 (9) | |
C13 | 0.6820 (5) | 0.4209 (4) | 0.6922 (4) | 0.0460 (9) | |
C9 | 0.7831 (5) | 0.4932 (4) | 0.6231 (4) | 0.0558 (10) | |
C8 | 0.7136 (6) | 0.4259 (5) | 0.4978 (4) | 0.0647 (12) | |
C7 | 0.5671 (6) | 0.3054 (4) | 0.5003 (4) | 0.0552 (10) | |
C6 | 0.4577 (7) | 0.2099 (5) | 0.4087 (4) | 0.0749 (13) | |
H6 | 0.4751 | 0.2088 | 0.3328 | 0.090* | |
C5 | 0.3210 (7) | 0.1158 (5) | 0.4337 (4) | 0.0775 (14) | |
H5 | 0.2432 | 0.0489 | 0.3740 | 0.093* | |
C4 | 0.2986 (6) | 0.1201 (4) | 0.5465 (4) | 0.0706 (12) | |
H4 | 0.2029 | 0.0560 | 0.5602 | 0.085* | |
C10 | 0.9183 (6) | 0.6085 (4) | 0.6741 (5) | 0.0684 (12) | |
H10 | 0.9866 | 0.6593 | 0.6297 | 0.082* | |
C11 | 0.9465 (6) | 0.6442 (4) | 0.7941 (5) | 0.0739 (13) | |
H11 | 1.0349 | 0.7218 | 0.8331 | 0.089* | |
C12 | 0.8448 (6) | 0.5657 (4) | 0.8559 (4) | 0.0644 (11) | |
H12 | 0.8703 | 0.5913 | 0.9377 | 0.077* | |
C3 | 0.6052 (7) | 0.1911 (4) | 0.8956 (4) | 0.0611 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ru1 | 0.0571 (2) | 0.0437 (2) | 0.0766 (3) | 0.00962 (15) | 0.03234 (18) | 0.00607 (16) |
Cl1 | 0.0980 (8) | 0.0420 (6) | 0.1220 (10) | 0.0094 (6) | 0.0617 (8) | 0.0079 (6) |
Cl2 | 0.0528 (7) | 0.0710 (8) | 0.1545 (12) | 0.0099 (6) | 0.0270 (7) | −0.0064 (8) |
O1 | 0.129 (2) | 0.0729 (17) | 0.141 (3) | 0.0402 (16) | 0.094 (2) | 0.0351 (17) |
O2 | 0.089 (2) | 0.0517 (19) | 0.073 (2) | 0.0212 (17) | 0.0251 (16) | −0.0041 (16) |
O4 | 0.099 (2) | 0.131 (3) | 0.074 (2) | 0.044 (2) | 0.0520 (19) | 0.0392 (19) |
O3 | 0.074 (2) | 0.082 (2) | 0.089 (2) | 0.0230 (18) | 0.0218 (19) | 0.0225 (17) |
N1 | 0.054 (2) | 0.0403 (19) | 0.058 (2) | 0.0090 (16) | 0.0139 (17) | −0.0020 (16) |
N2 | 0.056 (2) | 0.049 (2) | 0.056 (2) | 0.0045 (16) | 0.0185 (18) | 0.0003 (17) |
C1 | 0.129 (2) | 0.0729 (17) | 0.141 (3) | 0.0402 (16) | 0.094 (2) | 0.0351 (17) |
C2 | 0.051 (2) | 0.062 (3) | 0.050 (3) | 0.010 (2) | 0.016 (2) | 0.009 (2) |
C14 | 0.047 (2) | 0.049 (3) | 0.049 (3) | 0.0187 (19) | 0.016 (2) | 0.004 (2) |
C13 | 0.047 (2) | 0.040 (2) | 0.057 (3) | 0.0170 (18) | 0.019 (2) | 0.011 (2) |
C9 | 0.050 (2) | 0.059 (3) | 0.071 (3) | 0.023 (2) | 0.030 (2) | 0.020 (2) |
C8 | 0.064 (3) | 0.082 (3) | 0.068 (3) | 0.039 (2) | 0.035 (3) | 0.026 (3) |
C7 | 0.057 (3) | 0.062 (3) | 0.050 (3) | 0.027 (2) | 0.014 (2) | −0.001 (2) |
C6 | 0.085 (3) | 0.088 (4) | 0.059 (3) | 0.042 (3) | 0.021 (3) | 0.005 (3) |
C5 | 0.094 (4) | 0.064 (3) | 0.057 (3) | 0.019 (3) | −0.003 (3) | −0.021 (2) |
C4 | 0.067 (3) | 0.053 (3) | 0.079 (4) | 0.006 (2) | 0.008 (3) | −0.007 (3) |
C10 | 0.052 (3) | 0.055 (3) | 0.108 (4) | 0.010 (2) | 0.039 (3) | 0.024 (3) |
C11 | 0.064 (3) | 0.058 (3) | 0.096 (4) | 0.003 (2) | 0.023 (3) | 0.005 (3) |
C12 | 0.066 (3) | 0.055 (3) | 0.065 (3) | 0.007 (2) | 0.012 (2) | −0.004 (2) |
C3 | 0.080 (3) | 0.046 (3) | 0.069 (3) | 0.012 (2) | 0.039 (3) | 0.011 (2) |
Ru1—C1 | 1.865 (5) | C13—C9 | 1.394 (5) |
Ru1—C3 | 1.882 (5) | C9—C10 | 1.377 (5) |
Ru1—C2 | 1.914 (4) | C9—C8 | 1.488 (5) |
Ru1—N1 | 2.168 (3) | C8—C7 | 1.486 (5) |
Ru1—Cl2 | 2.4037 (16) | C7—C6 | 1.365 (5) |
Ru1—Cl1 | 2.4128 (12) | C6—C5 | 1.370 (6) |
O1—C1 | 1.141 (5) | C6—H6 | 0.9300 |
O2—C2 | 1.128 (4) | C5—C4 | 1.372 (5) |
O4—C8 | 1.206 (4) | C5—H5 | 0.9300 |
O3—C3 | 1.146 (4) | C4—H4 | 0.9300 |
N1—C14 | 1.344 (4) | C10—C11 | 1.373 (5) |
N1—C4 | 1.369 (4) | C10—H10 | 0.9300 |
N2—C13 | 1.314 (4) | C11—C12 | 1.362 (5) |
N2—C12 | 1.350 (4) | C11—H11 | 0.9300 |
C14—C7 | 1.385 (5) | C12—H12 | 0.9300 |
C14—C13 | 1.490 (5) | ||
C1—Ru1—C3 | 93.5 (2) | C10—C9—C8 | 131.2 (4) |
C1—Ru1—C2 | 89.90 (18) | C13—C9—C8 | 108.6 (4) |
C3—Ru1—C2 | 95.34 (16) | O4—C8—C7 | 126.6 (4) |
C1—Ru1—N1 | 173.34 (18) | O4—C8—C9 | 128.1 (4) |
C3—Ru1—N1 | 90.43 (15) | C7—C8—C9 | 105.2 (4) |
C2—Ru1—N1 | 95.11 (13) | C6—C7—C14 | 121.1 (4) |
C1—Ru1—Cl2 | 87.35 (18) | C6—C7—C8 | 129.3 (4) |
C3—Ru1—Cl2 | 178.40 (13) | C14—C7—C8 | 109.5 (4) |
C2—Ru1—Cl2 | 86.04 (12) | C7—C6—C5 | 117.0 (4) |
N1—Ru1—Cl2 | 88.62 (10) | C7—C6—H6 | 121.5 |
C1—Ru1—Cl1 | 85.99 (15) | C5—C6—H6 | 121.5 |
C3—Ru1—Cl1 | 86.50 (12) | C6—C5—C4 | 120.2 (4) |
C2—Ru1—Cl1 | 175.60 (11) | C6—C5—H5 | 119.9 |
N1—Ru1—Cl1 | 88.86 (9) | C4—C5—H5 | 119.9 |
Cl2—Ru1—Cl1 | 92.18 (5) | N1—C4—C5 | 123.6 (4) |
C14—N1—C4 | 115.2 (3) | N1—C4—H4 | 118.2 |
C14—N1—Ru1 | 129.1 (3) | C5—C4—H4 | 118.2 |
C4—N1—Ru1 | 115.7 (3) | C11—C10—C9 | 116.3 (4) |
C13—N2—C12 | 114.9 (3) | C11—C10—H10 | 121.9 |
O1—C1—Ru1 | 177.9 (5) | C9—C10—H10 | 121.9 |
O2—C2—Ru1 | 172.3 (3) | C12—C11—C10 | 119.8 (4) |
N1—C14—C7 | 122.9 (4) | C12—C11—H11 | 120.1 |
N1—C14—C13 | 129.2 (3) | C10—C11—H11 | 120.1 |
C7—C14—C13 | 107.9 (4) | N2—C12—C11 | 125.0 (4) |
N2—C13—C9 | 123.9 (4) | N2—C12—H12 | 117.5 |
N2—C13—C14 | 127.4 (3) | C11—C12—H12 | 117.5 |
C9—C13—C14 | 108.7 (3) | O3—C3—Ru1 | 177.4 (4) |
C10—C9—C13 | 120.1 (4) |
Experimental details
(1) | (2) | |
Crystal data | ||
Chemical formula | [RuCl2(C11H6N2O)(CO)2] | [RuCl2(C11H6N2O)(CO)3] |
Mr | 410.17 | 438.18 |
Crystal system, space group | Monoclinic, P21/n | Triclinic, P1 |
Temperature (K) | 296 | 296 |
a, b, c (Å) | 6.5589 (2), 16.9199 (6), 12.7585 (5) | 7.458 (2), 9.701 (2), 11.594 (9) |
α, β, γ (°) | 90, 100.69, 90 | 90.43 (3), 108.60 (4), 98.41 (2) |
V (Å3) | 1391.30 (8) | 785.1 (7) |
Z | 4 | 2 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 1.52 | 1.36 |
Crystal size (mm) | 0.20 × 0.15 × 0.12 | 0.15 × 0.10 × 0.08 |
Data collection | ||
Diffractometer | Bruker APEXII CCD diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.668, 0.745 | 0.682, 0.745 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13644, 2840, 2598 | 7433, 2934, 2141 |
Rint | 0.055 | 0.049 |
(sin θ/λ)max (Å−1) | 0.625 | 0.609 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.076, 1.01 | 0.037, 0.060, 1.13 |
No. of reflections | 2840 | 2934 |
No. of parameters | 190 | 202 |
No. of restraints | 0 | 1 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.02, −0.42 | 0.74, −0.60 |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), SHELXTL (Bruker 2008) and OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010).
Ru1—C2 | 1.879 (3) | Ru1—N1 | 2.203 (2) |
Ru1—C1 | 1.923 (3) | Ru1—Cl2 | 2.3844 (9) |
Ru1—N2 | 2.161 (2) | Ru1—Cl1 | 2.3974 (8) |
C2—Ru1—C1 | 90.05 (13) | N2—Ru1—Cl2 | 84.47 (6) |
C2—Ru1—N2 | 95.24 (10) | N1—Ru1—Cl2 | 89.61 (6) |
C1—Ru1—N2 | 174.48 (11) | C2—Ru1—Cl1 | 88.54 (9) |
C2—Ru1—N1 | 175.16 (10) | C1—Ru1—Cl1 | 94.06 (10) |
C1—Ru1—N1 | 93.90 (11) | N2—Ru1—Cl1 | 87.65 (6) |
N2—Ru1—N1 | 80.89 (8) | N1—Ru1—Cl1 | 88.39 (6) |
C2—Ru1—Cl2 | 92.93 (9) | Cl2—Ru1—Cl1 | 172.08 (3) |
C1—Ru1—Cl2 | 93.72 (10) |
Ru1—C1 | 1.865 (5) | Ru1—N1 | 2.168 (3) |
Ru1—C3 | 1.882 (5) | Ru1—Cl2 | 2.4037 (16) |
Ru1—C2 | 1.914 (4) | Ru1—Cl1 | 2.4128 (12) |
C1—Ru1—C3 | 93.5 (2) | C2—Ru1—Cl2 | 86.04 (12) |
C1—Ru1—C2 | 89.90 (18) | N1—Ru1—Cl2 | 88.62 (10) |
C3—Ru1—C2 | 95.34 (16) | C1—Ru1—Cl1 | 85.99 (15) |
C1—Ru1—N1 | 173.34 (18) | C3—Ru1—Cl1 | 86.50 (12) |
C3—Ru1—N1 | 90.43 (15) | C2—Ru1—Cl1 | 175.60 (11) |
C2—Ru1—N1 | 95.11 (13) | N1—Ru1—Cl1 | 88.86 (9) |
C1—Ru1—Cl2 | 87.35 (18) | Cl2—Ru1—Cl1 | 92.18 (5) |
C3—Ru1—Cl2 | 178.40 (13) |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register