Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229621005192/ov3148sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229621005192/ov3148Isup2.hkl |
CCDC reference: 2083846
Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: SHELXTL (Bruker, 2016); software used to prepare material for publication: SHELXTL (Bruker, 2016) and XPREP (Sheldrick, 2008).
AlSb3Yb3 | Dx = 7.468 Mg m−3 |
Mr = 911.35 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pnma | Cell parameters from 9949 reflections |
a = 12.803 (3) Å | θ = 2.9–30.6° |
b = 4.4751 (9) Å | µ = 44.11 mm−1 |
c = 14.148 (3) Å | T = 100 K |
V = 810.6 (3) Å3 | Needle, black |
Z = 4 | 0.06 × 0.05 × 0.03 mm |
F(000) = 1504 |
Bruker APEXII CCD diffractometer | 1283 reflections with I > 2σ(I) |
Radiation source: microsource | Rint = 0.038 |
φ and ω scans | θmax = 30.6°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | h = −18→18 |
Tmin = 0.100, Tmax = 0.201 | k = −6→6 |
16634 measured reflections | l = −20→20 |
1395 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0144P)2 + 1.4011P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.016 | (Δ/σ)max = 0.002 |
wR(F2) = 0.034 | Δρmax = 1.39 e Å−3 |
S = 1.17 | Δρmin = −1.38 e Å−3 |
1395 reflections | Extinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
44 parameters | Extinction coefficient: 0.00046 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Single-crystal X-ray diffraction data were collected from a Bruker X-ray diffractometer with Mo radiation and processed by APEX 3 and SADABS (see Table 1) (Bruker, 2016). The black needle crystals were selected and cut to appropriate dimensions in Paratone-N oil. The space group Pnma was determined by XPREP automatically (Sheldrick, 2008). The structure was solved by direct methods in the SHELXTL suite of programs (Sheldrick, 2008). During the refinement cycles, unphysical atomic positions based on van der Waals radius were ignored manually, with the final refinement cycles obtained a highest residue peak 2.725 e-/Å3 and a deepest hole of -1.784 e-/Å3. The absorption correction was further employed in the refinement using SADABS (Bruker, 2016) resulting in a drop in the R1 factor to 1.58 % with highest residue peak 1.389 e-/Å3 and the deepest hole -1.378 e-/Å3. Atomic coordinates were standardized using the STRUCTURE TIDY program (Gelato & Parthé, 1987). |
x | y | z | Uiso*/Ueq | ||
Yb1 | 0.55940 (2) | 0.250000 | 0.61179 (2) | 0.00583 (6) | |
Yb2 | 0.27262 (2) | 0.250000 | 0.72127 (2) | 0.00586 (6) | |
Yb3 | 0.35004 (2) | 0.250000 | 0.00587 (2) | 0.00623 (6) | |
Sb1 | 0.25645 (3) | 0.250000 | 0.38116 (2) | 0.00527 (7) | |
Sb2 | 0.11386 (3) | 0.250000 | 0.10925 (2) | 0.00517 (7) | |
Sb3 | 0.04007 (3) | 0.250000 | 0.64920 (2) | 0.00543 (8) | |
Al1 | 0.06670 (12) | 0.250000 | 0.29703 (12) | 0.0061 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Yb1 | 0.00605 (10) | 0.00642 (11) | 0.00503 (11) | 0.000 | −0.00007 (8) | 0.000 |
Yb2 | 0.00642 (10) | 0.00572 (11) | 0.00543 (11) | 0.000 | 0.00049 (8) | 0.000 |
Yb3 | 0.00714 (10) | 0.00650 (11) | 0.00505 (11) | 0.000 | −0.00028 (8) | 0.000 |
Sb1 | 0.00581 (15) | 0.00496 (15) | 0.00504 (16) | 0.000 | −0.00015 (12) | 0.000 |
Sb2 | 0.00593 (15) | 0.00540 (16) | 0.00418 (16) | 0.000 | −0.00035 (12) | 0.000 |
Sb3 | 0.00601 (15) | 0.00547 (15) | 0.00480 (16) | 0.000 | 0.00029 (12) | 0.000 |
Al1 | 0.0072 (7) | 0.0050 (7) | 0.0061 (7) | 0.000 | 0.0010 (6) | 0.000 |
Yb1—Sb2i | 3.1509 (5) | Yb2—Al1ii | 3.2230 (12) |
Yb1—Sb2ii | 3.1509 (5) | Yb2—Al1i | 3.2230 (12) |
Yb1—Sb2iii | 3.2039 (7) | Yb2—Yb3i | 4.0939 (6) |
Yb1—Sb1iv | 3.2520 (5) | Yb2—Yb3ii | 4.0939 (6) |
Yb1—Sb1v | 3.2520 (5) | Yb2—Yb3vii | 4.1466 (8) |
Yb1—Sb3vi | 3.3906 (8) | Yb3—Sb1viii | 3.1589 (5) |
Yb1—Yb2vi | 3.6097 (6) | Yb3—Sb1ix | 3.1589 (5) |
Yb1—Yb2 | 3.9849 (8) | Yb3—Sb3iii | 3.2760 (6) |
Yb1—Yb3iii | 4.0764 (8) | Yb3—Sb3ix | 3.3313 (5) |
Yb1—Yb1v | 4.1623 (7) | Yb3—Sb3viii | 3.3313 (5) |
Yb1—Yb1iv | 4.1623 (7) | Yb3—Sb2 | 3.3590 (7) |
Yb2—Sb2i | 3.1034 (5) | Sb1—Al1 | 2.7053 (17) |
Yb2—Sb2ii | 3.1034 (5) | Sb2—Al1 | 2.7245 (18) |
Yb2—Sb3 | 3.1470 (7) | Sb3—Al1x | 2.7302 (10) |
Yb2—Sb1ii | 3.2034 (5) | Sb3—Al1xi | 2.7302 (10) |
Yb2—Sb1i | 3.2034 (5) | ||
Sb2i—Yb1—Sb2ii | 90.493 (19) | Sb1viii—Yb3—Sb3iii | 86.932 (15) |
Sb2i—Yb1—Sb2iii | 98.168 (9) | Sb1ix—Yb3—Sb3iii | 86.932 (14) |
Sb2ii—Yb1—Sb2iii | 98.168 (9) | Sb1viii—Yb3—Sb3ix | 176.402 (9) |
Sb2i—Yb1—Sb1iv | 177.931 (9) | Sb1ix—Yb3—Sb3ix | 92.665 (16) |
Sb2ii—Yb1—Sb1iv | 91.267 (18) | Sb3iii—Yb3—Sb3ix | 95.394 (15) |
Sb2iii—Yb1—Sb1iv | 82.658 (9) | Sb1viii—Yb3—Sb3viii | 92.665 (16) |
Sb2i—Yb1—Sb1v | 91.267 (17) | Sb1ix—Yb3—Sb3viii | 176.402 (9) |
Sb2ii—Yb1—Sb1v | 177.931 (9) | Sb3iii—Yb3—Sb3viii | 95.394 (15) |
Sb2iii—Yb1—Sb1v | 82.658 (9) | Sb3ix—Yb3—Sb3viii | 84.393 (17) |
Sb1iv—Yb1—Sb1v | 86.954 (19) | Sb1viii—Yb3—Sb2 | 81.643 (13) |
Sb2i—Yb1—Sb3vi | 87.708 (9) | Sb1ix—Yb3—Sb2 | 81.643 (13) |
Sb2ii—Yb1—Sb3vi | 87.708 (9) | Sb3iii—Yb3—Sb2 | 163.769 (12) |
Sb2iii—Yb1—Sb3vi | 171.614 (12) | Sb3ix—Yb3—Sb2 | 96.612 (14) |
Sb1iv—Yb1—Sb3vi | 91.275 (9) | Sb3viii—Yb3—Sb2 | 96.612 (14) |
Sb1v—Yb1—Sb3vi | 91.275 (9) | Sb1viii—Yb3—Yb1xiii | 51.533 (8) |
Sb2i—Yb1—Yb2vi | 122.672 (11) | Sb1ix—Yb3—Yb1xiii | 51.533 (8) |
Sb2ii—Yb1—Yb2vi | 122.672 (10) | Sb3iii—Yb3—Yb1xiii | 113.857 (16) |
Sb2iii—Yb1—Yb2vi | 118.297 (14) | Sb3ix—Yb3—Yb1xiii | 129.349 (8) |
Sb1iv—Yb1—Yb2vi | 55.363 (11) | Sb3viii—Yb3—Yb1xiii | 129.349 (8) |
Sb1v—Yb1—Yb2vi | 55.363 (10) | Sb2—Yb3—Yb1xiii | 49.912 (14) |
Sb3vi—Yb1—Yb2vi | 53.317 (12) | Sb1viii—Yb3—Yb2ix | 129.596 (14) |
Sb2i—Yb1—Yb2 | 49.896 (10) | Sb1ix—Yb3—Yb2ix | 82.131 (16) |
Sb2ii—Yb1—Yb2 | 49.896 (10) | Sb3iii—Yb3—Yb2ix | 141.571 (8) |
Sb2iii—Yb1—Yb2 | 125.444 (10) | Sb3ix—Yb3—Yb2ix | 48.834 (12) |
Sb1iv—Yb1—Yb2 | 130.999 (11) | Sb3viii—Yb3—Yb2ix | 94.358 (16) |
Sb1v—Yb1—Yb2 | 130.999 (11) | Sb2—Yb3—Yb2ix | 47.977 (7) |
Sb3vi—Yb1—Yb2 | 62.942 (8) | Yb1xiii—Yb3—Yb2ix | 87.353 (12) |
Yb2vi—Yb1—Yb2 | 116.259 (15) | Sb1viii—Yb3—Yb2viii | 82.131 (15) |
Sb2i—Yb1—Yb3iii | 129.639 (10) | Sb1ix—Yb3—Yb2viii | 129.596 (14) |
Sb2ii—Yb1—Yb3iii | 129.639 (10) | Sb3iii—Yb3—Yb2viii | 141.571 (8) |
Sb2iii—Yb1—Yb3iii | 53.330 (8) | Sb3ix—Yb3—Yb2viii | 94.358 (16) |
Sb1iv—Yb1—Yb3iii | 49.514 (10) | Sb3viii—Yb3—Yb2viii | 48.834 (12) |
Sb1v—Yb1—Yb3iii | 49.514 (10) | Sb2—Yb3—Yb2viii | 47.977 (7) |
Sb3vi—Yb1—Yb3iii | 118.284 (10) | Yb1xiii—Yb3—Yb2viii | 87.353 (12) |
Yb2vi—Yb1—Yb3iii | 64.967 (15) | Yb2ix—Yb3—Yb2viii | 66.263 (15) |
Yb2—Yb1—Yb3iii | 178.774 (8) | Sb1viii—Yb3—Yb2xiv | 49.793 (9) |
Sb2i—Yb1—Yb1v | 49.636 (9) | Sb1ix—Yb3—Yb2xiv | 49.793 (9) |
Sb2ii—Yb1—Yb1v | 96.654 (14) | Sb3iii—Yb3—Yb2xiv | 61.789 (14) |
Sb2iii—Yb1—Yb1v | 48.532 (11) | Sb3ix—Yb3—Yb2xiv | 133.789 (9) |
Sb1iv—Yb1—Yb1v | 131.158 (12) | Sb3viii—Yb3—Yb2xiv | 133.789 (9) |
Sb1v—Yb1—Yb1v | 85.317 (12) | Sb2—Yb3—Yb2xiv | 101.980 (13) |
Sb3vi—Yb1—Yb1v | 136.991 (10) | Yb1xiii—Yb3—Yb2xiv | 52.068 (6) |
Yb2vi—Yb1—Yb1v | 140.673 (8) | Yb2ix—Yb3—Yb2xiv | 129.133 (11) |
Yb2—Yb1—Yb1v | 87.635 (12) | Yb2viii—Yb3—Yb2xiv | 129.133 (11) |
Yb3iii—Yb1—Yb1v | 91.331 (13) | Al1—Sb1—Yb3ii | 81.84 (3) |
Sb2i—Yb1—Yb1iv | 96.654 (14) | Al1—Sb1—Yb3i | 81.84 (3) |
Sb2ii—Yb1—Yb1iv | 49.636 (9) | Yb3ii—Sb1—Yb3i | 90.199 (17) |
Sb2iii—Yb1—Yb1iv | 48.532 (11) | Al1—Sb1—Yb2viii | 65.48 (2) |
Sb1iv—Yb1—Yb1iv | 85.317 (12) | Yb3ii—Sb1—Yb2viii | 147.037 (15) |
Sb1v—Yb1—Yb1iv | 131.158 (13) | Yb3i—Sb1—Yb2viii | 81.343 (15) |
Sb3vi—Yb1—Yb1iv | 136.991 (10) | Al1—Sb1—Yb2ix | 65.48 (2) |
Yb2vi—Yb1—Yb1iv | 140.673 (8) | Yb3ii—Sb1—Yb2ix | 81.343 (15) |
Yb2—Yb1—Yb1iv | 87.635 (12) | Yb3i—Sb1—Yb2ix | 147.037 (15) |
Yb3iii—Yb1—Yb1iv | 91.331 (13) | Yb2viii—Sb1—Yb2ix | 88.613 (19) |
Yb1v—Yb1—Yb1iv | 65.038 (15) | Al1—Sb1—Yb1iv | 131.650 (17) |
Sb2i—Yb2—Sb2ii | 92.274 (18) | Yb3ii—Sb1—Yb1iv | 78.953 (14) |
Sb2i—Yb2—Sb3 | 106.117 (12) | Yb3i—Sb1—Yb1iv | 141.550 (14) |
Sb2ii—Yb2—Sb3 | 106.117 (12) | Yb2viii—Sb1—Yb1iv | 125.910 (14) |
Sb2i—Yb2—Sb1ii | 156.728 (12) | Yb2ix—Sb1—Yb1iv | 67.994 (11) |
Sb2ii—Yb2—Sb1ii | 84.917 (16) | Al1—Sb1—Yb1v | 131.650 (17) |
Sb3—Yb2—Sb1ii | 96.828 (11) | Yb3ii—Sb1—Yb1v | 141.550 (14) |
Sb2i—Yb2—Sb1i | 84.917 (16) | Yb3i—Sb1—Yb1v | 78.953 (14) |
Sb2ii—Yb2—Sb1i | 156.728 (12) | Yb2viii—Sb1—Yb1v | 67.994 (11) |
Sb3—Yb2—Sb1i | 96.828 (11) | Yb2ix—Sb1—Yb1v | 125.910 (14) |
Sb1ii—Yb2—Sb1i | 88.613 (19) | Yb1iv—Sb1—Yb1v | 86.955 (19) |
Sb2i—Yb2—Al1ii | 111.80 (3) | Al1—Sb2—Yb2ix | 66.78 (2) |
Sb2ii—Yb2—Al1ii | 50.97 (3) | Al1—Sb2—Yb2viii | 66.78 (2) |
Sb3—Yb2—Al1ii | 135.37 (2) | Yb2ix—Sb2—Yb2viii | 92.272 (18) |
Sb1ii—Yb2—Al1ii | 49.79 (3) | Al1—Sb2—Yb1viii | 80.38 (3) |
Sb1i—Yb2—Al1ii | 108.92 (3) | Yb2ix—Sb2—Yb1viii | 146.707 (14) |
Sb2i—Yb2—Al1i | 50.97 (3) | Yb2viii—Sb2—Yb1viii | 79.157 (14) |
Sb2ii—Yb2—Al1i | 111.80 (3) | Al1—Sb2—Yb1ix | 80.38 (3) |
Sb3—Yb2—Al1i | 135.37 (2) | Yb2ix—Sb2—Yb1ix | 79.157 (14) |
Sb1ii—Yb2—Al1i | 108.92 (3) | Yb2viii—Sb2—Yb1ix | 146.707 (14) |
Sb1i—Yb2—Al1i | 49.79 (3) | Yb1viii—Sb2—Yb1ix | 90.493 (19) |
Al1ii—Yb2—Al1i | 87.93 (4) | Al1—Sb2—Yb1xiii | 154.63 (4) |
Sb2i—Yb2—Yb1xii | 133.498 (8) | Yb2ix—Sb2—Yb1xiii | 126.898 (9) |
Sb2ii—Yb2—Yb1xii | 133.498 (8) | Yb2viii—Sb2—Yb1xiii | 126.898 (9) |
Sb3—Yb2—Yb1xii | 59.773 (15) | Yb1viii—Sb2—Yb1xiii | 81.833 (9) |
Sb1ii—Yb2—Yb1xii | 56.642 (10) | Yb1ix—Sb2—Yb1xiii | 81.833 (9) |
Sb1i—Yb2—Yb1xii | 56.642 (10) | Al1—Sb2—Yb3 | 128.61 (4) |
Al1ii—Yb2—Yb1xii | 105.37 (3) | Yb2ix—Sb2—Yb3 | 78.506 (13) |
Al1i—Yb2—Yb1xii | 105.37 (3) | Yb2viii—Sb2—Yb3 | 78.506 (13) |
Sb2i—Yb2—Yb1 | 50.948 (9) | Yb1viii—Sb2—Yb3 | 129.695 (11) |
Sb2ii—Yb2—Yb1 | 50.948 (9) | Yb1ix—Sb2—Yb3 | 129.695 (11) |
Sb3—Yb2—Yb1 | 138.219 (14) | Yb1xiii—Sb2—Yb3 | 76.758 (13) |
Sb1ii—Yb2—Yb1 | 112.428 (9) | Al1x—Sb3—Al1xi | 110.08 (6) |
Sb1i—Yb2—Yb1 | 112.428 (9) | Al1x—Sb3—Yb2 | 112.54 (3) |
Al1ii—Yb2—Yb1 | 62.69 (3) | Al1xi—Sb3—Yb2 | 112.54 (3) |
Al1i—Yb2—Yb1 | 62.69 (3) | Al1x—Sb3—Yb3xiii | 79.33 (4) |
Yb1xii—Yb2—Yb1 | 162.008 (8) | Al1xi—Sb3—Yb3xiii | 79.33 (4) |
Sb2i—Yb2—Yb3i | 53.517 (12) | Yb2—Sb3—Yb3xiii | 156.866 (14) |
Sb2ii—Yb2—Yb3i | 101.160 (15) | Al1x—Sb3—Yb3i | 80.25 (3) |
Sb3—Yb2—Yb3i | 52.836 (7) | Al1xi—Sb3—Yb3i | 158.67 (4) |
Sb1ii—Yb2—Yb3i | 149.637 (11) | Yb2—Sb3—Yb3i | 78.329 (12) |
Sb1i—Yb2—Yb3i | 95.699 (16) | Yb3xiii—Sb3—Yb3i | 84.607 (15) |
Al1ii—Yb2—Yb3i | 150.67 (3) | Al1x—Sb3—Yb3ii | 158.67 (4) |
Al1i—Yb2—Yb3i | 96.49 (3) | Al1xi—Sb3—Yb3ii | 80.25 (3) |
Yb1xii—Yb2—Yb3i | 101.360 (15) | Yb2—Sb3—Yb3ii | 78.329 (12) |
Yb1—Yb2—Yb3i | 93.673 (12) | Yb3xiii—Sb3—Yb3ii | 84.607 (15) |
Sb2i—Yb2—Yb3ii | 101.160 (15) | Yb3i—Sb3—Yb3ii | 84.392 (17) |
Sb2ii—Yb2—Yb3ii | 53.517 (12) | Al1x—Sb3—Yb1xii | 76.03 (4) |
Sb3—Yb2—Yb3ii | 52.836 (7) | Al1xi—Sb3—Yb1xii | 76.03 (4) |
Sb1ii—Yb2—Yb3ii | 95.699 (16) | Yb2—Sb3—Yb1xii | 66.909 (9) |
Sb1i—Yb2—Yb3ii | 149.637 (11) | Yb3xiii—Sb3—Yb1xii | 136.224 (14) |
Al1ii—Yb2—Yb3ii | 96.49 (3) | Yb3i—Sb3—Yb1xii | 125.189 (10) |
Al1i—Yb2—Yb3ii | 150.67 (3) | Yb3ii—Sb3—Yb1xii | 125.189 (11) |
Yb1xii—Yb2—Yb3ii | 101.360 (14) | Sb1—Al1—Sb2 | 103.30 (5) |
Yb1—Yb2—Yb3ii | 93.673 (11) | Sb1—Al1—Sb3x | 109.09 (4) |
Yb3i—Yb2—Yb3ii | 66.263 (14) | Sb2—Al1—Sb3x | 112.50 (4) |
Sb2i—Yb2—Yb3vii | 112.578 (11) | Sb1—Al1—Sb3xi | 109.09 (4) |
Sb2ii—Yb2—Yb3vii | 112.578 (11) | Sb2—Al1—Sb3xi | 112.50 (4) |
Sb3—Yb2—Yb3vii | 122.737 (9) | Sb3x—Al1—Sb3xi | 110.08 (6) |
Sb1ii—Yb2—Yb3vii | 48.862 (10) | Sb1—Al1—Yb2ix | 64.73 (3) |
Sb1i—Yb2—Yb3vii | 48.862 (10) | Sb2—Al1—Yb2ix | 62.24 (3) |
Al1ii—Yb2—Yb3vii | 61.61 (3) | Sb3x—Al1—Yb2ix | 168.88 (5) |
Al1i—Yb2—Yb3vii | 61.61 (3) | Sb3xi—Al1—Yb2ix | 80.983 (17) |
Yb1xii—Yb2—Yb3vii | 62.964 (14) | Sb1—Al1—Yb2viii | 64.73 (3) |
Yb1—Yb2—Yb3vii | 99.044 (12) | Sb2—Al1—Yb2viii | 62.24 (3) |
Yb3i—Yb2—Yb3vii | 144.539 (8) | Sb3x—Al1—Yb2viii | 80.983 (17) |
Yb3ii—Yb2—Yb3vii | 144.539 (8) | Sb3xi—Al1—Yb2viii | 168.88 (5) |
Sb1viii—Yb3—Sb1ix | 90.197 (17) | Yb2ix—Al1—Yb2viii | 87.93 (4) |
Symmetry codes: (i) −x+1/2, −y, z+1/2; (ii) −x+1/2, −y+1, z+1/2; (iii) x+1/2, y, −z+1/2; (iv) −x+1, −y+1, −z+1; (v) −x+1, −y, −z+1; (vi) x+1/2, y, −z+3/2; (vii) x, y, z+1; (viii) −x+1/2, −y, z−1/2; (ix) −x+1/2, −y+1, z−1/2; (x) −x, −y, −z+1; (xi) −x, −y+1, −z+1; (xii) x−1/2, y, −z+3/2; (xiii) x−1/2, y, −z+1/2; (xiv) x, y, z−1. |
Ueq is defined as one third of the trace of the orthogonalized Uij tensor top
x | y | z | Ueq | |
Yb1 | 5594 (1) | 2500 | 6118 (1) | 6(1) |
Yb2 | 2726 (1) | 2500 | 7213 (1) | 6(1) |
Yb3 | 3500 (1) | 2500 | 59 (1) | 6(1) |
Sb1 | 2564 (1) | 2500 | 3812 (1) | 5(1) |
Sb2 | 1139 (1) | 2500 | 1092 (1) | 5(1) |
Sb3 | 401 (1) | 2500 | 6492 (1) | 5(1) |
Al1 | 667 (1) | 2500 | 2970 (1) | 6(1) |
U11 | U22 | U33 | U23 | U13 | U12 | |
Yb1 | 6(1) | 6(1) | 5(1) | 0 | 0(1) | 0 |
Yb2 | 6(1) | 6(1) | 5(1) | 0 | 0(1) | 0 |
Yb3 | 7(1) | 6(1) | 5(1) | 0 | 0(1) | 0 |
Sb1 | 6(1) | 5(1) | 5(1) | 0 | 0(1) | 0 |
Sb2 | 6(1) | 5(1) | 4(1) | 0 | 0(1) | 0 |
Sb3 | 6(1) | 5(1) | 5(1) | 0 | 0(1) | 0 |
Al1 | 7(1) | 5(1) | 6(1) | 0 | 1(1) | 0 |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register