Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The assembly of coordination polymers from metal ions and organic moieties is currently attracting considerable attention in crystal engineering due to their intriguing architectures and potential applications as functional materials. A new coordination polymer, namely poly[[μ2-trans-1,2-bis­(pyridin-3-yl)ethyl­ene-κ2N:N′]bis­(μ4-4,4′-oxydibenzoato-κ6O:O,O′:O′′:O′′,O′′′)dicadmium(II)], [Cd2(C14H8O5)2(C12H10N2)]n or [Cd2(4,4′-OBB)2(3,3′-BPE)]n, has been synthesized by the the self-assembly of Cd(NO3)2·4H2O, 4,4′-oxydi­benzoic acid (4,4′-H2OBB) and trans-1,2-bis­(pyridin-3-yl)ethene (3,3′-BPE) under hydro­thermal conditions. The title compound was structurally characterized by IR spectroscopy, elemental analysis and single-crystal X-ray diffraction analysis. Each CdII centre is coordinated by six carboxyl­ate O atoms from four different 4,4′-OBB2− ligands and by one pyridyl N atom form a 3,3′-BPE ligand. Adjacent crystallographically equivalent CdII ions are bridged by 4,4′-OBB2− ligands, affording a two-dimensional [Cd(4,4′-OBB)]n net extending in the ac plane. Neighbouring [Cd(4,4′-OBB)]n nets are inter­linked by 3,3′-BPE along the b axis to form a three-dimensional (3D) [Cd2(4,4′-OBB)2(3,3′-BPE)]n coordination network. In the network, each CdII centre is linked by four different 4,4′-OBB2− ligands and one 3,3′-BPE ligand. Meanwhile, each 4,4′-OBB2− ligand connects four separate CdII ions. Therefore, if the 4,4′-OBB2− ligands and CdII ions are considered as 4- and 5-connecting nodes, the structure of the title compound can be simplified as a 3D (4,5)-connected binodal framework with the rare (4462)(4466) TCS topology (Pearson, 1985; Blake et al., 2011). The thermal stability and photoluminescence properties of the title compound have also been investigated.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618015073/qs3076sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618015073/qs3076Isup2.hkl
Contains datablock I

CCDC reference: 1853230

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: publCIF (Westrip, 2010).

Poly[[µ2-trans-1,2-bis(pyridin-3-yl)ethylene-κ2N:N']bis(µ4-4,4'-oxydibenzoato-κ6O:O,O':O'':O'',O''')dicadmium(II)] top
Crystal data top
[Cd2(C14H8O5)2(C12H10N2)]Z = 1
Mr = 919.44F(000) = 456
Triclinic, P1Dx = 1.620 Mg m3
a = 7.6924 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.128 (2) ÅCell parameters from 17558 reflections
c = 12.240 (2) Åθ = 3.1–27.5°
α = 84.85 (3)°µ = 1.19 mm1
β = 85.98 (3)°T = 223 K
γ = 83.70 (3)°Block, colorless
V = 942.3 (3) Å30.28 × 0.25 × 0.16 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
4065 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
phi and ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 99
Tmin = 0.743, Tmax = 0.821k = 1313
17558 measured reflectionsl = 1415
4296 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019H-atom parameters constrained
wR(F2) = 0.049 w = 1/[σ2(Fo2) + (0.0229P)2 + 0.3899P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.001
4296 reflectionsΔρmax = 0.32 e Å3
244 parametersΔρmin = 0.59 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.25340 (2)0.48919 (2)0.47730 (2)0.02732 (5)
N10.20476 (18)0.71564 (13)0.44404 (12)0.0305 (3)
O10.30676 (17)0.31702 (14)0.61377 (11)0.0404 (3)
O20.45967 (16)0.48771 (13)0.61720 (10)0.0357 (3)
O31.00031 (18)0.45799 (13)1.38430 (10)0.0386 (3)
O41.24677 (19)0.33918 (15)1.34201 (13)0.0509 (4)
O50.7588 (3)0.11391 (14)1.02079 (13)0.0644 (5)
C10.0762 (2)0.76843 (18)0.38000 (17)0.0387 (4)
H10.00350.71160.35300.046*
C20.0477 (3)0.9037 (2)0.3527 (2)0.0522 (5)
H20.04520.93890.30930.063*
C30.1572 (3)0.98658 (19)0.3899 (2)0.0501 (5)
H30.13861.07910.37230.060*
C40.2946 (2)0.93398 (16)0.45301 (16)0.0342 (4)
C50.3098 (2)0.79683 (16)0.48036 (14)0.0306 (3)
H50.39810.75960.52660.037*
C60.4198 (3)1.02021 (17)0.48638 (17)0.0404 (4)
H60.38201.11150.48840.048*
C70.4986 (2)0.31090 (18)0.75858 (14)0.0332 (3)
C80.6013 (3)0.38123 (19)0.81647 (16)0.0421 (4)
H80.61230.47150.79480.050*
C90.6877 (3)0.3195 (2)0.90602 (17)0.0482 (5)
H90.75630.36750.94560.058*
C100.6717 (3)0.18627 (19)0.93639 (15)0.0428 (4)
C110.5696 (3)0.11523 (19)0.87970 (15)0.0435 (4)
H110.55960.02480.90110.052*
C120.4824 (3)0.17765 (19)0.79145 (15)0.0389 (4)
H120.41160.12980.75330.047*
C130.8390 (3)0.18334 (19)1.09348 (16)0.0480 (5)
C140.7381 (3)0.2539 (2)1.16951 (19)0.0533 (5)
H140.61520.25911.17100.064*
C150.8198 (3)0.3177 (2)1.24429 (16)0.0442 (4)
H150.75140.36821.29550.053*
C161.0004 (2)0.30787 (16)1.24446 (13)0.0332 (4)
C171.0994 (3)0.2344 (2)1.16737 (18)0.0506 (5)
H171.22240.22631.16690.061*
C181.0185 (3)0.1727 (2)1.09095 (19)0.0579 (6)
H181.08590.12421.03810.070*
C190.4152 (2)0.37528 (18)0.65794 (14)0.0326 (3)
C201.0878 (2)0.37190 (16)1.32863 (13)0.0320 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02974 (7)0.02179 (6)0.03276 (7)0.00512 (4)0.01441 (5)0.00227 (4)
N10.0287 (7)0.0235 (6)0.0401 (8)0.0051 (5)0.0052 (6)0.0018 (6)
O10.0367 (6)0.0461 (7)0.0403 (7)0.0061 (5)0.0197 (5)0.0008 (6)
O20.0340 (6)0.0403 (7)0.0326 (6)0.0029 (5)0.0086 (5)0.0026 (5)
O30.0492 (7)0.0389 (7)0.0320 (6)0.0126 (6)0.0067 (5)0.0141 (5)
O40.0503 (8)0.0469 (8)0.0607 (9)0.0024 (6)0.0254 (7)0.0190 (7)
O50.1140 (14)0.0343 (7)0.0518 (9)0.0009 (8)0.0583 (9)0.0102 (6)
C10.0324 (8)0.0324 (9)0.0532 (11)0.0071 (7)0.0129 (8)0.0006 (8)
C20.0479 (11)0.0357 (10)0.0737 (15)0.0009 (8)0.0288 (11)0.0072 (10)
C30.0543 (12)0.0242 (8)0.0718 (14)0.0017 (8)0.0199 (10)0.0055 (9)
C40.0373 (9)0.0229 (7)0.0434 (9)0.0049 (6)0.0046 (7)0.0039 (7)
C50.0312 (8)0.0237 (7)0.0380 (9)0.0046 (6)0.0059 (7)0.0037 (6)
C60.0477 (10)0.0205 (7)0.0551 (11)0.0072 (7)0.0074 (9)0.0064 (7)
C70.0330 (8)0.0421 (9)0.0260 (8)0.0058 (7)0.0086 (6)0.0023 (7)
C80.0557 (11)0.0366 (9)0.0370 (9)0.0106 (8)0.0186 (8)0.0009 (8)
C90.0680 (13)0.0409 (10)0.0416 (10)0.0114 (9)0.0310 (10)0.0076 (8)
C100.0626 (12)0.0380 (9)0.0305 (9)0.0009 (8)0.0238 (8)0.0072 (7)
C110.0669 (13)0.0342 (9)0.0329 (9)0.0116 (8)0.0194 (9)0.0015 (7)
C120.0462 (10)0.0434 (10)0.0311 (8)0.0144 (8)0.0152 (7)0.0035 (7)
C130.0798 (15)0.0314 (9)0.0368 (10)0.0023 (9)0.0364 (10)0.0083 (8)
C140.0533 (12)0.0559 (13)0.0556 (13)0.0015 (10)0.0275 (10)0.0178 (10)
C150.0504 (11)0.0468 (11)0.0389 (10)0.0016 (8)0.0148 (8)0.0181 (8)
C160.0487 (10)0.0254 (7)0.0273 (8)0.0017 (7)0.0159 (7)0.0042 (6)
C170.0521 (12)0.0529 (12)0.0492 (11)0.0059 (9)0.0149 (9)0.0228 (10)
C180.0770 (16)0.0545 (13)0.0448 (11)0.0112 (11)0.0200 (11)0.0275 (10)
C190.0282 (8)0.0428 (9)0.0269 (8)0.0003 (7)0.0057 (6)0.0039 (7)
C200.0471 (10)0.0239 (7)0.0272 (8)0.0095 (7)0.0119 (7)0.0008 (6)
Geometric parameters (Å, º) top
Cd1—O12.3271 (15)C4—C61.470 (2)
Cd1—O22.4128 (14)C5—H50.9400
Cd1—O2i2.4436 (14)C6—C6v1.313 (4)
Cd1—O3ii2.3867 (14)C6—H60.9400
Cd1—O3iii2.5366 (15)C7—C81.388 (2)
Cd1—O4ii2.3524 (15)C7—C121.390 (3)
Cd1—N12.2872 (14)C7—C191.493 (2)
Cd1—C192.7170 (18)C8—C91.386 (3)
Cd1—C20ii2.7187 (18)C8—H80.9400
N1—C51.337 (2)C9—C101.383 (3)
N1—C11.340 (2)C9—H90.9400
O1—C191.251 (2)C10—C111.381 (3)
O2—C191.273 (2)C11—C121.379 (3)
O2—Cd1i2.4436 (14)C11—H110.9400
O3—C201.261 (2)C12—H120.9400
O3—Cd1iv2.3867 (14)C13—C141.370 (3)
O3—Cd1iii2.5366 (15)C13—C181.372 (4)
O4—C201.250 (2)C14—C151.388 (3)
O4—Cd1iv2.3524 (15)C14—H140.9400
O5—C101.381 (2)C15—C161.382 (3)
O5—C131.397 (2)C15—H150.9400
C1—C21.378 (3)C16—C171.388 (3)
C1—H10.9400C16—C201.499 (2)
C2—C31.378 (3)C17—C181.387 (3)
C2—H20.9400C17—H170.9400
C3—C41.384 (3)C18—H180.9400
C3—H30.9400C20—Cd1iv2.7187 (18)
C4—C51.393 (2)
N1—Cd1—O1144.00 (5)C3—C4—C5116.90 (16)
N1—Cd1—O4ii123.66 (6)C3—C4—C6120.64 (16)
O1—Cd1—O4ii92.29 (5)C5—C4—C6122.45 (17)
N1—Cd1—O3ii91.54 (6)N1—C5—C4123.20 (16)
O1—Cd1—O3ii110.24 (5)N1—C5—H5118.4
O4ii—Cd1—O3ii54.97 (5)C4—C5—H5118.4
N1—Cd1—O296.89 (6)C6v—C6—C4125.1 (2)
O1—Cd1—O255.28 (5)C6v—C6—H6117.4
O4ii—Cd1—O2129.11 (5)C4—C6—H6117.4
O3ii—Cd1—O2162.53 (5)C8—C7—C12119.35 (16)
N1—Cd1—O2i85.40 (6)C8—C7—C19120.32 (17)
O1—Cd1—O2i104.30 (5)C12—C7—C19120.22 (16)
O4ii—Cd1—O2i80.49 (6)C9—C8—C7120.57 (18)
O3ii—Cd1—O2i123.16 (4)C9—C8—H8119.7
O2—Cd1—O2i72.95 (5)C7—C8—H8119.7
N1—Cd1—O3iii79.12 (6)C10—C9—C8119.12 (17)
O1—Cd1—O3iii78.98 (5)C10—C9—H9120.4
O4ii—Cd1—O3iii123.42 (5)C8—C9—H9120.4
O3ii—Cd1—O3iii75.88 (5)C11—C10—O5115.34 (17)
O2—Cd1—O3iii90.69 (4)C11—C10—C9120.91 (17)
O2i—Cd1—O3iii155.99 (4)O5—C10—C9123.70 (17)
N1—Cd1—C19121.50 (6)C12—C11—C10119.67 (18)
O1—Cd1—C1927.35 (5)C12—C11—H11120.2
O4ii—Cd1—C19112.60 (6)C10—C11—H11120.2
O3ii—Cd1—C19136.69 (5)C11—C12—C7120.37 (17)
O2—Cd1—C1927.95 (5)C11—C12—H12119.8
O2i—Cd1—C1989.30 (5)C7—C12—H12119.8
O3iii—Cd1—C1983.38 (5)C14—C13—C18121.42 (18)
N1—Cd1—C20ii109.01 (6)C14—C13—O5119.7 (2)
O1—Cd1—C20ii102.75 (5)C18—C13—O5118.7 (2)
O4ii—Cd1—C20ii27.33 (5)C13—C14—C15119.1 (2)
O3ii—Cd1—C20ii27.64 (5)C13—C14—H14120.5
O2—Cd1—C20ii153.30 (5)C15—C14—H14120.5
O2i—Cd1—C20ii102.15 (5)C16—C15—C14120.85 (19)
O3iii—Cd1—C20ii100.21 (5)C16—C15—H15119.6
C19—Cd1—C20ii128.95 (5)C14—C15—H15119.6
C5—N1—C1118.72 (15)C15—C16—C17118.86 (17)
C5—N1—Cd1121.52 (11)C15—C16—C20120.60 (16)
C1—N1—Cd1119.57 (12)C17—C16—C20120.51 (17)
C19—O1—Cd193.95 (11)C18—C17—C16120.5 (2)
C19—O2—Cd189.43 (10)C18—C17—H17119.7
C19—O2—Cd1i121.99 (11)C16—C17—H17119.7
Cd1—O2—Cd1i107.05 (5)C13—C18—C17119.2 (2)
C20—O3—Cd1iv90.99 (11)C13—C18—H18120.4
C20—O3—Cd1iii147.54 (12)C17—C18—H18120.4
Cd1iv—O3—Cd1iii104.12 (5)O1—C19—O2121.25 (16)
C20—O4—Cd1iv92.88 (11)O1—C19—C7119.80 (16)
C10—O5—C13118.23 (15)O2—C19—C7118.93 (15)
N1—C1—C2121.80 (17)O1—C19—Cd158.70 (9)
N1—C1—H1119.1O2—C19—Cd162.62 (9)
C2—C1—H1119.1C7—C19—Cd1178.09 (12)
C1—C2—C3119.11 (18)O4—C20—O3121.15 (16)
C1—C2—H2120.4O4—C20—C16119.20 (16)
C3—C2—H2120.4O3—C20—C16119.65 (16)
C2—C3—C4120.17 (17)O4—C20—Cd1iv59.79 (9)
C2—C3—H3119.9O3—C20—Cd1iv61.37 (9)
C4—C3—H3119.9C16—C20—Cd1iv178.49 (13)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z1; (iii) x+1, y+1, z+2; (iv) x+1, y, z+1; (v) x+1, y+2, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds