Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structures of the title compounds, (C2N3H8)2[CuCl4], (I), and (C8H14N4)[CuCl4], (II), have been studied by X-ray diffraction. The structures consist of discrete [CuCl4]2- anions with two monoprotonated (C2N3H8)+ cations for (I) and a diprotonated (C8N4H14)2+ cation for (II). The [CuCl4]2- anions of both compounds have flattened tetrahedral geometries. There are several N-H...Cl weak bonds that join the [CuCl4]2- anions and the organic cations helping retain the pseudo-tetrahedral geometries of the anions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100011045/qa0332sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100011045/qa0332Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100011045/qa0332IIsup3.hkl
Contains datablock II

CCDC references: 150728; 150729

Computing details top

For both compounds, data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CRYSDA (Beurskens et al., 1992); data reduction: REFLEX (García-Granda et al., 2000); program(s) used to solve structure: DIRDIF (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: PARST (Nardelli, 1995) and SHELXL97.

(I) bis(1-methylguanidinium) Tetrachlorocuprate(II) top
Crystal data top
(C2N3H8)2[CuCl4]F(000) = 716
Mr = 353.57Dx = 1.700 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 11.372 (3) ÅCell parameters from 25 reflections
b = 8.042 (2) Åθ = 15–20°
c = 15.621 (9) ŵ = 2.34 mm1
β = 104.71 (2)°T = 293 K
V = 1381.8 (9) Å3Prismatic, green
Z = 40.46 × 0.26 × 0.17 mm
Data collection top
Nonius CAD-4
diffractometer
2078 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 35.0°, θmin = 2.7°
ω–2θ scansh = 1817
Absorption correction: empirical (using intensity measurements)
(XABS2; Parkin et al., 1995)
k = 012
Tmin = 0.335, Tmax = 0.672l = 025
3302 measured reflections3 standard reflections every 200 reflections
3039 independent reflections intensity decay: 10.9%
Refinement top
Refinement on F2Primary atom site location: Patterson
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.09Calculated w = 1/[σ2(Fo2) + (0.0651P)2 + 0.3729P]
where P = (Fo2 + 2Fc2)/3
3039 reflections(Δ/σ)max < 0.001
69 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 1.41 e Å3
Special details top

Experimental. Nonius CAD4 single-crystal diffractometer

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.15875 (4)0.25000.03172 (10)
Cl10.19436 (5)0.24426 (7)0.29103 (3)0.04420 (14)
Cl20.00624 (5)0.07638 (7)0.11282 (3)0.04416 (14)
N10.7776 (2)0.4536 (3)0.02025 (14)0.0515 (5)
H1A0.79810.42780.07550.062*
H1B0.72000.40030.01560.062*
N20.8024 (2)0.6138 (3)0.09476 (13)0.0482 (4)
H2A0.74460.56000.13020.058*
H2B0.83910.69270.11470.058*
N30.92352 (18)0.6583 (2)0.04463 (13)0.0440 (4)
H30.96280.73030.02210.053*
C10.83473 (18)0.5752 (2)0.00962 (13)0.0352 (4)
C20.9588 (2)0.6354 (3)0.14004 (17)0.0525 (6)
H2C1.02500.70850.16570.063*
H2D0.98360.52230.15350.063*
H2E0.89090.66030.16400.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03675 (17)0.03306 (17)0.02444 (14)0.0000.00611 (11)0.000
Cl10.0403 (2)0.0565 (3)0.0336 (2)0.0086 (2)0.00535 (18)0.0025 (2)
Cl20.0503 (3)0.0522 (3)0.0321 (2)0.0133 (2)0.01437 (19)0.01294 (19)
N10.0556 (12)0.0516 (11)0.0413 (9)0.0211 (9)0.0010 (8)0.0102 (8)
N20.0550 (11)0.0515 (10)0.0363 (8)0.0074 (9)0.0086 (8)0.0064 (8)
N30.0449 (9)0.0452 (10)0.0408 (9)0.0111 (8)0.0091 (7)0.0012 (7)
C10.0367 (9)0.0339 (9)0.0350 (8)0.0007 (7)0.0092 (7)0.0013 (7)
C20.0540 (13)0.0532 (14)0.0438 (11)0.0042 (11)0.0004 (10)0.0002 (10)
Geometric parameters (Å, º) top
Cu1—Cl1i2.2471 (8)N2—H2A0.8600
Cu1—Cl12.2471 (8)N2—H2B0.8600
Cu1—Cl2i2.2610 (12)N3—C11.323 (3)
Cu1—Cl22.2611 (12)N3—C21.453 (3)
N1—C11.323 (3)N3—H30.8600
N1—H1A0.8600C2—H2C0.9600
N1—H1B0.8600C2—H2D0.9600
N2—C11.324 (3)C2—H2E0.9600
Cl1i—Cu1—Cl1144.36 (4)C1—N3—C2124.0 (2)
Cl1i—Cu1—Cl2i95.44 (3)C1—N3—H3118.0
Cl1—Cu1—Cl2i94.86 (3)C2—N3—H3118.0
Cl1i—Cu1—Cl294.85 (3)N1—C1—N3120.71 (19)
Cl1—Cu1—Cl295.43 (3)N1—C1—N2119.5 (2)
Cl2i—Cu1—Cl2145.93 (4)N3—C1—N2119.8 (2)
C1—N1—H1A120.0N3—C2—H2C109.5
C1—N1—H1B120.0N3—C2—H2D109.5
H1A—N1—H1B120.0H2C—C2—H2D109.5
C1—N2—H2A120.0N3—C2—H2E109.5
C1—N2—H2B120.0H2C—C2—H2E109.5
H2A—N2—H2B120.0H2D—C2—H2E109.5
C2—N3—C1—N15.5 (4)C2—N3—C1—N2174.5 (2)
Symmetry code: (i) x, y, z+1/2.
(II) N-(2-pyrimidinyl)-piperazine Tetrachlorocuprate(II) top
Crystal data top
(C8N4H14)[CuCl4]F(000) = 748
Mr = 371.57Dx = 1.793 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.205 (7) ÅCell parameters from 25 reflections
b = 16.13 (3) Åθ = 15–20°
c = 9.391 (7) ŵ = 2.35 mm1
β = 99.24 (6)°T = 293 K
V = 1376 (3) Å3Prismatic, brown
Z = 40.28 × 0.23 × 0.20 mm
Data collection top
Nonius CAD-4
diffractometer
2756 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.079
Graphite monochromatorθmax = 30.0°, θmin = 2.2°
ω–2θ scansh = 1212
Absorption correction: empirical (using intensity measurements)
(XABS2; Parkin et al., 1995)
k = 022
Tmin = 0.532, Tmax = 0.626l = 013
4363 measured reflections3 standard reflections every 200 reflections
3994 independent reflections intensity decay: 3.2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.04Calculated w = 1/[σ2(Fo2) + (0.0669P)2 + 0.6687P]
where P = (Fo2 + 2Fc2)/3
3994 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.99 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.13591 (5)0.05351 (3)0.16568 (5)0.03290 (14)
Cl10.36211 (10)0.05335 (6)0.09497 (11)0.0375 (2)
Cl20.00591 (11)0.12939 (6)0.29619 (10)0.0392 (2)
Cl30.20705 (10)0.03617 (6)0.35258 (9)0.0331 (2)
Cl40.02347 (12)0.10424 (8)0.04539 (11)0.0496 (3)
N10.6003 (3)0.13904 (19)0.1105 (3)0.0325 (7)
H10.59430.08650.12620.039*
N20.5172 (4)0.2725 (2)0.1767 (4)0.0415 (8)
N30.4186 (3)0.16079 (19)0.3117 (4)0.0363 (7)
N40.1283 (3)0.0979 (2)0.3738 (3)0.0345 (7)
H4A0.04480.08370.34160.041*
H4B0.11540.08770.46920.041*
C10.6969 (4)0.1673 (3)0.0006 (5)0.0404 (9)
H1A0.75540.13050.06090.048*
C20.7088 (5)0.2503 (3)0.0245 (5)0.0474 (11)
H20.77590.27230.09950.057*
C30.6163 (5)0.2998 (3)0.0681 (5)0.0468 (11)
H30.62340.35680.05370.056*
C40.5118 (4)0.1905 (2)0.1987 (4)0.0297 (7)
C50.3006 (4)0.2125 (3)0.3893 (5)0.0408 (9)
H5A0.32050.27030.36550.049*
H5B0.29730.20580.49240.049*
C60.1549 (4)0.1883 (3)0.3493 (5)0.0394 (9)
H6A0.07690.21970.40710.047*
H6B0.15400.20140.24860.047*
C70.2512 (4)0.0450 (2)0.3004 (4)0.0337 (8)
H7A0.25770.04960.19660.040*
H7B0.23260.01260.32700.040*
C80.3937 (4)0.0728 (2)0.3449 (5)0.0354 (8)
H8A0.38990.06380.44750.042*
H8B0.47450.04040.29400.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0332 (2)0.0355 (3)0.0303 (2)0.00891 (19)0.00621 (17)0.00798 (19)
Cl10.0338 (5)0.0301 (5)0.0508 (5)0.0034 (4)0.0132 (4)0.0071 (4)
Cl20.0448 (5)0.0387 (5)0.0343 (4)0.0119 (4)0.0069 (4)0.0002 (4)
Cl30.0349 (4)0.0310 (5)0.0314 (4)0.0014 (3)0.0010 (3)0.0063 (3)
Cl40.0472 (6)0.0695 (8)0.0323 (5)0.0210 (5)0.0069 (4)0.0121 (5)
N10.0280 (15)0.0221 (15)0.0453 (18)0.0007 (12)0.0004 (13)0.0024 (13)
N20.0436 (19)0.0213 (15)0.058 (2)0.0045 (14)0.0029 (16)0.0045 (15)
N30.0342 (16)0.0211 (15)0.0489 (18)0.0024 (13)0.0080 (14)0.0006 (14)
N40.0302 (15)0.0398 (19)0.0341 (16)0.0050 (13)0.0070 (12)0.0022 (13)
C10.0298 (19)0.044 (2)0.046 (2)0.0006 (17)0.0000 (16)0.0059 (18)
C20.033 (2)0.050 (3)0.057 (3)0.0075 (19)0.0015 (19)0.019 (2)
C30.045 (2)0.028 (2)0.067 (3)0.0122 (18)0.009 (2)0.016 (2)
C40.0253 (16)0.0215 (16)0.0427 (19)0.0042 (13)0.0068 (14)0.0010 (14)
C50.040 (2)0.031 (2)0.048 (2)0.0013 (17)0.0054 (17)0.0111 (17)
C60.039 (2)0.035 (2)0.044 (2)0.0078 (17)0.0054 (17)0.0033 (17)
C70.042 (2)0.0229 (18)0.0341 (18)0.0043 (15)0.0008 (15)0.0003 (14)
C80.0338 (19)0.0240 (18)0.045 (2)0.0005 (15)0.0030 (16)0.0099 (15)
Geometric parameters (Å, º) top
Cu1—Cl42.2386 (19)C1—C21.359 (7)
Cu1—Cl22.284 (2)C1—H1A0.9300
Cu1—Cl12.2849 (19)C2—C31.371 (7)
Cu1—Cl32.287 (2)C2—H20.9300
N1—C11.338 (5)C3—H30.9300
N1—C41.349 (5)C5—C61.501 (6)
N1—H10.8600C5—H5A0.9700
N2—C31.330 (6)C5—H5B0.9700
N2—C41.339 (5)C6—H6A0.9700
N3—C41.341 (5)C6—H6B0.9700
N3—C81.464 (5)C7—C81.507 (5)
N3—C51.467 (5)C7—H7A0.9700
N4—C61.491 (6)C7—H7B0.9700
N4—C71.494 (5)C8—H8A0.9700
N4—H4A0.9000C8—H8B0.9700
N4—H4B0.9000
Cl4—Cu1—Cl293.23 (8)N2—C4—N3118.6 (3)
Cl4—Cu1—Cl193.24 (7)N2—C4—N1120.6 (3)
Cl2—Cu1—Cl1141.49 (6)N3—C4—N1120.8 (3)
Cl4—Cu1—Cl3160.96 (5)N3—C5—C6110.4 (3)
Cl2—Cu1—Cl392.58 (9)N3—C5—H5A109.6
Cl1—Cu1—Cl393.46 (6)C6—C5—H5A109.6
C1—N1—C4122.0 (3)N3—C5—H5B109.6
C1—N1—H1119.0C6—C5—H5B109.6
C4—N1—H1119.0H5A—C5—H5B108.1
C3—N2—C4116.7 (4)N4—C6—C5110.3 (3)
C4—N3—C8125.0 (3)N4—C6—H6A109.6
C4—N3—C5121.2 (3)C5—C6—H6A109.6
C8—N3—C5111.6 (3)N4—C6—H6B109.6
C6—N4—C7113.2 (3)C5—C6—H6B109.6
C6—N4—H4A108.9H6A—C6—H6B108.1
C7—N4—H4A108.9N4—C7—C8109.3 (3)
C6—N4—H4B108.9N4—C7—H7A109.8
C7—N4—H4B108.9C8—C7—H7A109.8
H4A—N4—H4B107.7N4—C7—H7B109.8
N1—C1—C2119.3 (4)C8—C7—H7B109.8
N1—C1—H1A120.3H7A—C7—H7B108.3
C2—C1—H1A120.3N3—C8—C7110.1 (3)
C1—C2—C3116.4 (4)N3—C8—H8A109.6
C1—C2—H2121.8C7—C8—H8A109.6
C3—C2—H2121.8N3—C8—H8B109.6
N2—C3—C2125.0 (4)C7—C8—H8B109.6
N2—C3—H3117.5H8A—C8—H8B108.2
C2—C3—H3117.5
C4—N1—C1—C21.2 (6)C1—N1—C4—N20.6 (6)
N1—C1—C2—C31.2 (6)C1—N1—C4—N3178.2 (4)
C4—N2—C3—C22.2 (7)C4—N3—C5—C6104.3 (4)
C1—C2—C3—N20.5 (7)C8—N3—C5—C659.5 (5)
C3—N2—C4—N3176.7 (4)C7—N4—C6—C553.4 (4)
C3—N2—C4—N12.2 (6)N3—C5—C6—N454.5 (4)
C8—N3—C4—N2176.1 (4)C6—N4—C7—C854.2 (4)
C5—N3—C4—N214.5 (6)C4—N3—C8—C7102.4 (4)
C8—N3—C4—N15.0 (6)C5—N3—C8—C760.7 (4)
C5—N3—C4—N1166.6 (4)N4—C7—C8—N356.6 (4)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds