Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
For lithium halides, LiX (X = Cl, Br and I), hydrates with a water content of 1, 2, 3 and 5 moles of water per formula unit are known as phases in aqueous solid–liquid equilibria. The crystal structures of the monohydrates of LiCl and LiBr are known, but no crystal structures have been reported so far for the higher hydrates, apart from LiI·3H2O. In this study, the crystal structures of the di- and trihydrates of lithium chloride, lithium bromide and lithium iodide, and the pentahydrates of lithium chloride and lithium bromide have been determined. In each hydrate, the lithium cation is coordinated octa­hedrally. The dihydrates crystallize in the NaCl·2H2O or NaI·2H2O type structure. Surprisingly, in the tri- and penta­hydrates of LiCl and LiBr, one water mol­ecule per Li+ ion remains uncoordinated. For LiI·3H2O, the LiClO4·3H2O structure type was confirmed and the H-atom positions have been fixed. The hydrogen-bond networks in the various structures are discussed in detail. Contrary to the monohydrates, the structures of the higher hydrates show no disorder.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618001183/qf3002sup1.cif
Contains datablocks global, LiCl.2H2O, LiBr.2H2O, LiI.2H2O, LiCl.3H2O, LiBr.3H2O, LiI.3H2O, LiCl.5H2O, LiBr.5H2O

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618001183/qf3002LiCl.2H2Osup2.hkl
Contains datablock LiCl.2H~2~O

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618001183/qf3002LiBr.2H2Osup3.hkl
Contains datablock LiBr.2H~2~O

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618001183/qf3002LiI.2H2Osup4.hkl
Contains datablock LiI.2H~2~O

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618001183/qf3002LiCl.3H2Osup5.hkl
Contains datablock LiCl.3H~2~O

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618001183/qf3002LiBr.3H2Osup6.hkl
Contains datablock LiBr.3H~2~O

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618001183/qf3002LiI.3H2Osup7.hkl
Contains datablock LiI.3H~2~O

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618001183/qf3002LiCl.5H2Osup8.hkl
Contains datablock LiCl.5H~2~O

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618001183/qf3002LiBr.5H2Osup9.hkl
Contains datablock LiBr.5H~2~O

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229618001183/qf3002LiCl.2H2Osup10.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229618001183/qf3002LiBr.2H2Osup11.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229618001183/qf3002LiI.2H2Osup12.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229618001183/qf3002LiCl.3H2Osup13.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229618001183/qf3002LiBr.3H2Osup14.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229618001183/qf3002LiI.3H2Osup15.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229618001183/qf3002LiCl.5H2Osup16.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229618001183/qf3002LiBr.5H2Osup17.cml
Supplementary material

CCDC references: 1817951; 1817950; 1817949; 1817948; 1817947; 1817946; 1817945; 1817944

Computing details top

Data collection: APEX2 (Bruker, 2005) for LiCl.2H2O, LiBr.2H2O; X-AREA (Stoe & Cie, 2015) for LiI.2H2O, LiCl.3H2O, LiBr.3H2O, LiI.3H2O, LiCl.5H2O, LiBr.5H2O. Cell refinement: APEX2 (Bruker, 2005) for LiCl.2H2O, LiBr.2H2O; X-AREA (Stoe & Cie, 2015) for LiI.2H2O, LiCl.3H2O, LiBr.3H2O, LiI.3H2O, LiCl.5H2O, LiBr.5H2O. Data reduction: APEX2 (Bruker, 2005) for LiCl.2H2O, LiBr.2H2O; X-RED (Stoe & Cie, 2015) for LiI.2H2O, LiCl.3H2O, LiBr.3H2O, LiI.3H2O, LiCl.5H2O, LiBr.5H2O. For all structures, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008). Program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) for LiCl.2H2O, LiBr.2H2O, LiCl.3H2O, LiBr.3H2O, LiCl.5H2O, LiBr.5H2O; SHELXL2016 (Sheldrick, 2015) for LiI.2H2O, LiI.3H2O. For all structures, molecular graphics: DIAMOND (Brandenburg, 2017); software used to prepare material for publication: publCIF (Westrip, 2010).

Lithium chloride dihydrate (LiCl.2H2O) top
Crystal data top
LiCl·2H2OF(000) = 160.0
Mr = 78.42Dx = 1.646 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.0838 (8) ÅCell parameters from 873 reflections
b = 9.3592 (13) Åθ = 5–55°
c = 6.0632 (9) ŵ = 0.95 mm1
β = 113.543 (3)°T = 200 K
V = 316.50 (8) Å3Needle, colourless
Z = 40.3 × 0.2 × 0.1 mm
Data collection top
Bruker X8 Kappa APEXII
diffractometer
717 independent reflections
Radiation source: fine-focus sealed tube698 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω and φ scansθmax = 31.2°, θmin = 3.7°
Absorption correction: numerical
(APEX2; Bruker, 2005)
h = 77
Tmin = 0.629, Tmax = 0.746k = 1110
2451 measured reflectionsl = 77
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.015 w = 1/[σ2(Fo2) + (0.0175P)2 + 0.0458P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.037(Δ/σ)max = 0.001
S = 1.09Δρmax = 0.21 e Å3
831 reflectionsΔρmin = 0.21 e Å3
54 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.111 (6)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Li11.0106 (2)0.66255 (15)0.4573 (2)0.0174 (3)
Cl11.28796 (3)0.62688 (2)0.21793 (3)0.01219 (8)
O10.78908 (10)0.48924 (6)0.29212 (10)0.01243 (13)
O20.81043 (10)0.80558 (6)0.18884 (10)0.01305 (12)
H1A0.7742 (19)0.4627 (14)0.166 (2)0.029 (3)*
H1B0.662 (2)0.5112 (14)0.285 (2)0.032 (3)*
H2A0.7986 (19)0.8841 (13)0.2306 (19)0.022 (3)*
H2B0.683 (2)0.7842 (14)0.111 (3)0.040 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Li10.0192 (6)0.0153 (6)0.0172 (6)0.0003 (5)0.0066 (5)0.0018 (5)
Cl10.01299 (11)0.01208 (12)0.01222 (11)0.00179 (5)0.00579 (7)0.00058 (5)
O10.0121 (3)0.0140 (3)0.0119 (3)0.00082 (19)0.00547 (19)0.0019 (2)
O20.0124 (2)0.0104 (3)0.0150 (3)0.00003 (19)0.0040 (2)0.0009 (2)
Geometric parameters (Å, º) top
Li1—O1i2.0815 (15)Li1—Cl1ii2.6643 (14)
Li1—O22.0835 (15)Cl1—Li1iii2.6643 (14)
Li1—O12.0910 (15)O2—Li1iii2.2157 (16)
Li1—O2ii2.2158 (15)O1—Li1i2.0815 (15)
Li1—Cl12.6497 (15)
O1i—Li1—O2176.26 (8)O2ii—Li1—Cl1174.54 (7)
O1i—Li1—O184.12 (6)O1i—Li1—Cl1ii91.40 (5)
O2—Li1—O193.46 (6)O2—Li1—Cl1ii91.27 (5)
O1i—Li1—O2ii86.51 (6)O1—Li1—Cl1ii172.86 (7)
O2—Li1—O2ii96.36 (6)O2ii—Li1—Cl1ii84.42 (5)
O1—Li1—O2ii89.75 (6)Cl1—Li1—Cl1ii91.56 (4)
O1i—Li1—Cl189.92 (5)Li1—Cl1—Li1iii80.84 (4)
O2—Li1—Cl187.39 (5)Li1—O2—Li1iii106.48 (6)
O1—Li1—Cl193.99 (6)Li1i—O1—Li195.88 (6)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+3/2, z+1/2; (iii) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···Cl1iv0.784 (13)2.404 (13)3.1719 (7)166.7 (12)
O1—H1A···Cl1v0.774 (13)2.358 (13)3.1315 (7)176.8 (12)
O2—H2B···Cl1vi0.756 (14)2.752 (14)3.3772 (6)141.6 (12)
O2—H2A···Cl1vii0.790 (12)2.381 (12)3.1608 (7)169.5 (10)
Symmetry codes: (iv) x1, y, z; (v) x+2, y+1, z; (vi) x1, y+3/2, z1/2; (vii) x+2, y+1/2, z+1/2.
Lithium bromide dihydrate (LiBr.2H2O) top
Crystal data top
LiBr·2H2OZ = 2
Mr = 122.88F(000) = 116
Triclinic, P1Dx = 2.306 Mg m3
a = 5.3001 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 6.3970 (19) ÅCell parameters from 454 reflections
c = 6.4060 (15) Åθ = 5–55°
α = 63.694 (10)°µ = 11.38 mm1
β = 82.044 (7)°T = 200 K
γ = 65.567 (5)°Needle, colourless
V = 177.00 (8) Å30.2 × 0.12 × 0.03 mm
Data collection top
Bruker X8 Kappa APEXII
diffractometer
810 independent reflections
Radiation source: fine-focus sealed tube762 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω and φ scansθmax = 29.4°, θmin = 3.6°
Absorption correction: numerical
(APEX2; Bruker, 2005)
h = 37
Tmin = 0.211, Tmax = 0.746k = 68
1251 measured reflectionsl = 88
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + 3.2148P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.097(Δ/σ)max < 0.001
S = 1.01Δρmax = 2.23 e Å3
810 reflectionsΔρmin = 1.11 e Å3
54 parametersExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
6 restraintsExtinction coefficient: 0.245 (19)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.25544 (11)0.12204 (10)0.23322 (10)0.0076 (3)
Li10.309 (2)0.378 (2)0.483 (2)0.014 (2)
O10.0142 (9)0.7182 (8)0.2951 (8)0.0089 (8)
O20.6131 (9)0.4807 (9)0.2914 (8)0.0105 (9)
H1B0.02 (2)0.840 (11)0.312 (14)0.03 (3)*
H2A0.779 (7)0.388 (15)0.300 (15)0.03 (3)*
H2B0.588 (19)0.601 (14)0.162 (10)0.05 (3)*
H1A0.03 (3)0.770 (16)0.153 (5)0.04 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0064 (4)0.0086 (4)0.0070 (4)0.0021 (2)0.0014 (2)0.0037 (2)
Li10.010 (5)0.016 (5)0.015 (5)0.004 (4)0.002 (4)0.006 (4)
O10.008 (2)0.0087 (19)0.010 (2)0.0032 (16)0.0018 (16)0.0043 (16)
O20.006 (2)0.012 (2)0.011 (2)0.0004 (16)0.0029 (16)0.0050 (18)
Geometric parameters (Å, º) top
Br1—Li12.851 (12)Li1—O12.070 (12)
Br1—Li1i2.960 (11)Li1—O2iii2.174 (13)
Li1—O22.037 (12)Li1—Li1ii3.02 (2)
Li1—O1ii2.061 (12)Li1—Li1iii3.11 (2)
Li1—Br1—Li1i95.7 (3)O2—Li1—Li1ii137.8 (7)
O2—Li1—O1ii173.3 (7)O1ii—Li1—Li1ii43.2 (3)
O2—Li1—O195.2 (5)O1—Li1—Li1ii43.0 (3)
O1ii—Li1—O186.2 (5)O2iii—Li1—Li1ii91.0 (5)
O2—Li1—O2iii84.9 (5)Br1—Li1—Li1ii93.4 (5)
O1ii—Li1—O2iii88.5 (5)Br1i—Li1—Li1ii133.4 (6)
O1—Li1—O2iii93.0 (5)O2—Li1—Li1iii44.2 (3)
O2—Li1—Br196.3 (4)O1ii—Li1—Li1iii129.2 (7)
O1ii—Li1—Br190.1 (4)O1—Li1—Li1iii95.5 (6)
O1—Li1—Br194.9 (4)O2iii—Li1—Li1iii40.8 (3)
O2iii—Li1—Br1171.8 (5)Br1—Li1—Li1iii139.8 (6)
O2—Li1—Br1i88.4 (4)Br1i—Li1—Li1iii87.4 (5)
O1ii—Li1—Br1i90.2 (4)Li1ii—Li1—Li1iii119.9 (7)
O1—Li1—Br1i176.4 (6)Li1ii—O1—Li193.8 (5)
O2iii—Li1—Br1i87.7 (4)Li1—O2—Li1iii95.1 (5)
Br1—Li1—Br1i84.3 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Br1iv0.82 (2)2.57 (5)3.345 (5)157 (10)
O2—H2B···Br1v0.82 (2)2.63 (5)3.389 (5)155 (8)
O2—H2A···Br1vi0.83 (2)2.50 (3)3.307 (4)167 (9)
O1—H1B···Br1vii0.83 (2)2.60 (6)3.296 (5)143 (9)
Symmetry codes: (iv) x, y+1, z; (v) x+1, y+1, z; (vi) x+1, y, z; (vii) x, y+1, z.
Lithium iodide dihydrate (LiI.2H2O) top
Crystal data top
LiI·2H2OZ = 2
Mr = 169.87F(000) = 152
Triclinic, P1Dx = 2.672 Mg m3
a = 5.454 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 6.842 (2) ÅCell parameters from 243 reflections
c = 6.970 (2) Åθ = 3.8–25.2°
α = 61.90 (11)°µ = 7.39 mm1
β = 80.72 (12)°T = 200 K
γ = 67.02 (13)°Needle, colorless
V = 211.1 (7) Å30.4 × 0.2 × 0.1 mm
Data collection top
Stoe IPDS 2T
diffractometer
957 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus922 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.105
Detector resolution: 6.67 pixels mm-1θmax = 27.5°, θmin = 3.3°
rotation method scansh = 77
Absorption correction: integration
(Coppens, 1970)
k = 99
Tmin = 0.157, Tmax = 0.443l = 99
2530 measured reflections
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077All H-atom parameters refined
wR(F2) = 0.217 w = 1/[σ2(Fo2) + (0.1479P)2 + 4.9695P]
where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max < 0.001
957 reflectionsΔρmax = 5.12 e Å3
53 parametersΔρmin = 3.41 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.25309 (15)0.13252 (13)0.22338 (12)0.0267 (4)
Li10.297 (6)0.406 (6)0.480 (5)0.040 (6)
O10.015 (2)0.7067 (18)0.3080 (17)0.028 (2)
O20.606 (2)0.4825 (19)0.3072 (18)0.028 (2)
H1A0.02 (3)0.71 (3)0.188 (12)0.02 (4)*
H1B0.06 (4)0.80 (3)0.29 (3)0.06 (8)*
H2A0.57 (10)0.61 (2)0.19 (3)0.2 (3)*
H2B0.71 (2)0.38 (2)0.27 (3)0.03 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0310 (6)0.0159 (6)0.0242 (6)0.0008 (4)0.0024 (4)0.0071 (4)
Li10.044 (15)0.058 (19)0.038 (14)0.028 (14)0.015 (12)0.034 (14)
O10.032 (5)0.022 (5)0.028 (5)0.006 (4)0.001 (4)0.012 (4)
O20.029 (5)0.020 (5)0.031 (5)0.004 (4)0.005 (4)0.012 (4)
Geometric parameters (Å, º) top
I1—Li13.22 (3)Li1—O2ii2.17 (3)
Li1—O22.00 (3)Li1—Li1i3.00 (6)
Li1—O12.04 (4)Li1—Li1ii3.07 (5)
Li1—O1i2.07 (3)
O2—Li1—O1101.1 (15)O1i—Li1—Li1ii131.1 (16)
O2—Li1—O1i172 (2)O2ii—Li1—Li1ii40.4 (7)
O1—Li1—O1i86.0 (12)Li1i—Li1—Li1ii128 (2)
O2—Li1—O2ii85.2 (11)O2—Li1—I193.0 (10)
O1—Li1—O2ii98.9 (13)O1—Li1—I193.5 (10)
O1i—Li1—O2ii91.0 (11)O1i—Li1—I189.3 (9)
O2—Li1—Li1i144 (2)O2ii—Li1—I1167.6 (16)
O1—Li1—Li1i43.3 (10)Li1i—Li1—I191.9 (11)
O1i—Li1—Li1i42.7 (8)Li1ii—Li1—I1136.4 (14)
O2ii—Li1—Li1i96.7 (13)Li1—O1—Li1i94.0 (12)
O2—Li1—Li1ii44.8 (8)Li1—O2—Li1ii94.8 (11)
O1—Li1—Li1ii103.6 (17)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1.
Lithium chloride trihydrate (LiCl.3H2O) top
Crystal data top
LiCl·3H2ODx = 1.542 Mg m3
Mr = 96.44Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, CmcmCell parameters from 9694 reflections
a = 7.1626 (11) Åθ = 2.0–30.9°
b = 10.351 (2) ŵ = 0.75 mm1
c = 5.6038 (8) ÅT = 150 K
V = 415.48 (12) Å3Needle, colourless
Z = 40.4 × 0.25 × 0.1 mm
F(000) = 200
Data collection top
Stoe IPDS 2T
diffractometer
365 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus350 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.041
rotation method scansθmax = 30.5°, θmin = 3.5°
Absorption correction: integration
(Coppens, 1970)
h = 109
Tmin = 0.787, Tmax = 0.932k = 1414
365 measured reflectionsl = 87
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.013 w = 1/[σ2(Fo2) + (0.028P)2 + 0.022P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.033(Δ/σ)max = 0.001
S = 1.02Δρmax = 0.16 e Å3
365 reflectionsΔρmin = 0.20 e Å3
29 parametersExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.318 (12)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.5000000.27714 (2)0.7500000.01204 (12)
Li10.5000000.5000001.0000000.0158 (3)
O10.69697 (7)0.55202 (4)0.7500000.01047 (13)
O20.0000000.37887 (7)0.7500000.01506 (16)
H1B0.7506 (19)0.6194 (11)0.7500000.027 (3)*
H1A0.7786 (16)0.5022 (11)0.7500000.020 (2)*
H20.0000000.3347 (12)0.647 (2)0.038 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01365 (14)0.00741 (14)0.01507 (14)0.0000.0000.000
Li10.0128 (6)0.0228 (7)0.0118 (7)0.0000.0000.0039 (6)
O10.0095 (2)0.0098 (2)0.0121 (2)0.00148 (18)0.0000.000
O20.0151 (3)0.0158 (3)0.0142 (3)0.0000.0000.000
Geometric parameters (Å, º) top
Cl1—Li12.6990 (5)Li1—O1iii2.0599 (4)
Cl1—Li1i2.6990 (5)Li1—O1iv2.0599 (4)
Li1—O12.0599 (4)Li1—Li1v2.8019 (4)
Li1—O1ii2.0599 (4)Li1—Li1i2.8019 (4)
Li1—Cl1—Li1i62.540 (14)Cl1—Li1—Cl1iv180.0
O1—Li1—O1ii86.46 (2)O1—Li1—Li1v132.853 (11)
O1—Li1—O1iii93.54 (2)O1ii—Li1—Li1v132.853 (11)
O1ii—Li1—O1iii180.0O1iii—Li1—Li1v47.147 (11)
O1—Li1—O1iv180.0O1iv—Li1—Li1v47.147 (11)
O1ii—Li1—O1iv93.54 (2)Cl1—Li1—Li1v121.270 (7)
O1iii—Li1—O1iv86.46 (2)Cl1iv—Li1—Li1v58.730 (7)
O1—Li1—Cl182.555 (14)O1—Li1—Li1i47.147 (11)
O1ii—Li1—Cl182.555 (14)O1ii—Li1—Li1i47.147 (11)
O1iii—Li1—Cl197.445 (14)O1iii—Li1—Li1i132.853 (11)
O1iv—Li1—Cl197.445 (15)O1iv—Li1—Li1i132.853 (11)
O1—Li1—Cl1iv97.445 (14)Cl1—Li1—Li1i58.730 (7)
O1ii—Li1—Cl1iv97.445 (14)Cl1iv—Li1—Li1i121.270 (7)
O1iii—Li1—Cl1iv82.555 (14)Li1v—Li1—Li1i180.0
O1iv—Li1—Cl1iv82.555 (14)Li1i—O1—Li185.71 (2)
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x+1, y, z; (iii) x, y+1, z+2; (iv) x+1, y+1, z+2; (v) x+1, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···Cl1vi0.74 (1)2.51 (1)3.2340 (5)169 (1)
O1—H1A···O2vii0.78 (1)2.04 (1)2.8149 (8)177 (1)
O1—H1B···Cl1viii0.80 (1)2.42 (1)3.1845 (7)161 (1)
Symmetry codes: (vi) x+1/2, y+1/2, z+1; (vii) x+1, y, z; (viii) x+1/2, y+1/2, z.
Lithium bromide trihydrate (LiBr.3H2O) top
Crystal data top
LiBr·3H2ODx = 2.039 Mg m3
Mr = 140.90Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, CmcmCell parameters from 4551 reflections
a = 7.2785 (17) Åθ = 3.4–29.6°
b = 11.088 (3) ŵ = 8.81 mm1
c = 5.687 (2) ÅT = 150 K
V = 459.0 (2) Å3Needle, colourless
Z = 40.3 × 0.2 × 0.1 mm
F(000) = 272
Data collection top
Stoe IPDS 2T
diffractometer
359 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus347 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.078
rotation method scansθmax = 29.1°, θmin = 3.4°
Absorption correction: integration
(Coppens, 1970)
h = 99
Tmin = 0.159, Tmax = 0.567k = 1512
359 measured reflectionsl = 77
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0631P)2 + 0.7506P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.073(Δ/σ)max = 0.001
S = 1.02Δρmax = 0.68 e Å3
359 reflectionsΔρmin = 0.76 e Å3
29 parametersExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
3 restraintsExtinction coefficient: 0.066 (6)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.0000000.72768 (3)0.7500000.0175 (3)
O10.1923 (3)0.4535 (2)0.7500000.0160 (5)
O20.5000000.6072 (3)0.7500000.0209 (7)
Li10.0000000.5000001.0000000.0217 (16)
H20.5000000.648 (5)0.868 (7)0.039 (15)*
H1B0.236 (11)0.385 (3)0.7500000.07 (3)*
H1A0.289 (4)0.489 (4)0.7500000.019 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0168 (3)0.0148 (4)0.0210 (4)0.0000.0000.000
O10.0120 (10)0.0182 (10)0.0177 (10)0.0010 (9)0.0000.000
O20.0169 (16)0.0241 (16)0.0218 (16)0.0000.0000.000
Li10.015 (3)0.034 (4)0.017 (4)0.0000.0000.005 (3)
Geometric parameters (Å, º) top
Br1—Li1i2.8973 (7)O1—Li12.0609 (19)
Br1—Li12.8973 (7)Li1—Li1ii2.8434 (10)
O1—Li1i2.0609 (19)Li1—Li1i2.8434 (10)
Li1i—Br1—Li158.77 (2)O1—Li1—Li1i46.38 (5)
Li1i—O1—Li187.24 (10)Li1ii—Li1—Li1i180.0
O1iii—Li1—O1iv180.0O1iii—Li1—Br1v96.92 (6)
O1iii—Li1—O1v94.42 (11)O1iv—Li1—Br1v83.08 (6)
O1iv—Li1—O1v85.58 (11)O1v—Li1—Br1v83.08 (6)
O1iii—Li1—O185.58 (11)O1—Li1—Br1v96.92 (6)
O1iv—Li1—O194.42 (11)Li1ii—Li1—Br1v60.613 (11)
O1v—Li1—O1180.0Li1i—Li1—Br1v119.387 (11)
O1iii—Li1—Li1ii133.62 (5)O1iii—Li1—Br183.08 (6)
O1iv—Li1—Li1ii46.38 (5)O1iv—Li1—Br196.92 (6)
O1v—Li1—Li1ii46.38 (5)O1v—Li1—Br196.92 (6)
O1—Li1—Li1ii133.62 (5)O1—Li1—Br183.08 (6)
O1iii—Li1—Li1i46.38 (5)Li1ii—Li1—Br1119.386 (11)
O1iv—Li1—Li1i133.62 (5)Li1i—Li1—Br160.614 (11)
O1v—Li1—Li1i133.62 (5)Br1v—Li1—Br1180.0
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y+1, z+1/2; (iii) x, y, z; (iv) x, y+1, z+2; (v) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.80 (2)2.02 (2)2.814 (3)169 (5)
O1—H1B···Br1vi0.82 (2)2.60 (4)3.359 (3)155 (8)
O2—H2···Br1vii0.81 (2)2.57 (2)3.382 (2)178 (6)
Symmetry codes: (vi) x+1/2, y1/2, z; (vii) x+1/2, y+3/2, z+2.
Lithium iodide trihydrate (LiI.3H2O) top
Crystal data top
LiI·3H2ODx = 2.371 Mg m3
Mr = 187.89Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63/mmcCell parameters from 369 reflections
a = 7.4610 (18) Åθ = 4.8–29.4°
c = 5.459 (3) ŵ = 5.96 mm1
V = 263.17 (18) Å3T = 250 K
Z = 2Plate, colorless
F(000) = 1720.4 × 0.15 × 0.1 mm
Data collection top
Stoe IPDS 2T
diffractometer
137 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus131 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.063
Detector resolution: 6.67 pixels mm-1θmax = 27.5°, θmin = 3.2°
rotation method scansh = 1010
Absorption correction: integration
(Coppens, 1970)
k = 1010
Tmin = 0.383, Tmax = 0.476l = 77
2706 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.015All H-atom parameters refined
wR(F2) = 0.038 w = 1/[σ2(Fo2) + (0.0236P)2 + 0.2177P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
137 reflectionsΔρmax = 0.25 e Å3
12 parametersΔρmin = 0.68 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.6666670.3333330.2500000.0423 (2)
Li10.0000000.0000000.0000000.037 (2)
O10.1238 (3)0.2477 (5)0.2500000.0476 (8)
H10.088 (9)0.332 (7)0.2500000.09 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0357 (2)0.0357 (2)0.0555 (3)0.01787 (11)0.0000.000
Li10.041 (3)0.041 (3)0.027 (5)0.0205 (17)0.0000.000
O10.0649 (18)0.0284 (15)0.0374 (14)0.0142 (8)0.0000.000
Geometric parameters (Å, º) top
Li1—O12.103 (3)Li1—O1iv2.103 (3)
Li1—O1i2.103 (3)Li1—O1v2.103 (3)
Li1—O1ii2.103 (3)Li1—Li1vi2.7295 (13)
Li1—O1iii2.103 (3)Li1—Li1vii2.7295 (13)
O1—Li1—O1i180.0O1—Li1—Li1vi49.54 (6)
O1—Li1—O1ii97.56 (9)O1i—Li1—Li1vi130.46 (6)
O1i—Li1—O1ii82.44 (9)O1ii—Li1—Li1vi130.46 (6)
O1—Li1—O1iii82.44 (9)O1iii—Li1—Li1vi49.54 (6)
O1i—Li1—O1iii97.56 (9)O1iv—Li1—Li1vi130.46 (6)
O1ii—Li1—O1iii180.00 (16)O1v—Li1—Li1vi49.54 (6)
O1—Li1—O1iv97.56 (9)O1—Li1—Li1vii130.46 (6)
O1i—Li1—O1iv82.44 (9)O1i—Li1—Li1vii49.54 (6)
O1ii—Li1—O1iv82.44 (9)O1ii—Li1—Li1vii49.54 (6)
O1iii—Li1—O1iv97.56 (9)O1iii—Li1—Li1vii130.46 (6)
O1—Li1—O1v82.44 (9)O1iv—Li1—Li1vii49.54 (6)
O1i—Li1—O1v97.56 (9)O1v—Li1—Li1vii130.46 (6)
O1ii—Li1—O1v97.56 (9)Li1vi—Li1—Li1vii180.0
O1iii—Li1—O1v82.44 (9)Li1—O1—Li1vi80.92 (12)
O1iv—Li1—O1v180.0 (3)
Symmetry codes: (i) x, y, z; (ii) x, x+y, z1/2; (iii) x, xy, z+1/2; (iv) y, x, z1/2; (v) y, x, z+1/2; (vi) x, y, z+1/2; (vii) x, y, z1/2.
Lithium chloride pentahydrate (LiCl.5H2O) top
Crystal data top
LiCl·5H2OZ = 4
Mr = 132.47F(000) = 280
Triclinic, P1Dx = 1.419 Mg m3
a = 6.247 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.232 (4) ÅCell parameters from 7772 reflections
c = 11.677 (5) Åθ = 10.8–29.6°
α = 88.34 (3)°µ = 0.55 mm1
β = 77.53 (3)°T = 140 K
γ = 70.77 (3)°Needle, colourless
V = 620.2 (4) Å30.5 × 0.4 × 0.15 mm
Data collection top
Stoe IPDS 2T
diffractometer
3284 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus3103 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.051
rotation method scansθmax = 29.2°, θmin = 2.9°
Absorption correction: integration
(Coppens, 1970)
h = 88
Tmin = 0.726, Tmax = 0.936k = 1212
3284 measured reflectionsl = 1515
Refinement top
Refinement on F230 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059All H-atom parameters refined
wR(F2) = 0.163 w = 1/[σ2(Fo2) + (0.090P)2 + 1.845P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3283 reflectionsΔρmax = 1.43 e Å3
207 parametersΔρmin = 0.48 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.78691 (10)0.79885 (7)0.66275 (5)0.01835 (17)
Cl20.80551 (10)0.23008 (7)0.11356 (5)0.01806 (17)
O100.2808 (4)0.8698 (2)0.60670 (17)0.0231 (4)
O90.7219 (4)0.6734 (2)0.93029 (17)0.0215 (4)
O60.6819 (3)0.4875 (2)0.62282 (16)0.0187 (4)
O20.3120 (3)0.1007 (2)0.84764 (18)0.0199 (4)
O40.6054 (3)0.1762 (2)0.63678 (15)0.0156 (3)
O30.2319 (3)0.4922 (2)0.62378 (17)0.0190 (4)
O50.4167 (3)0.3941 (2)0.83745 (15)0.0162 (4)
O10.0973 (3)0.1915 (2)0.62585 (16)0.0167 (4)
O80.9264 (3)0.3735 (2)0.83957 (15)0.0166 (4)
O70.7662 (3)0.0882 (2)0.86541 (18)0.0215 (4)
Li10.2590 (8)0.2886 (5)0.7282 (4)0.0211 (9)
Li20.7594 (8)0.2896 (5)0.7317 (4)0.0198 (9)
H6B0.700 (5)0.566 (2)0.642 (3)0.028 (10)*
H3B0.125 (5)0.572 (3)0.648 (3)0.031 (10)*
H3A0.246 (9)0.486 (5)0.5524 (11)0.09 (2)*
H2B0.439 (3)0.086 (3)0.863 (3)0.013 (7)*
H1A0.097 (9)0.220 (5)0.5586 (17)0.053 (14)*
H4A0.632 (8)0.176 (4)0.5651 (9)0.040 (12)*
H1B0.143 (9)0.0974 (12)0.622 (4)0.060 (16)*
H7B0.776 (7)0.124 (4)0.927 (2)0.042 (12)*
H4B0.639 (8)0.0866 (18)0.656 (3)0.042 (12)*
H2A0.295 (6)0.017 (2)0.844 (4)0.044 (12)*
H9A0.615 (5)0.728 (4)0.900 (4)0.050 (14)*
H9B0.820 (6)0.717 (5)0.919 (5)0.08 (2)*
H10A0.185 (5)0.831 (5)0.643 (3)0.041 (12)*
H10B0.392 (5)0.841 (5)0.639 (3)0.047 (13)*
H6A0.543 (2)0.504 (4)0.630 (4)0.029 (10)*
H7A0.861 (6)0.001 (2)0.855 (3)0.043 (12)*
H5A0.374 (8)0.4881 (12)0.840 (4)0.048 (13)*
H8A0.876 (9)0.4644 (16)0.861 (4)0.069 (17)*
H5B0.393 (9)0.367 (4)0.9052 (16)0.054 (14)*
H8B0.948 (10)0.323 (4)0.897 (3)0.066 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0215 (3)0.0159 (3)0.0155 (3)0.0040 (2)0.0032 (2)0.0020 (2)
Cl20.0202 (3)0.0165 (3)0.0165 (3)0.0053 (2)0.0034 (2)0.0026 (2)
O100.0301 (10)0.0206 (9)0.0158 (8)0.0068 (8)0.0017 (7)0.0012 (7)
O90.0259 (10)0.0218 (9)0.0152 (8)0.0062 (8)0.0040 (7)0.0025 (7)
O60.0197 (9)0.0185 (9)0.0186 (9)0.0076 (7)0.0040 (7)0.0030 (7)
O20.0191 (9)0.0154 (8)0.0249 (9)0.0055 (7)0.0046 (7)0.0015 (7)
O40.0193 (8)0.0131 (8)0.0117 (8)0.0033 (6)0.0014 (6)0.0002 (6)
O30.0180 (8)0.0177 (9)0.0178 (9)0.0024 (7)0.0027 (7)0.0029 (7)
O50.0194 (8)0.0142 (8)0.0120 (8)0.0037 (6)0.0001 (6)0.0003 (6)
O10.0192 (8)0.0153 (8)0.0137 (8)0.0038 (6)0.0026 (6)0.0002 (6)
O80.0192 (8)0.0157 (8)0.0135 (8)0.0044 (7)0.0029 (6)0.0012 (6)
O70.0221 (9)0.0173 (9)0.0229 (9)0.0015 (7)0.0075 (7)0.0025 (7)
Li10.020 (2)0.023 (2)0.019 (2)0.0066 (17)0.0024 (16)0.0020 (17)
Li20.019 (2)0.020 (2)0.018 (2)0.0047 (16)0.0017 (16)0.0035 (16)
Geometric parameters (Å, º) top
O6—Li22.176 (5)O1—Li12.105 (5)
O2—Li12.178 (5)O1—Li2i2.117 (5)
O4—Li22.107 (5)O8—Li22.105 (5)
O4—Li12.118 (5)O8—Li1ii2.107 (5)
O3—Li12.190 (5)O7—Li22.389 (5)
O5—Li22.146 (5)Li1—Li2i3.109 (7)
O5—Li12.190 (5)Li1—Li23.138 (7)
Li2—O4—Li195.93 (19)O3—Li1—Li285.39 (18)
Li2—O5—Li192.72 (19)Li2i—Li1—Li2178.5 (2)
Li1—O1—Li2i94.87 (19)O8—Li2—O4171.7 (3)
Li2—O8—Li1ii95.13 (19)O8—Li2—O1ii84.76 (18)
O1—Li1—O8i85.01 (19)O4—Li2—O1ii94.32 (19)
O1—Li1—O496.9 (2)O8—Li2—O594.89 (19)
O8i—Li1—O4170.7 (3)O4—Li2—O586.20 (18)
O1—Li1—O294.2 (2)O1ii—Li2—O5178.7 (3)
O8i—Li1—O284.09 (19)O8—Li2—O697.1 (2)
O4—Li1—O286.72 (19)O4—Li2—O691.14 (19)
O1—Li1—O5178.2 (3)O1ii—Li2—O692.15 (19)
O8i—Li1—O593.30 (19)O5—Li2—O686.64 (18)
O4—Li1—O584.83 (18)O8—Li2—O786.84 (18)
O2—Li1—O586.12 (19)O4—Li2—O785.14 (18)
O1—Li1—O394.4 (2)O1ii—Li2—O798.36 (19)
O8i—Li1—O396.8 (2)O5—Li2—O782.88 (17)
O4—Li1—O392.09 (19)O6—Li2—O7169.1 (2)
O2—Li1—O3171.4 (3)O8—Li2—Li1ii42.46 (13)
O5—Li1—O385.29 (18)O4—Li2—Li1ii136.6 (2)
O1—Li1—Li2i42.72 (13)O1ii—Li2—Li1ii42.42 (13)
O8i—Li1—Li2i42.41 (13)O5—Li2—Li1ii137.1 (2)
O4—Li1—Li2i139.4 (2)O6—Li2—Li1ii93.82 (19)
O2—Li1—Li2i91.25 (19)O7—Li2—Li1ii95.94 (18)
O5—Li1—Li2i135.6 (2)O8—Li2—Li1138.9 (2)
O3—Li1—Li2i95.17 (19)O4—Li2—Li142.17 (13)
O1—Li1—Li2138.6 (2)O1ii—Li2—Li1136.2 (2)
O8i—Li1—Li2136.2 (2)O5—Li2—Li144.19 (13)
O4—Li1—Li241.90 (13)O6—Li2—Li185.57 (18)
O2—Li1—Li288.05 (18)O7—Li2—Li184.78 (17)
O5—Li1—Li243.09 (13)Li1ii—Li2—Li1178.5 (2)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8B···Cl2iii0.82 (1)2.71 (3)3.454 (2)153 (5)
O5—H5B···O9iv0.82 (1)1.97 (1)2.782 (3)170 (5)
O8—H8A···O90.82 (1)1.96 (1)2.771 (3)171 (5)
O5—H5A···Cl2v0.82 (1)2.49 (1)3.300 (2)168 (4)
O7—H7A···Cl2vi0.82 (1)2.53 (2)3.304 (2)159 (3)
O6—H6A···O30.82 (1)2.00 (1)2.795 (3)165 (3)
O10—H10B···Cl10.83 (1)2.44 (2)3.218 (3)157 (3)
O10—H10A···Cl1i0.83 (1)2.56 (2)3.288 (3)147 (3)
O9—H9B···Cl2vii0.83 (1)2.49 (2)3.290 (2)163 (4)
O9—H9A···Cl2v0.83 (1)2.57 (3)3.268 (3)143 (4)
O2—H2A···Cl2viii0.82 (1)2.57 (2)3.364 (2)166 (5)
O4—H4B···Cl1ix0.82 (1)2.51 (1)3.317 (2)166 (3)
O7—H7B···Cl2iii0.82 (1)2.48 (1)3.303 (2)179 (4)
O1—H1B···O10ix0.82 (1)1.99 (1)2.805 (3)175 (5)
O4—H4A···O10v0.82 (1)1.98 (1)2.787 (3)168 (4)
O1—H1A···Cl1v0.82 (1)2.52 (2)3.296 (2)157 (4)
O2—H2B···O70.82 (1)2.06 (1)2.854 (3)164 (3)
O3—H3A···O6v0.82 (1)2.02 (2)2.825 (3)166 (6)
O3—H3B···Cl1i0.82 (1)2.42 (2)3.208 (2)163 (3)
O6—H6B···Cl10.81 (1)2.42 (1)3.219 (2)170 (4)
Symmetry codes: (i) x1, y, z; (iii) x, y, z+1; (iv) x+1, y+1, z+2; (v) x+1, y+1, z+1; (vi) x+2, y, z+1; (vii) x+2, y+1, z+1; (viii) x+1, y, z+1; (ix) x, y1, z.
Lithium bromide pentahydrate (LiBr.5H2O) top
Crystal data top
LiBr·5H2OZ = 4
Mr = 176.93F(000) = 352
Triclinic, P1Dx = 1.769 Mg m3
a = 6.353 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.453 (4) ÅCell parameters from 2523 reflections
c = 11.954 (5) Åθ = 2.4–29.6°
α = 89.15 (3)°µ = 6.12 mm1
β = 77.53 (3)°T = 140 K
γ = 71.69 (3)°Needle, colourless
V = 664.4 (4) Å30.3 × 0.22 × 0.05 mm
Data collection top
Stoe IPDS 2T
diffractometer
3544 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2942 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.122
rotation method scansθmax = 29.2°, θmin = 2.8°
Absorption correction: integration
(Coppens, 1970)
h = 88
Tmin = 0.210, Tmax = 0.719k = 1212
3544 measured reflectionsl = 1616
Refinement top
Refinement on F230 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025All H-atom parameters refined
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0465P)2 + 0.528P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
3544 reflectionsΔρmax = 1.05 e Å3
207 parametersΔρmin = 0.87 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.78481 (4)0.79818 (3)0.66544 (2)0.01628 (7)
Br20.80949 (4)0.22569 (3)0.11052 (2)0.01645 (7)
O100.2744 (4)0.8763 (2)0.60259 (18)0.0214 (4)
O90.7185 (3)0.6641 (2)0.93852 (17)0.0200 (4)
O60.6827 (3)0.4783 (2)0.61986 (18)0.0199 (4)
O20.3050 (3)0.1121 (2)0.84164 (18)0.0205 (4)
O40.5967 (3)0.1797 (2)0.63535 (16)0.0154 (3)
O30.2358 (3)0.4850 (2)0.62145 (18)0.0197 (4)
O50.4148 (3)0.3942 (2)0.83207 (16)0.0159 (3)
O10.0896 (3)0.1919 (2)0.62827 (16)0.0166 (3)
O80.9231 (3)0.3759 (2)0.83424 (16)0.0171 (3)
O70.7573 (3)0.0965 (2)0.85603 (18)0.0211 (4)
Li10.2543 (8)0.2910 (5)0.7244 (4)0.0193 (9)
Li20.7544 (8)0.2887 (5)0.7299 (4)0.0205 (9)
H6B0.700 (7)0.553 (3)0.644 (4)0.048 (13)*
H3B0.132 (6)0.561 (3)0.650 (3)0.044 (12)*
H3A0.260 (9)0.493 (5)0.5513 (16)0.077 (19)*
H2B0.429 (4)0.095 (4)0.857 (4)0.039 (12)*
H1A0.102 (7)0.219 (3)0.561 (2)0.032 (10)*
H4A0.626 (9)0.177 (5)0.5649 (16)0.058 (15)*
H1B0.144 (6)0.0995 (19)0.621 (3)0.021 (9)*
H7B0.776 (7)0.125 (4)0.917 (2)0.042 (12)*
H4B0.627 (7)0.093 (2)0.654 (3)0.030 (10)*
H2A0.270 (6)0.037 (3)0.845 (4)0.047 (13)*
H9A0.614 (6)0.704 (5)0.907 (4)0.053 (14)*
H9B0.807 (6)0.713 (5)0.926 (4)0.051 (14)*
H10A0.177 (5)0.839 (5)0.633 (4)0.043 (13)*
H10B0.368 (6)0.860 (6)0.642 (4)0.060 (16)*
H6A0.549 (4)0.492 (5)0.623 (5)0.059 (16)*
H7A0.837 (6)0.009 (2)0.843 (3)0.033 (11)*
H5A0.365 (6)0.487 (2)0.840 (3)0.032 (10)*
H8A0.869 (7)0.463 (2)0.861 (3)0.035 (11)*
H5B0.394 (7)0.366 (4)0.899 (2)0.032 (10)*
H8B0.950 (7)0.323 (3)0.887 (3)0.041 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01580 (12)0.01556 (12)0.01686 (13)0.00396 (9)0.00397 (9)0.00205 (9)
Br20.01625 (12)0.01626 (12)0.01735 (13)0.00522 (9)0.00496 (9)0.00353 (9)
O100.0221 (9)0.0234 (10)0.0200 (10)0.0083 (8)0.0059 (8)0.0035 (7)
O90.0209 (9)0.0218 (9)0.0187 (9)0.0078 (8)0.0059 (7)0.0034 (7)
O60.0194 (9)0.0207 (9)0.0226 (10)0.0096 (7)0.0064 (8)0.0034 (7)
O20.0201 (9)0.0182 (9)0.0264 (10)0.0093 (7)0.0071 (8)0.0059 (8)
O40.0172 (8)0.0143 (8)0.0142 (9)0.0047 (6)0.0031 (7)0.0013 (6)
O30.0162 (9)0.0197 (9)0.0207 (10)0.0024 (7)0.0042 (7)0.0040 (7)
O50.0175 (8)0.0140 (8)0.0143 (8)0.0036 (6)0.0021 (7)0.0013 (6)
O10.0173 (8)0.0167 (8)0.0142 (9)0.0034 (7)0.0029 (7)0.0003 (7)
O80.0177 (9)0.0164 (8)0.0162 (9)0.0039 (7)0.0042 (7)0.0009 (7)
O70.0218 (9)0.0180 (9)0.0221 (10)0.0016 (7)0.0088 (8)0.0022 (7)
Li10.016 (2)0.022 (2)0.021 (2)0.0061 (17)0.0045 (17)0.0001 (17)
Li20.017 (2)0.023 (2)0.022 (2)0.0062 (17)0.0066 (17)0.0029 (18)
Geometric parameters (Å, º) top
O6—Li22.197 (5)O1—Li12.112 (5)
O2—Li12.170 (5)O1—Li2i2.131 (5)
O4—Li22.124 (5)O8—Li22.132 (5)
O4—Li12.137 (5)O8—Li1ii2.138 (5)
O3—Li12.179 (5)O7—Li22.342 (6)
O5—Li22.165 (5)Li1—Li2i3.169 (6)
O5—Li12.208 (5)Li1—Li23.185 (6)
Li2—O4—Li196.7 (2)O5—Li1—Li242.72 (13)
Li2—O5—Li193.48 (19)Li2i—Li1—Li2177.5 (3)
Li1—O1—Li2i96.67 (19)O4—Li2—O1ii95.6 (2)
Li2—O8—Li1ii95.8 (2)O4—Li2—O8173.7 (3)
O1—Li1—O498.0 (2)O1ii—Li2—O883.46 (18)
O1—Li1—O8i83.77 (18)O4—Li2—O585.47 (18)
O4—Li1—O8i170.5 (3)O1ii—Li2—O5178.1 (3)
O1—Li1—O293.6 (2)O8—Li2—O595.6 (2)
O4—Li1—O286.09 (19)O4—Li2—O689.21 (19)
O8i—Li1—O284.52 (19)O1ii—Li2—O692.2 (2)
O1—Li1—O395.7 (2)O8—Li2—O697.1 (2)
O4—Li1—O391.8 (2)O5—Li2—O686.24 (19)
O8i—Li1—O397.3 (2)O4—Li2—O785.49 (18)
O2—Li1—O3170.7 (3)O1ii—Li2—O797.5 (2)
O1—Li1—O5177.4 (3)O8—Li2—O788.45 (19)
O4—Li1—O584.09 (17)O5—Li2—O784.13 (19)
O8i—Li1—O593.9 (2)O6—Li2—O7169.3 (2)
O2—Li1—O584.88 (18)O4—Li2—Li1ii137.0 (2)
O3—Li1—O585.84 (18)O1ii—Li2—Li1ii41.44 (13)
O1—Li1—Li2i41.90 (13)O8—Li2—Li1ii42.16 (13)
O4—Li1—Li2i139.6 (2)O5—Li2—Li1ii137.5 (2)
O8i—Li1—Li2i42.01 (13)O6—Li2—Li1ii93.56 (19)
O2—Li1—Li2i91.40 (19)O7—Li2—Li1ii96.63 (18)
O3—Li1—Li2i96.09 (19)O4—Li2—Li141.80 (13)
O5—Li1—Li2i135.9 (2)O1ii—Li2—Li1137.1 (2)
O1—Li1—Li2139.4 (2)O8—Li2—Li1139.4 (2)
O4—Li1—Li241.49 (13)O5—Li2—Li143.79 (13)
O8i—Li1—Li2136.4 (2)O6—Li2—Li184.36 (17)
O2—Li1—Li286.45 (18)O7—Li2—Li185.52 (17)
O3—Li1—Li285.93 (18)Li1ii—Li2—Li1177.5 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8B···Br2iii0.82 (2)2.86 (3)3.594 (2)151 (4)
O5—H5B···O9iv0.83 (2)1.97 (2)2.790 (3)168 (4)
O8—H8A···O90.83 (2)1.98 (2)2.800 (3)174 (4)
O5—H5A···Br2v0.83 (2)2.62 (2)3.442 (2)173 (3)
O7—H7A···Br2vi0.82 (2)2.77 (3)3.491 (2)149 (3)
O6—H6A···O30.81 (2)2.02 (2)2.816 (3)169 (4)
O10—H10B···Br10.82 (2)2.60 (3)3.340 (2)151 (4)
O10—H10A···Br1i0.82 (2)2.58 (2)3.347 (2)155 (4)
O9—H9B···Br2vii0.82 (2)2.63 (2)3.407 (2)159 (4)
O9—H9A···Br2v0.82 (2)2.62 (2)3.364 (2)152 (4)
O2—H2A···Br2viii0.81 (2)2.71 (2)3.504 (2)170 (4)
O4—H4B···Br1ix0.82 (2)2.66 (2)3.465 (2)167 (3)
O7—H7B···Br2iii0.83 (2)2.59 (2)3.414 (2)176 (4)
O1—H1B···O10ix0.83 (2)2.01 (2)2.836 (3)179 (3)
O4—H4A···O10v0.82 (2)1.99 (2)2.794 (3)168 (4)
O1—H1A···Br1v0.83 (2)2.64 (2)3.435 (2)160 (3)
O2—H2B···O70.81 (2)2.09 (2)2.873 (3)162 (4)
O3—H3A···O6v0.83 (2)2.03 (2)2.854 (3)178 (5)
O3—H3B···Br1i0.83 (2)2.58 (2)3.364 (2)159 (4)
O6—H6B···Br10.81 (2)2.57 (2)3.361 (2)165 (5)
Symmetry codes: (i) x1, y, z; (iii) x, y, z+1; (iv) x+1, y+1, z+2; (v) x+1, y+1, z+1; (vi) x+2, y, z+1; (vii) x+2, y+1, z+1; (viii) x+1, y, z+1; (ix) x, y1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds