Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Two products of the reactions of CuI with 1-benzoyl-3-(4-bromo­phen­yl)thio­urea and with 1-benzoyl-3-(2-iodo­phen­yl)thio­urea have been obtained and characterized, namely poly[[[1-benzoyl-3-(4-bromo­phen­yl)thio­urea-κS]-μ3-iodido-copper(I)] acetone hemisolvate], {[CuI(C14H11BrN2OS)]·0.5C3H6O}n, and poly[μ4-iodido-μ3-iodido-[N-(benzo[d]thia­zol-2-yl)benzamide-κN]dicopper(I)], [Cu2I2(C14H10N2OS)]n. Their structures, determined by single-crystal X-ray diffraction analysis, exhibit different stoichiometries and mol­ecular organizations; however, both compounds are polymeric and possess close Cu...Cu contacts. The first product contains a (CuI)n double chain supported by the thio­urea derivative coordinated via the S atom. In the second case, the ligand undergoes dehalogenation and cyclization to form N-(benzo[d]thia­zol-2-yl)benzamide that serves as the N-donor ligand which is connected to both sides of a (CuI)n quadruple chain. In both hybrid inorganic chains, I atoms bridge three or four Cu atoms. The coordination centres adopt more or less distorted tetra­hedral geometries. The structures of the (CuI)n kernels of the ribbons are similar to fragments of the layers in high-pressure phase V copper(I) iodide. Only weak S...O, C—H...O, C—H...I and π–π inter­actions hold the ribbons together, allowing the formation of crystals.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618015620/qf3017sup1.cif
Contains datablocks I, global, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618015620/qf3017Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618015620/qf3017IIsup3.hkl
Contains datablock II

CCDC references: 1877164; 1877163

Computing details top

For both structures, data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-RED32 (Stoe & Cie, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Poly[[[1-benzoyl-3-(4-bromophenyl)thiourea-κS]-µ3-iodido-copper(I)] acetone hemisolvate] (I) top
Crystal data top
[CuBrI(C14H11N2OS)]·0.5C3H6OZ = 2
Mr = 554.70F(000) = 532
Triclinic, P1Dx = 2.073 Mg m3
a = 4.0594 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.8684 (8) ÅCell parameters from 6948 reflections
c = 20.7336 (15) Åθ = 2.5–29.5°
α = 102.079 (6)°µ = 5.34 mm1
β = 94.047 (6)°T = 120 K
γ = 94.299 (6)°Needle, colourless
V = 888.48 (11) Å30.44 × 0.02 × 0.02 mm
Data collection top
Stoe IPDS 2T
diffractometer
3446 independent reflections
Radiation source: microfocus sealed X-ray tube, GeniX Mo, 0.05 x 0.05 mm23069 reflections with I > 2σ(I)
Parabolic x-ray mirror monochromatorRint = 0.048
rotation method scansθmax = 26.0°, θmin = 2.5°
Absorption correction: integration
[X-RED32 (Stoe & Cie, 2009), by Gaussian integration, analogous to Coppens (1970)]
h = 45
Tmin = 0.358, Tmax = 0.905k = 1213
7687 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.175 w = 1/[σ2(Fo2) + (0.1209P)2 + 2.3538P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3446 reflectionsΔρmax = 1.89 e Å3
257 parametersΔρmin = 2.96 e Å3
40 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.7353 (2)0.50967 (9)0.45015 (4)0.0367 (3)0.900 (2)
I10.72245 (10)0.32964 (4)0.51899 (2)0.0331 (2)0.900 (2)
Br10.3217 (2)0.09639 (9)0.07159 (5)0.0580 (3)0.900 (2)
S10.6415 (5)0.39525 (19)0.34375 (9)0.0395 (4)0.900 (2)
Cu1A0.785 (4)0.6685 (15)0.4747 (8)0.029 (4)*0.0453 (18)
I1A0.776 (3)0.4872 (10)0.5400 (5)0.038 (3)*0.0453 (18)
Br1A0.338 (15)0.041 (6)0.078 (3)0.151 (18)*0.0453 (18)
S1A0.68 (2)0.558 (9)0.364 (5)0.10 (2)*0.0453 (18)
Cu1B0.678 (5)0.351 (2)0.4294 (10)0.060 (5)*0.0551 (18)
I1B0.666 (3)0.1721 (12)0.4984 (6)0.062 (3)*0.0551 (18)
Br1B0.250 (3)0.2533 (12)0.0517 (6)0.038 (3)*0.0551 (18)
S1B0.583 (9)0.241 (3)0.3243 (18)0.047 (8)*0.0551 (18)
N10.8582 (17)0.6097 (6)0.3122 (3)0.0463 (14)
H10.8606280.6383120.3552490.056*
N20.7669 (19)0.4367 (7)0.2243 (3)0.0522 (16)
H20.8329230.4908280.2006710.063*
O10.967 (2)0.6685 (6)0.2156 (3)0.0693 (19)
C10.7634 (19)0.4798 (8)0.2899 (3)0.0437 (16)
C160.8901 (19)0.8737 (7)0.3752 (4)0.0448 (16)
H160.7751270.8159770.3963450.054*
C230.685 (2)0.0867 (9)0.1746 (4)0.0531 (19)
H230.7626300.0153840.1886740.064*
C100.948 (2)0.6993 (9)0.2763 (4)0.0525 (19)
C150.944 (2)1.0023 (8)0.4061 (4)0.0466 (17)
H150.8582461.0324650.4473610.056*
C250.362 (2)0.1708 (9)0.0960 (4)0.057 (2)
H250.2202840.1571170.0562290.068*
C210.670 (2)0.3085 (8)0.1901 (4)0.0479 (18)
C111.0076 (19)0.8305 (8)0.3129 (4)0.0459 (16)
C220.786 (2)0.2072 (8)0.2109 (4)0.0485 (18)
H220.9338500.2193930.2497890.058*
C240.474 (2)0.0701 (9)0.1188 (4)0.0522 (19)
C121.183 (2)0.9161 (8)0.2840 (4)0.0474 (17)
H121.2646430.8876510.2421640.057*
C131.239 (2)1.0424 (8)0.3152 (4)0.0496 (18)
H131.3600631.0999320.2949030.060*
C141.120 (2)1.0847 (8)0.3762 (4)0.0484 (17)
H141.1608471.1713410.3976160.058*
C260.460 (2)0.2948 (9)0.1323 (4)0.056 (2)
H260.3846930.3661880.1179450.067*
O1S0.072 (7)0.3846 (16)0.0058 (12)0.142 (7)0.5
C2S0.030 (5)0.4885 (15)0.0000 (8)0.120 (7)0.5
C3S0.060 (9)0.521 (2)0.0666 (9)0.118 (8)0.5
H3SA0.1567370.5027480.0924090.177*0.5
H3SB0.2211120.4699170.0902050.177*0.5
H3SC0.1338640.6106720.0606220.177*0.5
C1S0.128 (9)0.5950 (18)0.0589 (10)0.120 (8)0.5
H1SA0.3290450.5771610.0831310.180*0.5
H1SB0.0520600.6032790.0881630.180*0.5
H1SC0.1714560.6739670.0439580.180*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0381 (5)0.0382 (5)0.0369 (5)0.0022 (4)0.0088 (4)0.0139 (4)
I10.0297 (3)0.0363 (3)0.0374 (3)0.00253 (18)0.00804 (18)0.0156 (2)
Br10.0554 (6)0.0520 (6)0.0599 (6)0.0024 (4)0.0080 (4)0.0020 (4)
S10.0471 (11)0.0387 (10)0.0353 (9)0.0027 (8)0.0116 (7)0.0132 (7)
N10.056 (4)0.046 (4)0.038 (3)0.001 (3)0.007 (3)0.015 (3)
N20.063 (4)0.052 (4)0.043 (3)0.004 (3)0.015 (3)0.015 (3)
O10.107 (6)0.058 (4)0.045 (3)0.007 (4)0.017 (3)0.021 (3)
C10.045 (4)0.051 (4)0.036 (3)0.002 (3)0.006 (3)0.013 (3)
C160.046 (4)0.045 (4)0.046 (4)0.000 (3)0.006 (3)0.019 (3)
C230.056 (5)0.063 (5)0.041 (4)0.001 (4)0.018 (3)0.009 (4)
C100.059 (5)0.061 (5)0.038 (4)0.002 (4)0.009 (3)0.012 (3)
C150.048 (4)0.050 (4)0.046 (4)0.009 (3)0.005 (3)0.019 (3)
C250.054 (5)0.070 (6)0.045 (4)0.005 (4)0.008 (3)0.011 (4)
C210.050 (4)0.052 (5)0.042 (4)0.000 (3)0.015 (3)0.008 (3)
C110.045 (4)0.047 (4)0.048 (4)0.000 (3)0.003 (3)0.018 (3)
C220.049 (4)0.061 (5)0.039 (4)0.002 (4)0.011 (3)0.017 (3)
C240.054 (5)0.058 (5)0.044 (4)0.002 (4)0.015 (3)0.007 (4)
C120.046 (4)0.055 (5)0.043 (4)0.001 (3)0.010 (3)0.016 (3)
C130.042 (4)0.054 (5)0.059 (5)0.003 (3)0.009 (3)0.025 (4)
C140.048 (4)0.048 (4)0.053 (4)0.002 (3)0.005 (3)0.018 (3)
C260.061 (5)0.059 (5)0.047 (4)0.003 (4)0.010 (4)0.012 (4)
O1S0.173 (18)0.124 (14)0.127 (15)0.001 (15)0.022 (14)0.023 (12)
C2S0.144 (16)0.086 (12)0.158 (15)0.034 (12)0.027 (13)0.078 (11)
C3S0.15 (2)0.069 (13)0.151 (18)0.020 (14)0.040 (17)0.049 (13)
C1S0.15 (2)0.098 (14)0.141 (17)0.028 (15)0.020 (16)0.095 (12)
Geometric parameters (Å, º) top
Cu1—Cu1i2.9257 (19)C23—C221.384 (12)
Cu1—Cu1ii2.9402 (18)C23—C241.362 (13)
Cu1—I1ii2.6643 (10)C10—C111.462 (12)
Cu1—I12.6520 (10)C15—H150.9500
Cu1—I1i2.6576 (11)C15—C141.377 (11)
Cu1—S12.285 (2)C25—H250.9500
Br1—C241.903 (9)C25—C241.374 (14)
S1—C11.666 (7)C25—C261.411 (13)
Cu1A—I1Aii2.69 (2)C21—C221.366 (12)
Cu1A—I1A2.614 (18)C21—C261.398 (12)
Cu1A—I1Ai2.540 (19)C11—C121.387 (11)
Cu1A—S1A2.35 (9)C22—H220.9500
I1A—I1Ai2.59 (2)C12—H120.9500
I1A—I1Aii2.76 (2)C12—C131.384 (12)
Cu1B—I1B2.64 (2)C13—H130.9500
Cu1B—S1B2.25 (4)C13—C141.386 (12)
N1—H10.8800C14—H140.9500
N1—C11.405 (10)C26—H260.9500
N1—C101.388 (11)O1S—C2S1.2070
N2—H20.8800C2S—C3S1.5042
N2—C11.343 (10)C2S—C1S1.5040
N2—C211.436 (10)C3S—H3SA0.9800
O1—C101.242 (10)C3S—H3SB0.9800
C16—H160.9500C3S—H3SC0.9800
C16—C151.404 (11)C1S—H1SA0.9800
C16—C111.408 (11)C1S—H1SB0.9800
C23—H230.9500C1S—H1SC0.9800
Cu1i—Cu1—Cu1ii87.58 (5)C14—C15—C16119.8 (7)
I1—Cu1—Cu1i56.65 (3)C14—C15—H15120.1
I1i—Cu1—Cu1ii120.17 (5)C24—C25—H25120.3
I1ii—Cu1—Cu1ii56.22 (3)C24—C25—C26119.4 (8)
I1i—Cu1—Cu1i56.47 (3)C26—C25—H25120.3
I1ii—Cu1—Cu1i120.04 (5)C22—C21—N2122.7 (7)
I1—Cu1—Cu1ii56.62 (3)C22—C21—C26122.2 (8)
I1—Cu1—I1i113.12 (4)C26—C21—N2115.1 (8)
I1—Cu1—I1ii112.84 (3)C16—C11—C10123.0 (7)
I1i—Cu1—I1ii99.42 (3)C12—C11—C16119.0 (7)
S1—Cu1—Cu1ii121.97 (7)C12—C11—C10118.0 (7)
S1—Cu1—Cu1i127.74 (8)C23—C22—H22120.4
S1—Cu1—I1i117.82 (6)C21—C22—C23119.1 (8)
S1—Cu1—I1ii112.19 (7)C21—C22—H22120.4
S1—Cu1—I1101.98 (6)C23—C24—Br1119.6 (7)
Cu1i—I1—Cu1ii99.42 (3)C23—C24—C25121.7 (9)
Cu1—I1—Cu1i66.88 (4)C25—C24—Br1118.7 (7)
Cu1—I1—Cu1ii67.15 (3)C11—C12—H12119.6
C1—S1—Cu1111.3 (3)C13—C12—C11120.9 (7)
I1Ai—Cu1A—I1A60.3 (5)C13—C12—H12119.6
S1A—Cu1A—I1Ai76 (2)C12—C13—H13120.0
S1A—Cu1A—I1A103 (2)C12—C13—C14119.9 (8)
Cu1Ai—I1A—Cu1A119.7 (5)C14—C13—H13120.0
Cu1Ai—I1A—I1Ai61.3 (6)C15—C14—C13120.6 (8)
I1Ai—I1A—Cu1A58.4 (5)C15—C14—H14119.7
S1B—Cu1B—I1B102.9 (13)C13—C14—H14119.7
C1—N1—H1115.3C25—C26—H26121.3
C10—N1—H1115.3C21—C26—C25117.5 (9)
C10—N1—C1129.4 (6)C21—C26—H26121.3
C1—N2—H2117.7O1S—C2S—C3S122.2
C1—N2—C21124.6 (7)O1S—C2S—C1S122.0
C21—N2—H2117.7C1S—C2S—C3S115.8
N1—C1—S1119.3 (5)C2S—C3S—H3SA109.5
N2—C1—S1125.9 (6)C2S—C3S—H3SB109.5
N2—C1—N1114.7 (7)C2S—C3S—H3SC109.5
C15—C16—H16120.1H3SA—C3S—H3SB109.5
C15—C16—C11119.7 (7)H3SA—C3S—H3SC109.5
C11—C16—H16120.1H3SB—C3S—H3SC109.5
C22—C23—H23120.0C2S—C1S—H1SA109.5
C24—C23—H23120.0C2S—C1S—H1SB109.5
C24—C23—C22120.1 (9)C2S—C1S—H1SC109.5
N1—C10—C11116.8 (7)H1SA—C1S—H1SB109.5
O1—C10—N1120.8 (8)H1SA—C1S—H1SC109.5
O1—C10—C11122.3 (8)H1SB—C1S—H1SC109.5
C16—C15—H15120.1
Cu1—S1—C1—N19.1 (7)C10—C11—C12—C13178.3 (8)
Cu1—S1—C1—N2174.3 (6)C15—C16—C11—C10177.1 (8)
N1—C10—C11—C1618.5 (12)C15—C16—C11—C121.7 (11)
N1—C10—C11—C12162.6 (8)C21—N2—C1—S11.2 (12)
N2—C21—C22—C23179.0 (7)C21—N2—C1—N1178.1 (7)
N2—C21—C26—C25178.8 (7)C11—C16—C15—C142.2 (12)
O1—C10—C11—C16159.2 (9)C11—C12—C13—C140.1 (12)
O1—C10—C11—C1219.6 (13)C22—C23—C24—Br1177.2 (6)
C1—N1—C10—O12.9 (15)C22—C23—C24—C251.5 (13)
C1—N1—C10—C11174.8 (8)C22—C21—C26—C251.3 (12)
C1—N2—C21—C2248.9 (12)C24—C23—C22—C210.3 (12)
C1—N2—C21—C26133.6 (9)C24—C25—C26—C210.5 (12)
C16—C15—C14—C131.5 (12)C12—C13—C14—C150.3 (12)
C16—C11—C12—C130.6 (12)C26—C25—C24—Br1176.8 (6)
C10—N1—C1—S1175.8 (7)C26—C25—C24—C231.9 (13)
C10—N1—C1—N21.2 (12)C26—C21—C22—C231.7 (12)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···I1i0.882.953.688 (6)143
N2—H2···O10.881.922.635 (10)137
Symmetry code: (i) x+2, y+1, z+1.
Poly[µ4-iodido-µ3-iodido-[N-(benzo[d]thiazol-2-yl)benzamide-κN]dicopper(I)] (II) top
Crystal data top
[Cu2I2(C14H10N2OS)]F(000) = 592
Mr = 635.18Dx = 2.583 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 12.6880 (12) ÅCell parameters from 1069 reflections
b = 4.1152 (4) Åθ = 2.9–29.4°
c = 15.8952 (15) ŵ = 6.51 mm1
β = 100.258 (8)°T = 120 K
V = 816.68 (14) Å3Needle, brown
Z = 20.57 × 0.09 × 0.06 mm
Data collection top
Stoe IPDS 2T
diffractometer
3163 independent reflections
Radiation source: microfocus sealed X-ray tube, GeniX Mo, 0.05 x 0.05 mm23139 reflections with I > 2σ(I)
Parabolic x-ray mirror monochromatorRint = 0.039
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.6°
rotation method scansh = 1515
Absorption correction: integration
[X-RED32 (Stoe & Cie, 2009), by Gaussian integration, analogous to Coppens (1970)]
k = 45
Tmin = 0.175, Tmax = 0.688l = 1919
7646 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0771P)2 + 6.6934P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.121(Δ/σ)max = 0.001
S = 1.06Δρmax = 1.31 e Å3
3163 reflectionsΔρmin = 2.03 e Å3
199 parametersAbsolute structure: Flack x determined using 1322 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.11 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I21.02099 (5)0.89173 (17)0.37962 (5)0.0200 (2)
I10.72945 (6)0.48198 (19)0.41104 (5)0.0220 (2)
Cu20.93650 (12)0.3849 (4)0.45145 (10)0.0270 (4)
Cu10.81130 (14)0.0090 (5)0.33639 (12)0.0373 (4)
S10.6135 (2)0.1705 (8)0.07118 (19)0.0233 (6)
O10.4394 (7)0.107 (3)0.1140 (5)0.031 (2)
N10.5840 (8)0.123 (3)0.2190 (6)0.024 (2)
H10.6095400.1939740.2709000.028*
N20.7534 (8)0.087 (3)0.2105 (6)0.021 (2)
C10.6534 (9)0.030 (3)0.1759 (7)0.020 (2)
C250.9109 (9)0.371 (4)0.1740 (7)0.024 (2)
H250.9533110.3302480.2285300.029*
C210.7436 (10)0.325 (3)0.0755 (8)0.023 (2)
C220.7821 (9)0.498 (4)0.0125 (8)0.026 (3)
H220.7377480.5431160.0409980.031*
C130.2541 (10)0.612 (4)0.2674 (9)0.036 (3)
H130.1902940.7254040.2439610.044*
C100.4763 (10)0.176 (4)0.1874 (8)0.026 (3)
C240.9525 (10)0.544 (4)0.1116 (8)0.027 (3)
H241.0240290.6221340.1237870.033*
C140.2820 (11)0.581 (4)0.3551 (9)0.037 (3)
H140.2380520.6718960.3916800.044*
C200.8073 (9)0.263 (3)0.1545 (7)0.021 (2)
C110.4125 (9)0.319 (3)0.2479 (8)0.025 (3)
C120.3176 (10)0.481 (4)0.2121 (10)0.033 (3)
H120.2970250.5010820.1518840.040*
C230.8890 (10)0.604 (4)0.0305 (9)0.029 (3)
H230.9188550.7159120.0119500.035*
C150.3770 (10)0.413 (4)0.3895 (8)0.033 (3)
H150.3962170.3865330.4496330.040*
C160.4414 (10)0.287 (4)0.3374 (8)0.028 (3)
H160.5057100.1779060.3615000.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I20.0181 (3)0.0203 (4)0.0216 (4)0.0004 (3)0.0039 (3)0.0007 (3)
I10.0204 (4)0.0224 (4)0.0231 (4)0.0016 (3)0.0034 (3)0.0030 (3)
Cu20.0247 (7)0.0292 (9)0.0271 (7)0.0026 (7)0.0049 (6)0.0040 (7)
Cu10.0349 (8)0.0414 (11)0.0348 (9)0.0009 (9)0.0046 (7)0.0011 (9)
S10.0187 (13)0.0324 (17)0.0183 (13)0.0016 (12)0.0019 (10)0.0030 (12)
O10.026 (4)0.047 (6)0.020 (4)0.001 (5)0.002 (3)0.005 (5)
N10.022 (4)0.033 (6)0.016 (4)0.001 (5)0.003 (4)0.003 (5)
N20.022 (5)0.024 (5)0.017 (5)0.000 (4)0.003 (4)0.004 (4)
C10.017 (5)0.028 (7)0.014 (5)0.003 (5)0.001 (4)0.002 (5)
C250.028 (6)0.025 (6)0.019 (5)0.003 (5)0.004 (4)0.002 (5)
C210.024 (5)0.022 (7)0.025 (6)0.002 (5)0.006 (4)0.002 (5)
C220.021 (5)0.037 (7)0.018 (5)0.002 (6)0.001 (4)0.001 (6)
C130.026 (6)0.039 (8)0.044 (8)0.001 (6)0.007 (6)0.005 (7)
C100.024 (6)0.025 (7)0.029 (6)0.001 (5)0.007 (5)0.005 (5)
C240.024 (6)0.025 (7)0.033 (7)0.001 (5)0.008 (5)0.007 (6)
C140.030 (6)0.046 (10)0.038 (7)0.006 (7)0.013 (6)0.015 (7)
C200.023 (5)0.022 (6)0.020 (6)0.003 (5)0.007 (4)0.002 (5)
C110.021 (5)0.029 (7)0.025 (6)0.004 (5)0.006 (5)0.004 (5)
C120.026 (6)0.030 (7)0.044 (8)0.002 (6)0.008 (6)0.003 (7)
C230.023 (6)0.035 (8)0.030 (7)0.001 (6)0.006 (5)0.005 (6)
C150.024 (6)0.050 (9)0.025 (6)0.003 (6)0.002 (5)0.003 (6)
C160.028 (6)0.037 (8)0.019 (6)0.006 (6)0.004 (5)0.004 (5)
Geometric parameters (Å, º) top
I2—Cu2i2.6431 (18)C25—C201.370 (17)
I2—Cu22.6905 (18)C21—C221.386 (18)
I2—Cu2ii2.6473 (18)C21—C201.392 (17)
I2—Cu1ii2.658 (2)C22—H220.9500
I1—Cu22.6216 (17)C22—C231.406 (17)
I1—Cu1ii2.704 (2)C13—H130.9500
I1—Cu12.647 (2)C13—C141.38 (2)
Cu2—Cu2iii2.885 (2)C13—C121.403 (19)
Cu2—Cu2i2.885 (2)C10—C111.485 (17)
Cu2—Cu12.732 (2)C24—H240.9500
Cu1—N22.044 (10)C24—C231.414 (19)
S1—C11.749 (11)C14—H140.9500
S1—C211.759 (13)C14—C151.41 (2)
O1—C101.210 (16)C11—C121.406 (19)
N1—H10.8800C11—C161.411 (17)
N1—C11.363 (16)C12—H120.9500
N1—C101.387 (15)C23—H230.9500
N2—C11.311 (15)C15—H150.9500
N2—C201.414 (15)C15—C161.364 (19)
C25—H250.9500C16—H160.9500
C25—C241.398 (18)
Cu2i—I2—Cu2ii66.11 (5)C1—N2—C20111.6 (10)
Cu2ii—I2—Cu2100.88 (5)C20—N2—Cu1125.8 (8)
Cu2i—I2—Cu265.50 (5)N1—C1—S1121.9 (8)
Cu2i—I2—Cu1ii106.14 (6)N2—C1—S1115.7 (9)
Cu2ii—I2—Cu1ii61.97 (6)N2—C1—N1122.3 (10)
Cu1ii—I2—Cu276.87 (6)C24—C25—H25120.9
Cu2—I1—Cu162.45 (6)C20—C25—H25120.9
Cu2—I1—Cu1ii77.24 (6)C20—C25—C24118.2 (11)
Cu1—I1—Cu1ii100.52 (6)C22—C21—S1127.4 (10)
I2iii—Cu2—I2iv114.92 (7)C22—C21—C20121.6 (11)
I2iii—Cu2—I2113.47 (6)C20—C21—S1111.0 (9)
I2iv—Cu2—I2100.88 (5)C21—C22—H22121.2
I2iv—Cu2—Cu2i123.16 (8)C21—C22—C23117.6 (11)
I2iii—Cu2—Cu2iii58.04 (6)C23—C22—H22121.2
I2—Cu2—Cu2i56.46 (4)C14—C13—H13119.2
I2iii—Cu2—Cu2i57.02 (6)C14—C13—C12121.6 (14)
I2iv—Cu2—Cu2iii56.88 (4)C12—C13—H13119.2
I2—Cu2—Cu2iii123.57 (8)O1—C10—N1120.0 (12)
I2—Cu2—Cu1113.83 (7)O1—C10—C11123.8 (11)
I2iv—Cu2—Cu159.21 (5)N1—C10—C11116.2 (11)
I2iii—Cu2—Cu1132.51 (8)C25—C24—H24119.7
I1—Cu2—I2103.62 (6)C25—C24—C23120.7 (12)
I1—Cu2—I2iii105.17 (6)C23—C24—H24119.7
I1—Cu2—I2iv118.44 (6)C13—C14—H14120.6
I1—Cu2—Cu2iii132.81 (7)C13—C14—C15118.9 (13)
I1—Cu2—Cu2i117.53 (6)C15—C14—H14120.6
I1—Cu2—Cu159.23 (6)C25—C20—N2125.2 (11)
Cu2iii—Cu2—Cu2i90.97 (9)C25—C20—C21121.6 (11)
Cu1—Cu2—Cu2i169.75 (8)C21—C20—N2113.2 (10)
Cu1—Cu2—Cu2iii97.92 (5)C12—C11—C10116.9 (11)
I2iv—Cu1—I1iv102.26 (7)C12—C11—C16120.2 (12)
I2iv—Cu1—Cu258.81 (5)C16—C11—C10122.9 (12)
I1—Cu1—I2iv117.13 (7)C13—C12—C11118.4 (13)
I1—Cu1—I1iv100.52 (6)C13—C12—H12120.8
I1iv—Cu1—Cu2112.88 (7)C11—C12—H12120.8
I1—Cu1—Cu258.32 (5)C22—C23—C24120.3 (12)
N2—Cu1—I2iv116.8 (3)C22—C23—H23119.9
N2—Cu1—I1iv118.7 (3)C24—C23—H23119.9
N2—Cu1—I1100.9 (3)C14—C15—H15119.5
N2—Cu1—Cu2127.3 (3)C16—C15—C14120.9 (13)
C1—S1—C2188.4 (6)C16—C15—H15119.5
C1—N1—H1117.5C11—C16—H16120.0
C1—N1—C10124.9 (10)C15—C16—C11120.0 (13)
C10—N1—H1117.5C15—C16—H16120.0
C1—N2—Cu1121.9 (8)
Symmetry codes: (i) x+2, y+1/2, z+1; (ii) x, y+1, z; (iii) x+2, y1/2, z+1; (iv) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···I1iv0.882.803.654 (10)164
Symmetry code: (iv) x, y1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds