Buy article online - an online subscription or single-article purchase is required to access this article.
Recent studies have confirmed the usefulness of the Hooft and Parsons methodologies for determination of the absolute crystal structures of enantiopure light-atom compounds using Cu Kα radiation. While many single-crystal diffractometers used for small-molecule structure determination are equipped with molybdenum anodes, use of data from such instruments for the absolute structure determination of light-atom crystal structures is rarely documented and has often been found to be unsuccessful. The Hooft and Parsons methodologies have been applied to 44 data sets obtained from single crystals containing light-atom molecules of known chirality using Mo Kα radiation. Several factors influencing the calculation of accurate and precise values for the Hooft and Parsons parameters obtained from these data sets have been identified, the inclusion of high-resolution diffraction data being particularly important. The correct absolute structure was obtained in all cases, with the standard uncertainties of the final absolute structure parameters below 0.1 for the great majority.
Supporting information
CCDC reference: 1009312
Data collection: Bruker APEX2 v2011.4-0; cell refinement: Bruker APEX2 v2011.4-0; data reduction: Bruker SAINT V7.60A; program(s) used to solve structure: Sir2011; program(s) used to refine structure: SHELXL2012 (Sheldrick, 2012); molecular graphics: Bruker SHELXTL; software used to prepare material for publication: Bruker SHELXTL.
Crystal data top
C3H7NO2 | Dx = 1.405 Mg m−3 |
Mr = 89.10 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 7420 reflections |
a = 5.7890 (8) Å | θ = 7.5–62.4° |
b = 5.9387 (7) Å | µ = 0.12 mm−1 |
c = 12.2516 (14) Å | T = 100 K |
V = 421.20 (9) Å3 | Block, colourless |
Z = 4 | 0.4 × 0.4 × 0.3 mm |
F(000) = 192 | |
Data collection top
Kappa 4-axis goniometer bruker-nonius diffractometer | 6425 independent reflections |
Radiation source: Rotating anode X-ray tube, Bruker-Nonius FR 591 | 6209 reflections with I > 2σ(I) |
Multilayer Montel 200 mirrors monochromator | Rint = 0.026 |
Detector resolution: 512 pixels mm-1 | θmax = 62.7°, θmin = 7.5° |
Fullsphere data collection, phi and ω scans | h = −13→12 |
Absorption correction: empirical (using intensity measurements) SADABS Version 2008/1 Bruker-Nonius
Blessing, Acta Cryst. (1995) A51 33-38 | k = −14→14 |
Tmin = 0.743, Tmax = 0.966 | l = −30→30 |
31341 measured reflections | |
Refinement top
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | H-atom parameters not refined |
R[F2 > 2σ(F2)] = 0.025 | w = 1/[σ2(Fo2) + (0.040P)2 + 0.0029P]
where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.066 | (Δ/σ)max = 0.002 |
S = 1.18 | Δρmax = 0.49 e Å−3 |
6425 reflections | Δρmin = −0.23 e Å−3 |
55 parameters | Absolute structure: Flack x determined using 2644 quotients [(I+)-(I-)]/[(I+)+(I-)]
(Parsons and Flack (2004), Acta Cryst. A60, s61). |
0 restraints | Absolute structure parameter: 0.05 (8) |
Crystal data top
C3H7NO2 | V = 421.20 (9) Å3 |
Mr = 89.10 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 5.7890 (8) Å | µ = 0.12 mm−1 |
b = 5.9387 (7) Å | T = 100 K |
c = 12.2516 (14) Å | 0.4 × 0.4 × 0.3 mm |
Data collection top
Kappa 4-axis goniometer bruker-nonius diffractometer | 6425 independent reflections |
Absorption correction: empirical (using intensity measurements) SADABS Version 2008/1 Bruker-Nonius
Blessing, Acta Cryst. (1995) A51 33-38 | 6209 reflections with I > 2σ(I) |
Tmin = 0.743, Tmax = 0.966 | Rint = 0.026 |
31341 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.025 | H-atom parameters not refined |
wR(F2) = 0.066 | Δρmax = 0.49 e Å−3 |
S = 1.18 | Δρmin = −0.23 e Å−3 |
6425 reflections | Absolute structure: Flack x determined using 2644 quotients [(I+)-(I-)]/[(I+)+(I-)]
(Parsons and Flack (2004), Acta Cryst. A60, s61). |
55 parameters | Absolute structure parameter: 0.05 (8) |
0 restraints | |
Special details top
Experimental. It should be noted that the e.s.d.'s of the cell dimensions are probably too
low; they should be multiplied by a factor of 2 to 10 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
O1 | −0.26127 (4) | 0.94249 (4) | 0.81575 (2) | 0.01282 (3) | |
O2 | −0.12499 (4) | 1.22736 (4) | 0.91615 (2) | 0.01287 (3) | |
N1 | 0.31650 (4) | 1.14850 (3) | 0.86234 (2) | 0.01033 (3) | |
C1 | −0.10016 (4) | 1.05514 (4) | 0.85909 (2) | 0.00919 (3) | |
C2 | 0.14545 (4) | 0.96797 (4) | 0.83885 (2) | 0.00930 (3) | |
C3 | 0.19665 (5) | 0.76231 (5) | 0.90917 (2) | 0.01349 (4) | |
H2 | 0.1624 | 0.9309 | 0.7617 | 0.021* | |
H11 | 0.3067 | 1.1953 | 0.9341 | 0.022* | |
H12 | 0.4527 | 1.0920 | 0.8541 | 0.028* | |
H13 | 0.2945 | 1.2591 | 0.8221 | 0.021* | |
H31 | 0.1957 | 0.8005 | 0.9881 | 0.026* | |
H32 | 0.0848 | 0.6442 | 0.8952 | 0.023* | |
H33 | 0.3491 | 0.7020 | 0.8936 | 0.022* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
O1 | 0.00792 (6) | 0.01600 (6) | 0.01453 (6) | −0.00075 (5) | −0.00098 (4) | −0.00346 (5) |
O2 | 0.01146 (7) | 0.01409 (6) | 0.01306 (5) | 0.00160 (5) | 0.00097 (4) | −0.00414 (4) |
N1 | 0.00808 (6) | 0.01183 (5) | 0.01107 (5) | −0.00043 (4) | −0.00003 (4) | −0.00042 (4) |
C1 | 0.00762 (6) | 0.01138 (6) | 0.00858 (5) | 0.00061 (4) | 0.00000 (4) | −0.00038 (4) |
C2 | 0.00765 (6) | 0.01098 (6) | 0.00928 (5) | 0.00046 (4) | −0.00003 (4) | −0.00090 (4) |
C3 | 0.01147 (8) | 0.01255 (7) | 0.01646 (8) | 0.00113 (6) | −0.00050 (6) | 0.00241 (6) |
Geometric parameters (Å, º) top
O1—C1 | 1.2647 (3) | C1—C2 | 1.5333 (4) |
O2—C1 | 1.2472 (3) | C2—C3 | 1.5238 (4) |
N1—C2 | 1.4876 (3) | | |
| | | |
O2—C1—O1 | 125.75 (2) | N1—C2—C3 | 109.81 (2) |
O2—C1—C2 | 118.32 (2) | N1—C2—C1 | 110.04 (2) |
O1—C1—C2 | 115.93 (2) | C3—C2—C1 | 111.07 (2) |
| | | |
O2—C1—C2—N1 | −18.27 (3) | O2—C1—C2—C3 | 103.54 (3) |
O1—C1—C2—N1 | 162.01 (2) | O1—C1—C2—C3 | −76.19 (3) |
Experimental details
Crystal data |
Chemical formula | C3H7NO2 |
Mr | 89.10 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 100 |
a, b, c (Å) | 5.7890 (8), 5.9387 (7), 12.2516 (14) |
V (Å3) | 421.20 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.4 × 0.4 × 0.3 |
|
Data collection |
Diffractometer | Kappa 4-axis goniometer bruker-nonius diffractometer |
Absorption correction | Empirical (using intensity measurements) SADABS Version 2008/1 Bruker-Nonius
Blessing, Acta Cryst. (1995) A51 33-38 |
Tmin, Tmax | 0.743, 0.966 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 31341, 6425, 6209 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 1.250 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.066, 1.18 |
No. of reflections | 6425 |
No. of parameters | 55 |
H-atom treatment | H-atom parameters not refined |
Δρmax, Δρmin (e Å−3) | 0.49, −0.23 |
Absolute structure | Flack x determined using 2644 quotients [(I+)-(I-)]/[(I+)+(I-)]
(Parsons and Flack (2004), Acta Cryst. A60, s61). |
Absolute structure parameter | 0.05 (8) |
Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.