Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Carboxyl­ate mol­ecular crystals have been of inter­est due to the presence of hydrogen bonding, which plays a significant role in chemical and crystal engineering, as well as in supra­molecular chemistry. Acid–base adducts possess hydrogen bonds which increase the thermal and mechanical stability of the crystal. 2,2′-Thiodi­acetic acid (Tda) is a versatile ligand that has been widely explored, employing its multidendate and chelating coordination abilities with many metals; however, charge-transfer complexes of thiodi­acetic acid have not been reported. Two salts, namely ethyl­enediaminium 2,2′-thiodi­acetate, C2H10N22+·C4H4O4S22−, denoted Tdaen, and 2-amino­anilinium 2-(carb­oxy­methyl­sulfan­yl)acetate, C6H9N2+·C4H5O4S, denoted Tdaophen, were synthesized and characterized by IR, 1H and 13C NMR spectroscopies, and single-crystal X-ray diffraction. In these salts, Tda reacts with the aliphatic (ethyl­enedi­amine) and aromatic (o-phenyl­enedi­amine) di­amines, and depro­ton­ates them to form anions with different valencies and different supra­molecular networks. In Tdaen, the divalent Tda2− anions form one-dimensional linear supra­molecular chains and these are extended into a three-dimensional sandwich-type supra­molecular network by inter­action with the ethyl­enediaminium cations. However, in Tdaophen, the monovalent Tda anions form one-dimensional zigzag supra­molecular chains, which are extended into a three-dimensional supra­molecular network by inter­action with the 2-amino­anilinium cations. Thus, both three-dimensional structures display different ring motifs. The structures of these di­amines, which are influenced by hydrogen-bonded assemblies in the mol­ecular crystals, are discussed in detail.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229617000559/qs3058sup1.cif
Contains datablocks TDAEN, TDAOPHEN, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617000559/qs3058TDAENsup2.hkl
Contains datablock TDAEN

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617000559/qs3058TDAOPHENsup3.hkl
Contains datablock TDAOPHEN

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229617000559/qs3058sup4.pdf
ATR and NMR spectra

CCDC references: 1401983; 1001490

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1992); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Bruno et al., 2002); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

(TDAEN) Ethylenediaminium 2,2'-thiodiacetate top
Crystal data top
C2H10N22+·C4H4O4S22F(000) = 448
Mr = 210.25Dx = 1.417 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.9626 (5) ÅCell parameters from 6743 reflections
b = 10.2601 (4) Åθ = 2.7–30.3°
c = 8.7673 (4) ŵ = 0.32 mm1
β = 91.421 (2)°T = 293 K
V = 985.82 (7) Å3Needle, colourless
Z = 40.35 × 0.30 × 0.30 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1733 independent reflections
Radiation source: fine-focus sealed tube1535 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω and φ scanθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1313
Tmin = 0.895, Tmax = 0.928k = 1212
12561 measured reflectionsl = 1010
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0287P)2 + 0.5534P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1733 reflectionsΔρmax = 0.17 e Å3
118 parametersΔρmin = 0.17 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.23116 (13)0.12791 (14)0.17964 (17)0.0229 (3)
C20.31284 (14)0.11575 (17)0.03784 (18)0.0308 (4)
H2A0.34960.20020.01760.037*
H2B0.37840.05590.06040.037*
C30.18176 (14)0.09258 (15)0.07206 (19)0.0298 (4)
H3A0.14000.13080.15750.036*
H3B0.12060.07590.00730.036*
C40.26946 (13)0.19425 (15)0.01197 (17)0.0270 (3)
C50.53945 (14)0.00265 (16)0.42869 (17)0.0291 (4)
H5A0.51450.07510.36550.035*
H5B0.62390.01600.45520.035*
C60.03364 (15)0.05300 (16)0.45917 (18)0.0305 (4)
H6A0.11900.02950.45200.037*
H6B0.00010.06280.35650.037*
N10.52765 (11)0.12046 (13)0.34380 (14)0.0273 (3)
H1A0.57430.11730.25940.041*
H1B0.55130.18650.40190.041*
H1C0.45020.13190.31890.041*
N20.02281 (11)0.17710 (13)0.54231 (14)0.0271 (3)
H2C0.06280.23920.49330.041*
H2D0.05550.19890.54770.041*
H2E0.05460.16820.63610.041*
O10.11916 (9)0.14597 (11)0.16515 (12)0.0294 (3)
O20.28221 (10)0.12164 (13)0.30456 (13)0.0377 (3)
O30.22187 (10)0.28269 (13)0.06647 (16)0.0449 (3)
O40.38094 (10)0.18605 (12)0.04327 (14)0.0362 (3)
S10.24260 (4)0.06144 (4)0.13324 (4)0.02889 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0221 (7)0.0215 (7)0.0252 (8)0.0003 (6)0.0014 (6)0.0007 (6)
C20.0225 (8)0.0405 (9)0.0294 (8)0.0066 (7)0.0020 (6)0.0052 (7)
C30.0238 (8)0.0288 (8)0.0369 (9)0.0002 (6)0.0056 (7)0.0010 (7)
C40.0230 (8)0.0302 (8)0.0279 (8)0.0005 (6)0.0011 (6)0.0000 (7)
C50.0259 (8)0.0334 (9)0.0278 (8)0.0025 (7)0.0046 (7)0.0020 (7)
C60.0307 (8)0.0341 (9)0.0271 (8)0.0038 (7)0.0055 (6)0.0018 (7)
N10.0214 (6)0.0358 (7)0.0245 (7)0.0034 (5)0.0005 (5)0.0028 (6)
N20.0221 (6)0.0300 (7)0.0291 (7)0.0013 (5)0.0017 (5)0.0057 (6)
O10.0204 (5)0.0426 (7)0.0252 (6)0.0052 (5)0.0003 (4)0.0008 (5)
O20.0275 (6)0.0601 (8)0.0257 (6)0.0075 (5)0.0053 (5)0.0004 (6)
O30.0252 (6)0.0491 (8)0.0603 (8)0.0019 (5)0.0012 (6)0.0261 (7)
O40.0208 (6)0.0413 (7)0.0462 (7)0.0034 (5)0.0028 (5)0.0116 (6)
S10.0345 (2)0.0309 (2)0.0212 (2)0.00052 (17)0.00005 (16)0.00186 (16)
Geometric parameters (Å, º) top
C1—O21.2439 (18)C5—C5i1.504 (3)
C1—O11.2514 (17)C5—H5A0.9700
C1—C21.519 (2)C5—H5B0.9700
C2—S11.7918 (16)C6—N21.473 (2)
C2—H2A0.9700C6—C6ii1.505 (3)
C2—H2B0.9700C6—H6A0.9700
C3—C41.522 (2)C6—H6B0.9700
C3—S11.7923 (16)N1—H1A0.8900
C3—H3A0.9700N1—H1B0.8900
C3—H3B0.9700N1—H1C0.8900
C4—O31.2453 (19)N2—H2C0.8900
C4—O41.2488 (18)N2—H2D0.8900
C5—N11.473 (2)N2—H2E0.8900
O2—C1—O1124.13 (14)C5i—C5—H5B109.8
O2—C1—C2116.58 (13)H5A—C5—H5B108.2
O1—C1—C2119.28 (13)N2—C6—C6ii110.04 (16)
C1—C2—S1116.99 (11)N2—C6—H6A109.7
C1—C2—H2A108.1C6ii—C6—H6A109.7
S1—C2—H2A108.1N2—C6—H6B109.7
C1—C2—H2B108.1C6ii—C6—H6B109.7
S1—C2—H2B108.1H6A—C6—H6B108.2
H2A—C2—H2B107.3C5—N1—H1A109.5
C4—C3—S1118.33 (11)C5—N1—H1B109.5
C4—C3—H3A107.7H1A—N1—H1B109.5
S1—C3—H3A107.7C5—N1—H1C109.5
C4—C3—H3B107.7H1A—N1—H1C109.5
S1—C3—H3B107.7H1B—N1—H1C109.5
H3A—C3—H3B107.1C6—N2—H2C109.5
O3—C4—O4124.39 (15)C6—N2—H2D109.5
O3—C4—C3115.54 (13)H2C—N2—H2D109.5
O4—C4—C3120.07 (14)C6—N2—H2E109.5
N1—C5—C5i109.46 (16)H2C—N2—H2E109.5
N1—C5—H5A109.8H2D—N2—H2E109.5
C5i—C5—H5A109.8C2—S1—C3100.85 (8)
N1—C5—H5B109.8
O2—C1—C2—S1156.35 (13)S1—C3—C4—O419.6 (2)
O1—C1—C2—S125.1 (2)C1—C2—S1—C357.88 (14)
S1—C3—C4—O3160.99 (13)C4—C3—S1—C258.30 (14)
Symmetry codes: (i) x+1, y, z1; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O40.972.643.260 (2)122
C5—H5B···O2i0.972.603.3180 (19)131
N1—H1A···O4iii0.892.072.8755 (17)150
N1—H1A···S1iii0.892.923.6062 (14)136
N1—H1C···O20.891.852.7211 (16)165
N1—H1B···O3iv0.892.533.0420 (17)117
N1—H1B···O4iv0.891.962.8444 (17)172
N2—H2C···O1v0.891.932.7954 (17)162
N2—H2E···O1vi0.891.882.7680 (16)179
N2—H2E···O2vi0.892.583.1660 (16)124
N2—H2D···O3vii0.891.842.7273 (17)171
Symmetry codes: (i) x+1, y, z1; (iii) x+1, y, z; (iv) x+1, y+1/2, z1/2; (v) x, y+1/2, z+1/2; (vi) x, y, z+1; (vii) x, y+1/2, z+1/2.
(TDAOPHEN) 2-Aminoanilinium 2-(carboxymethylsulfanyl)acetate top
Crystal data top
C6H9N2+·C4H5O4SF(000) = 544
Mr = 258.29Dx = 1.423 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 4.9006 (4) ÅCell parameters from 2643 reflections
b = 12.9808 (10) Åθ = 3.1–27.0°
c = 18.9837 (15) ŵ = 0.27 mm1
β = 92.978 (8)°T = 293 K
V = 1205.99 (17) Å3Needle, brown
Z = 40.35 × 0.30 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2084 independent reflections
Radiation source: fine-focus sealed tube1323 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ω and φ scanθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 55
Tmin = 0.603, Tmax = 0.745k = 1515
11771 measured reflectionsl = 2221
Refinement top
Refinement on F29 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0376P)2 + 0.6293P]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max < 0.001
2084 reflectionsΔρmax = 0.18 e Å3
184 parametersΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4270 (5)0.2595 (2)0.44536 (13)0.0322 (6)
C20.2612 (6)0.1776 (2)0.46332 (15)0.0447 (8)
H20.11600.18570.49640.054*
C30.3116 (7)0.0830 (3)0.43184 (19)0.0627 (10)
H30.20360.02620.44420.075*
C40.5243 (7)0.0740 (3)0.38192 (19)0.0650 (10)
H40.55720.01090.35990.078*
C50.6878 (6)0.1562 (3)0.36415 (16)0.0535 (9)
H50.83070.14800.33040.064*
C60.6441 (5)0.2523 (2)0.39574 (13)0.0386 (7)
C70.3832 (6)0.3690 (2)0.22095 (15)0.0449 (8)
C80.4834 (6)0.3290 (2)0.15022 (15)0.0461 (8)
H8A0.32810.30980.12340.055*
H8B0.58190.38330.12460.055*
C90.4590 (5)0.1192 (2)0.17664 (14)0.0400 (7)
H9A0.32720.14450.21240.048*
H9B0.55320.06150.19690.048*
C100.3033 (5)0.07922 (19)0.11553 (14)0.0304 (6)
N10.3744 (5)0.35989 (18)0.47911 (12)0.0345 (6)
N20.8170 (5)0.3352 (2)0.38089 (14)0.0524 (7)
O1A0.147 (7)0.358 (4)0.242 (2)0.051 (9)0.25 (6)
O1B0.229 (4)0.3189 (18)0.2612 (9)0.068 (5)0.75 (6)
O20.5116 (4)0.45136 (15)0.24055 (10)0.0538 (6)
H2A0.44920.46980.27940.081*
O30.1229 (4)0.01163 (14)0.13035 (9)0.0424 (5)
O40.3524 (3)0.11206 (14)0.05435 (9)0.0406 (5)
S10.70436 (15)0.21916 (6)0.15780 (4)0.0483 (3)
H1A0.517 (4)0.3779 (19)0.5045 (11)0.041 (9)*
H1B0.352 (5)0.4090 (18)0.4459 (10)0.052 (9)*
H1C0.218 (4)0.358 (2)0.5075 (12)0.059 (9)*
H2B0.939 (5)0.330 (2)0.3454 (13)0.068 (10)*
H2C0.748 (6)0.3980 (16)0.3851 (17)0.078 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0353 (16)0.0359 (16)0.0253 (14)0.0075 (13)0.0024 (12)0.0031 (12)
C20.0438 (18)0.0455 (19)0.0449 (18)0.0021 (15)0.0025 (14)0.0006 (15)
C30.069 (2)0.042 (2)0.078 (3)0.0025 (17)0.014 (2)0.0046 (18)
C40.072 (3)0.051 (2)0.074 (3)0.022 (2)0.021 (2)0.0260 (19)
C50.050 (2)0.068 (2)0.0436 (19)0.0233 (18)0.0033 (15)0.0173 (17)
C60.0356 (17)0.0507 (19)0.0295 (16)0.0161 (14)0.0022 (13)0.0011 (14)
C70.045 (2)0.046 (2)0.0420 (19)0.0062 (16)0.0057 (15)0.0115 (16)
C80.0553 (19)0.0410 (17)0.0405 (17)0.0133 (15)0.0114 (15)0.0107 (14)
C90.0455 (18)0.0418 (17)0.0330 (16)0.0010 (14)0.0046 (13)0.0003 (13)
C100.0276 (15)0.0309 (15)0.0326 (16)0.0046 (12)0.0003 (12)0.0027 (13)
N10.0348 (15)0.0402 (16)0.0281 (13)0.0036 (12)0.0030 (12)0.0007 (12)
N20.0459 (17)0.063 (2)0.0458 (16)0.0093 (15)0.0187 (14)0.0055 (15)
O1A0.038 (11)0.056 (15)0.056 (10)0.017 (8)0.014 (8)0.010 (10)
O1B0.065 (6)0.077 (7)0.058 (5)0.026 (6)0.031 (4)0.018 (5)
O20.0727 (15)0.0451 (13)0.0416 (12)0.0112 (11)0.0156 (11)0.0120 (10)
O30.0525 (12)0.0382 (11)0.0360 (11)0.0159 (10)0.0019 (9)0.0033 (9)
O40.0397 (12)0.0549 (13)0.0270 (11)0.0091 (9)0.0004 (8)0.0066 (9)
S10.0325 (4)0.0575 (5)0.0544 (5)0.0060 (4)0.0030 (4)0.0168 (4)
Geometric parameters (Å, º) top
C1—C21.370 (4)C8—S11.801 (3)
C1—C61.387 (4)C8—H8A0.9700
C1—N11.469 (3)C8—H8B0.9700
C2—C31.383 (4)C9—C101.513 (4)
C2—H20.9300C9—S11.793 (3)
C3—C41.377 (5)C9—H9A0.9700
C3—H30.9300C9—H9B0.9700
C4—C51.366 (5)C10—O41.249 (3)
C4—H40.9300C10—O31.267 (3)
C5—C61.395 (4)N1—H1A0.899 (15)
C5—H50.9300N1—H1B0.906 (15)
C6—N21.390 (4)N1—H1C0.914 (15)
C7—O1A1.21 (2)N2—H2B0.881 (17)
C7—O1B1.232 (12)N2—H2C0.883 (17)
C7—O21.304 (3)O2—H2A0.8200
C7—C81.498 (4)
C2—C1—C6122.7 (3)S1—C8—H8A109.2
C2—C1—N1119.4 (2)C7—C8—H8B109.2
C6—C1—N1117.8 (2)S1—C8—H8B109.2
C1—C2—C3119.4 (3)H8A—C8—H8B107.9
C1—C2—H2120.3C10—C9—S1117.07 (19)
C3—C2—H2120.3C10—C9—H9A108.0
C4—C3—C2119.0 (3)S1—C9—H9A108.0
C4—C3—H3120.5C10—C9—H9B108.0
C2—C3—H3120.5S1—C9—H9B108.0
C5—C4—C3121.2 (3)H9A—C9—H9B107.3
C5—C4—H4119.4O4—C10—O3122.8 (2)
C3—C4—H4119.4O4—C10—C9121.0 (2)
C4—C5—C6121.1 (3)O3—C10—C9116.2 (2)
C4—C5—H5119.4C1—N1—H1A109.9 (16)
C6—C5—H5119.4C1—N1—H1B110.2 (17)
C1—C6—N2121.6 (3)H1A—N1—H1B108.4 (18)
C1—C6—C5116.6 (3)C1—N1—H1C110.5 (17)
N2—C6—C5121.8 (3)H1A—N1—H1C110.0 (19)
O1A—C7—O2118.2 (14)H1B—N1—H1C107.7 (18)
O1B—C7—O2123.0 (4)C6—N2—H2B118.4 (19)
O1A—C7—C8120.8 (12)C6—N2—H2C118 (2)
O1B—C7—C8122.4 (5)H2B—N2—H2C113 (2)
O2—C7—C8113.5 (2)C7—O2—H2A109.5
C7—C8—S1111.9 (2)C9—S1—C8100.91 (13)
C7—C8—H8A109.2
C6—C1—C2—C30.9 (4)C4—C5—C6—C10.3 (4)
N1—C1—C2—C3179.6 (3)C4—C5—C6—N2176.7 (3)
C1—C2—C3—C41.5 (5)O1A—C7—C8—S1109 (4)
C2—C3—C4—C51.2 (5)O1B—C7—C8—S166.3 (19)
C3—C4—C5—C60.3 (5)O2—C7—C8—S1102.0 (3)
C2—C1—C6—N2176.9 (3)S1—C9—C10—O42.7 (3)
N1—C1—C6—N23.5 (4)S1—C9—C10—O3177.19 (18)
C2—C1—C6—C50.0 (4)C10—C9—S1—C876.4 (2)
N1—C1—C6—C5179.5 (2)C7—C8—S1—C978.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O1B0.972.493.225 (17)133
O2—H2A···O3i0.821.812.624 (2)169
N1—H1A···O4ii0.90 (2)1.94 (2)2.830 (3)168 (2)
N1—H1B···O3i0.91 (2)1.97 (2)2.864 (3)169 (2)
N1—H1C···O4iii0.92 (2)1.99 (2)2.887 (3)164 (2)
N1—H1C···S1iii0.92 (2)3.01 (2)3.600 (2)123 (2)
N2—H2B···O1Aiv0.88 (2)2.20 (4)3.04 (3)159 (3)
N2—H2B···O1Biv0.88 (2)2.08 (2)2.966 (7)179 (3)
N2—H2C···O3i0.88 (2)2.38 (2)3.161 (3)147 (3)
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z1/2; (iii) x1/2, y+1/2, z1/2; (iv) x+1, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds