Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
KBa4Bi3O crystallizes in the centrosymmetric tetragonal space group I4/mcm. In this compound, bismuth is present as two anionic species, i.e. Bi24- dumbbells [Bi-Bi 3.113 (3) Å] and isolated Bi3-. Atom Bi1 (Bi3-) lies inside a bicapped square antiprism (2 × K and 8 × Ba). Atom Bi2, which forms the Bi24- dumbbell, sits inside a bicapped distorted trigonal prism (2 × K and 6 × Ba). O atoms occupy tetra­hedral voids between Ba atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100006855/qa0287sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100006855/qa0287Isup2.hkl
Contains datablock I

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: local program; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997).

Potassium Barium Bismuth oxide top
Crystal data top
KBa4Bi3ODx = 6.131 Mg m3
Mr = 1231.40Mo Kα radiation, λ = 0.71069 Å
Tetragonal, I4/mcmCell parameters from 25 reflections
Hall symbol: -I 4 2cθ = 9.1–18.5°
a = 8.960 (1) ŵ = 51.30 mm1
c = 16.617 (4) ÅT = 293 K
V = 1334.0 (4) Å3Triangular wedge, metallic light grey
Z = 40.20 × 0.04 × 0.02 mm
F(000) = 2000
Data collection top
Nonius CAD-4
diffractometer
381 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.057
Graphite monochromatorθmax = 30.0°, θmin = 2.5°
ωθ scansh = 08
Absorption correction: numerical
(SHELX76; Sheldrick, 1976)
k = 012
Tmin = 0.102, Tmax = 0.436l = 022
830 measured reflections3 standard reflections every 100 reflections
495 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Calculated w = 1/[σ2(Fo2) + (0.0403P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.112(Δ/σ)max < 0.001
S = 1.06Δρmax = 2.87 e Å3
495 reflectionsΔρmin = 2.42 e Å3
18 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00031 (6)
Special details top

Experimental. All computations were carried out on a PentiumII 266 computer.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.00000.00000.25000.0201 (5)
Bi20.62283 (10)0.12283 (10)0.00000.0178 (4)
Ba0.34395 (12)0.15605 (12)0.34522 (9)0.0197 (4)
K0.00000.00000.00000.023 (2)
O0.50000.00000.25000.018 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.0149 (5)0.0149 (5)0.0306 (10)0.0000.0000.000
Bi20.0164 (4)0.0164 (4)0.0206 (6)0.0023 (5)0.0000.000
Ba0.0181 (5)0.0181 (5)0.0229 (7)0.0024 (5)0.0005 (4)0.0005 (4)
K0.011 (3)0.011 (3)0.047 (7)0.0000.0000.000
O0.021 (10)0.021 (10)0.011 (14)0.0000.0000.000
Geometric parameters (Å, º) top
Bi1—Bai3.7358 (9)Ba—Bi2xv3.8034 (19)
Bi1—Baii3.7358 (8)Ba—Baxix3.955 (3)
Bi1—Baiii3.7358 (9)Ba—Bavii3.960 (3)
Bi1—Baiv3.7358 (9)Ba—Baxx4.223 (3)
Bi1—Bav3.7358 (8)Ba—Baii4.223 (3)
Bi1—Bavi3.7358 (9)Ba—Kviii4.2506 (11)
Bi1—Bavii3.7358 (9)Ba—Kxxi4.2506 (11)
Bi1—Ba3.7358 (9)K—Bi2xxii3.5541 (7)
Bi1—Kviii4.1543 (10)K—Bi2xxiii3.5542 (7)
Bi1—K4.1543 (10)K—Bi2ix3.5541 (7)
Bi2—Bi2ix3.113 (3)K—Bi2xvii3.5541 (7)
Bi2—Kx3.5541 (7)K—Bi1xxiv4.1543 (10)
Bi2—Kxi3.5541 (7)K—Baxxv4.2506 (11)
Bi2—Baxii3.5982 (15)K—Bav4.2506 (11)
Bi2—Baxiii3.5982 (16)K—Baxxvi4.2506 (11)
Bi2—Bav3.5982 (16)K—Bavii4.2506 (11)
Bi2—Baxiv3.5982 (16)K—Baxii4.2506 (11)
Bi2—Baxv3.8034 (19)K—Baxxvii4.2506 (11)
Bi2—Baxvi3.8034 (19)O—Baxi2.5325 (15)
Ba—Oxvii2.5325 (15)O—Bav2.5325 (15)
Ba—Bi2xviii3.5982 (15)O—Baxiv2.5325 (15)
Ba—Bi2viii3.5982 (16)O—Baiv2.5325 (15)
Ba—Bi1vii3.7358 (9)
Bai—Bi1—Baii142.84 (4)Bi2xviii—Ba—Baxx118.74 (3)
Bai—Bi1—Baiii136.04 (4)Bi2viii—Ba—Baxx94.35 (4)
Baii—Bi1—Baiii79.666 (17)Bi1—Ba—Baxx103.23 (5)
Bai—Bi1—Baiv79.666 (17)Bi1vii—Ba—Baxx55.58 (2)
Baii—Bi1—Baiv136.04 (4)Bi2xv—Ba—Baxx148.394 (10)
Baiii—Bi1—Baiv64.02 (4)Baxix—Ba—Baxx62.08 (2)
Bai—Bi1—Bav64.02 (4)Bavii—Ba—Baxx71.50 (5)
Baii—Bi1—Bav129.88 (4)Oxvii—Ba—Baii33.512 (18)
Baiii—Bi1—Bav79.666 (17)Bi2xviii—Ba—Baii94.35 (4)
Baiv—Bi1—Bav68.84 (5)Bi2viii—Ba—Baii118.74 (3)
Bai—Bi1—Bavi129.88 (4)Bi1—Ba—Baii55.58 (2)
Baii—Bi1—Bavi64.02 (4)Bi1vii—Ba—Baii103.23 (5)
Baiii—Bi1—Bavi68.84 (5)Bi2xv—Ba—Baii148.394 (10)
Baiv—Bi1—Bavi79.666 (17)Baxix—Ba—Baii62.08 (2)
Bav—Bi1—Bavi142.84 (4)Bavii—Ba—Baii71.50 (5)
Bai—Bi1—Bavii68.84 (5)Baxx—Ba—Baii55.84 (4)
Baii—Bi1—Bavii79.666 (17)Oxvii—Ba—Kviii126.64 (2)
Baiii—Bi1—Bavii129.88 (4)Bi2xviii—Ba—Kviii53.06 (2)
Baiv—Bi1—Bavii142.84 (4)Bi2viii—Ba—Kviii92.51 (3)
Bav—Bi1—Bavii79.666 (17)Bi1—Ba—Kviii62.294 (16)
Bavi—Bi1—Bavii136.04 (4)Bi1vii—Ba—Kviii143.04 (4)
Bai—Bi1—Ba79.666 (17)Bi2xv—Ba—Kviii52.011 (18)
Baii—Bi1—Ba68.84 (5)Baxix—Ba—Kviii106.264 (19)
Baiii—Bi1—Ba142.84 (4)Bavii—Ba—Kviii108.37 (4)
Baiv—Bi1—Ba129.88 (4)Baxx—Ba—Kviii158.99 (2)
Bav—Bi1—Ba136.04 (4)Baii—Ba—Kviii103.63 (3)
Bavi—Bi1—Ba79.666 (17)Oxvii—Ba—Kxxi126.64 (2)
Bavii—Bi1—Ba64.02 (4)Bi2xviii—Ba—Kxxi92.51 (3)
Bai—Bi1—Kviii64.94 (2)Bi2viii—Ba—Kxxi53.06 (2)
Baii—Bi1—Kviii115.06 (2)Bi1—Ba—Kxxi143.04 (4)
Baiii—Bi1—Kviii115.06 (2)Bi1vii—Ba—Kxxi62.294 (16)
Baiv—Bi1—Kviii64.94 (2)Bi2xv—Ba—Kxxi52.011 (18)
Bav—Bi1—Kviii115.06 (2)Baxix—Ba—Kxxi106.264 (19)
Bavi—Bi1—Kviii64.94 (2)Bavii—Ba—Kxxi108.37 (4)
Bavii—Bi1—Kviii115.06 (2)Baxx—Ba—Kxxi103.63 (3)
Ba—Bi1—Kviii64.94 (2)Baii—Ba—Kxxi158.99 (2)
Bai—Bi1—K115.06 (2)Kviii—Ba—Kxxi96.36 (3)
Baii—Bi1—K64.94 (2)Bi2xxii—K—Bi2xxiii180.0
Baiii—Bi1—K64.94 (2)Bi2xxii—K—Bi2ix90.0
Baiv—Bi1—K115.06 (2)Bi2xxiii—K—Bi2ix90.0
Bav—Bi1—K64.94 (2)Bi2xxii—K—Bi2xvii90.0
Bavi—Bi1—K115.06 (2)Bi2xxiii—K—Bi2xvii90.0
Bavii—Bi1—K64.94 (2)Bi2ix—K—Bi2xvii180.0
Ba—Bi1—K115.06 (2)Bi2xxii—K—Bi190.0
Kviii—Bi1—K180.0Bi2xxiii—K—Bi190.0
Bi2ix—Bi2—Kx116.962 (19)Bi2ix—K—Bi190.0
Bi2ix—Bi2—Kxi116.962 (19)Bi2xvii—K—Bi190.0
Kx—Bi2—Kxi126.08 (4)Bi2xxii—K—Bi1xxiv90.0
Bi2ix—Bi2—Baxii64.37 (2)Bi2xxiii—K—Bi1xxiv90.0
Kx—Bi2—Baxii72.921 (19)Bi2ix—K—Bi1xxiv90.0
Kxi—Bi2—Baxii133.31 (2)Bi2xvii—K—Bi1xxiv90.0
Bi2ix—Bi2—Baxiii64.37 (2)Bi1—K—Bi1xxiv180.0
Kx—Bi2—Baxiii133.31 (2)Bi2xxii—K—Baxxv122.50 (2)
Kxi—Bi2—Baxiii72.921 (19)Bi2xxiii—K—Baxxv57.50 (2)
Baxii—Bi2—Baxiii66.67 (5)Bi2ix—K—Baxxv125.98 (2)
Bi2ix—Bi2—Bav64.37 (2)Bi2xvii—K—Baxxv54.02 (2)
Kx—Bi2—Bav72.921 (19)Bi1—K—Baxxv127.235 (18)
Kxi—Bi2—Bav133.31 (2)Bi1xxiv—K—Baxxv52.765 (18)
Baxii—Bi2—Bav91.25 (5)Bi2xxii—K—Bav57.50 (2)
Baxiii—Bi2—Bav128.74 (4)Bi2xxiii—K—Bav122.50 (2)
Bi2ix—Bi2—Baxiv64.37 (2)Bi2ix—K—Bav54.02 (2)
Kx—Bi2—Baxiv133.31 (2)Bi2xvii—K—Bav125.98 (2)
Kxi—Bi2—Baxiv72.921 (19)Bi1—K—Bav52.765 (18)
Baxii—Bi2—Baxiv128.74 (4)Bi1xxiv—K—Bav127.235 (18)
Baxiii—Bi2—Baxiv91.25 (5)Baxxv—K—Bav180.0
Bav—Bi2—Baxiv66.67 (5)Bi2xxii—K—Baxxvi125.98 (2)
Bi2ix—Bi2—Baxv137.45 (3)Bi2xxiii—K—Baxxvi54.02 (2)
Kx—Bi2—Baxv70.49 (2)Bi2ix—K—Baxxvi57.50 (2)
Kxi—Bi2—Baxv70.49 (2)Bi2xvii—K—Baxxvi122.50 (2)
Baxii—Bi2—Baxv143.32 (2)Bi1—K—Baxxvi127.235 (18)
Baxiii—Bi2—Baxv143.32 (2)Bi1xxiv—K—Baxxvi52.765 (18)
Bav—Bi2—Baxv80.52 (3)Baxxv—K—Baxxvi68.523 (18)
Baxiv—Bi2—Baxv80.52 (3)Bav—K—Baxxvi111.477 (18)
Bi2ix—Bi2—Baxvi137.45 (3)Bi2xxii—K—Bavii54.02 (2)
Kx—Bi2—Baxvi70.49 (2)Bi2xxiii—K—Bavii125.98 (2)
Kxi—Bi2—Baxvi70.49 (2)Bi2ix—K—Bavii122.50 (2)
Baxii—Bi2—Baxvi80.52 (3)Bi2xvii—K—Bavii57.50 (2)
Baxiii—Bi2—Baxvi80.52 (3)Bi1—K—Bavii52.765 (18)
Bav—Bi2—Baxvi143.32 (2)Bi1xxiv—K—Bavii127.235 (18)
Baxiv—Bi2—Baxvi143.32 (2)Baxxv—K—Bavii111.477 (18)
Baxv—Bi2—Baxvi85.10 (6)Bav—K—Bavii68.523 (18)
Oxvii—Ba—Bi2xviii91.00 (4)Baxxvi—K—Bavii180.0
Oxvii—Ba—Bi2viii91.00 (4)Bi2xxii—K—Baxii57.50 (2)
Bi2xviii—Ba—Bi2viii51.26 (4)Bi2xxiii—K—Baxii122.50 (2)
Oxvii—Ba—Bi189.09 (3)Bi2ix—K—Baxii54.02 (2)
Bi2xviii—Ba—Bi196.38 (2)Bi2xvii—K—Baxii125.98 (2)
Bi2viii—Ba—Bi1147.63 (3)Bi1—K—Baxii127.235 (18)
Oxvii—Ba—Bi1vii89.09 (3)Bi1xxiv—K—Baxii52.765 (18)
Bi2xviii—Ba—Bi1vii147.63 (3)Baxxv—K—Baxii105.53 (4)
Bi2viii—Ba—Bi1vii96.38 (2)Bav—K—Baxii74.47 (4)
Bi1—Ba—Bi1vii115.98 (4)Baxxvi—K—Baxii68.523 (18)
Oxvii—Ba—Bi2xv176.12 (6)Bavii—K—Baxii111.477 (18)
Bi2xviii—Ba—Bi2xv85.50 (4)Bi2xxii—K—Baxxvii54.02 (2)
Bi2viii—Ba—Bi2xv85.50 (4)Bi2xxiii—K—Baxxvii125.98 (2)
Bi1—Ba—Bi2xv92.96 (3)Bi2ix—K—Baxxvii122.50 (2)
Bi1vii—Ba—Bi2xv92.96 (3)Bi2xvii—K—Baxxvii57.50 (2)
Oxvii—Ba—Baxix38.67 (3)Bi1—K—Baxxvii127.235 (18)
Bi2xviii—Ba—Baxix56.66 (2)Bi1xxiv—K—Baxxvii52.765 (18)
Bi2viii—Ba—Baxix56.66 (2)Baxxv—K—Baxxvii68.523 (18)
Bi1—Ba—Baxix108.58 (2)Bav—K—Baxxvii111.477 (18)
Bi1vii—Ba—Baxix108.58 (2)Baxxvi—K—Baxxvii105.53 (4)
Bi2xv—Ba—Baxix137.45 (3)Bavii—K—Baxxvii74.47 (4)
Oxvii—Ba—Bavii88.29 (6)Baxii—K—Baxxvii68.523 (18)
Bi2xviii—Ba—Bavii154.36 (2)Baxi—O—Bav112.98 (4)
Bi2viii—Ba—Bavii154.36 (2)Baxi—O—Baxiv112.98 (4)
Bi1—Ba—Bavii57.992 (19)Bav—O—Baxiv102.67 (7)
Bi1vii—Ba—Bavii57.992 (19)Baxi—O—Baiv102.67 (7)
Bi2xv—Ba—Bavii95.59 (6)Bav—O—Baiv112.98 (4)
Baxix—Ba—Bavii126.96 (4)Baxiv—O—Baiv112.98 (4)
Oxvii—Ba—Baxx33.512 (18)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y, z+1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x, y, z; (v) x, y, z+1/2; (vi) x1/2, y1/2, z; (vii) x1/2, y+1/2, z+1/2; (viii) x, y, z+1/2; (ix) x+1, y, z; (x) x+1/2, y+1/2, z; (xi) x+1, y, z; (xii) x, y, z1/2; (xiii) x+1, y, z1/2; (xiv) x+1, y, z+1/2; (xv) x+1/2, y+1/2, z+1/2; (xvi) x+1/2, y+1/2, z1/2; (xvii) x1, y, z; (xviii) x1, y, z+1/2; (xix) x1, y, z; (xx) x1, y, z+1/2; (xxi) x1/2, y+1/2, z+1/2; (xxii) x1/2, y+1/2, z; (xxiii) x+1/2, y1/2, z; (xxiv) x, y, z; (xxv) x, y, z1/2; (xxvi) x+1/2, y1/2, z1/2; (xxvii) x1/2, y+1/2, z1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds