Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Owing to the complex matrix effects, the current approach to quantitative X-ray diffraction (XRD) and X-ray fluorescence (XRF) analyses of mixtures requires calibration lines from standards, and is hence tedious and time consuming. New insights reveal that both the matrix effects and the calibration lines can be eliminated mathematically. Any complex mixture can be transformed into a set of simple binary mixtures. One straightforward formula decodes both XRD and XRF. A single XRD or XRF scan quantifies the chemical compounds or chemical elements in any mixture. The unified and simplified procedure reduces by some 80% the laboratory work associated with current practice. Five sets of experimental data are presented to verify its applications. Statistical evaluation of this new procedure gives a precision of ±5% or better, which is normally expected from XRD and XRF analyses.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds