Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Bis(4,5-di­amino-1,2,4-triazol-3-yl)methane monohydrate (BDATZM·H2O or C5H10N10·H2O) was synthesized and its crystal structure characterized by single-crystal X-ray diffraction; it belongs to the space group P\overline 1 (triclinic) with Z = 2. The structure of BDATZM·H2O can be described as a two-dimensional ladder plane with extensive hydrogen bonding and no disorder. The thermal behaviour was studied under non-isothermal conditions by differential scanning calorimetry (DSC) and thermogravimetric/differential thermogravimetric (TG/DTG) methods. The detonation velocity (D) and detonation pressure (P) of BDATZM were estimated using the nitro­gen equivalent equation according to the experimental density. A com­parison between BDATZM·H2O and bis­(5-amino-1,2,4-triazol-3-yl)methane (BATZM) was made to determine the effect of the amino group; the results suggest that the amino group increases the hydro­philicity, space utilization and energy, and decreases the thermal stability and symmetry of the resulting com­pound.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229620011080/qs3093sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229620011080/qs3093Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229620011080/qs3093Isup3.cml
Supplementary material

CCDC reference: 1060501

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Bis(4,5-diamino-1,2,4-triazol-3-yl)methane monohydrate top
Crystal data top
C5H10N10·H2OZ = 2
Mr = 228.25F(000) = 240
Triclinic, P1Dx = 1.580 Mg m3
a = 5.4364 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 5.6202 (11) ÅCell parameters from 1383 reflections
c = 15.844 (3) Åθ = 2.6–28.0°
α = 83.623 (3)°µ = 0.12 mm1
β = 87.617 (3)°T = 296 K
γ = 86.146 (3)°Rodlike, colourless
V = 479.71 (16) Å30.34 × 0.28 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
1522 reflections with I > 2σ(I)
φ and ω scansRint = 0.011
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
θmax = 25.1°, θmin = 2.6°
Tmin = 0.960, Tmax = 0.982h = 56
2421 measured reflectionsk = 66
1698 independent reflectionsl = 1815
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035All H-atom parameters refined
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0439P)2 + 0.179P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1698 reflectionsΔρmax = 0.17 e Å3
194 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.107 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N30.4877 (2)0.6949 (2)0.37479 (8)0.0284 (3)
N80.4006 (2)0.4532 (2)0.12692 (8)0.0292 (3)
N10.1762 (3)0.4668 (3)0.40038 (9)0.0411 (4)
N70.7210 (3)0.2065 (2)0.15392 (9)0.0388 (4)
N100.2307 (3)0.6532 (3)0.12384 (11)0.0408 (4)
N50.6456 (3)0.8754 (3)0.38523 (11)0.0448 (4)
N60.5896 (3)0.1227 (2)0.08966 (9)0.0383 (4)
N20.3076 (3)0.4056 (3)0.32649 (8)0.0390 (4)
C50.3981 (3)0.2755 (3)0.07553 (9)0.0308 (4)
C20.4888 (3)0.5453 (3)0.31288 (9)0.0293 (4)
N90.2256 (3)0.2702 (3)0.01670 (10)0.0425 (4)
C40.6046 (3)0.4023 (3)0.17430 (9)0.0305 (4)
N40.2268 (3)0.7560 (3)0.49553 (10)0.0484 (4)
C10.2906 (3)0.6410 (3)0.42740 (9)0.0318 (4)
C30.6737 (3)0.5516 (3)0.24052 (10)0.0339 (4)
O10.1062 (3)0.0044 (2)0.26006 (9)0.0502 (4)
H3A0.832 (3)0.492 (3)0.2612 (10)0.032 (4)*
H3B0.685 (3)0.718 (4)0.2154 (12)0.045 (5)*
H4A0.103 (4)0.708 (4)0.5279 (13)0.050 (6)*
H9A0.248 (4)0.148 (4)0.0139 (13)0.051 (6)*
H10B0.187 (4)0.683 (4)0.1761 (16)0.074 (7)*
H4B0.308 (4)0.875 (4)0.5077 (14)0.063 (6)*
H1A0.171 (5)0.122 (5)0.2784 (15)0.075 (7)*
H1B0.012 (5)0.059 (4)0.2209 (16)0.079 (8)*
H9B0.079 (5)0.327 (4)0.0279 (15)0.070 (7)*
H10A0.316 (5)0.782 (5)0.1007 (16)0.081 (8)*
H5B0.797 (5)0.819 (4)0.3807 (15)0.075 (8)*
H5A0.622 (6)0.995 (6)0.344 (2)0.122 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N30.0293 (6)0.0291 (7)0.0289 (6)0.0081 (5)0.0001 (5)0.0088 (5)
N80.0327 (7)0.0264 (6)0.0292 (7)0.0026 (5)0.0021 (5)0.0070 (5)
N10.0460 (8)0.0476 (8)0.0336 (7)0.0205 (7)0.0095 (6)0.0153 (6)
N70.0399 (8)0.0411 (8)0.0379 (8)0.0022 (6)0.0061 (6)0.0166 (6)
N100.0445 (9)0.0331 (8)0.0450 (9)0.0048 (7)0.0003 (7)0.0094 (7)
N50.0426 (9)0.0477 (9)0.0502 (10)0.0233 (7)0.0070 (7)0.0232 (8)
N60.0431 (8)0.0372 (8)0.0372 (8)0.0018 (6)0.0056 (6)0.0163 (6)
N20.0453 (8)0.0417 (8)0.0336 (7)0.0189 (6)0.0074 (6)0.0142 (6)
C50.0361 (8)0.0307 (8)0.0262 (8)0.0049 (7)0.0020 (6)0.0059 (6)
C20.0332 (8)0.0278 (7)0.0284 (8)0.0059 (6)0.0022 (6)0.0070 (6)
N90.0435 (9)0.0482 (9)0.0385 (8)0.0007 (7)0.0063 (7)0.0162 (7)
C40.0317 (8)0.0318 (8)0.0289 (8)0.0053 (6)0.0030 (6)0.0070 (6)
N40.0509 (9)0.0557 (10)0.0444 (9)0.0241 (8)0.0177 (7)0.0265 (7)
C10.0330 (8)0.0347 (8)0.0289 (8)0.0075 (7)0.0016 (6)0.0066 (6)
C30.0335 (9)0.0372 (9)0.0336 (8)0.0089 (7)0.0019 (7)0.0118 (7)
O10.0561 (8)0.0355 (7)0.0608 (9)0.0017 (6)0.0169 (7)0.0092 (6)
Geometric parameters (Å, º) top
N3—C11.3593 (19)N6—C51.314 (2)
N3—C21.3607 (18)N2—C21.2966 (19)
N3—N51.3997 (18)C5—N91.354 (2)
N8—C51.3576 (19)C2—C31.492 (2)
N8—C41.362 (2)N9—H9A0.88 (2)
N8—N101.4040 (19)N9—H9B0.86 (3)
N1—C11.314 (2)C4—C31.489 (2)
N1—N21.4094 (19)N4—C11.341 (2)
N7—C41.297 (2)N4—H4A0.87 (2)
N7—N61.4078 (19)N4—H4B0.87 (2)
N10—H10B0.88 (3)C3—H3A0.957 (18)
N10—H10A0.92 (3)C3—H3B0.982 (19)
N5—H5B0.86 (3)O1—H1A0.89 (3)
N5—H5A0.89 (3)O1—H1B0.94 (3)
C1—N3—C2105.99 (12)N3—C2—C3122.99 (13)
C1—N3—N5124.19 (12)C5—N9—H9A114.2 (13)
C2—N3—N5129.80 (13)C5—N9—H9B117.9 (16)
C5—N8—C4106.00 (12)H9A—N9—H9B120 (2)
C5—N8—N10124.31 (13)N7—C4—N8109.98 (13)
C4—N8—N10129.53 (13)N7—C4—C3126.62 (14)
C1—N1—N2106.37 (13)N8—C4—C3123.39 (13)
C4—N7—N6107.58 (13)C1—N4—H4A118.4 (13)
N8—N10—H10B109.4 (16)C1—N4—H4B121.1 (15)
N8—N10—H10A106.1 (16)H4A—N4—H4B121 (2)
H10B—N10—H10A106 (2)N1—C1—N4126.74 (15)
N3—N5—H5B109.2 (16)N1—C1—N3110.01 (13)
N3—N5—H5A109 (2)N4—C1—N3123.25 (14)
H5B—N5—H5A108 (3)C4—C3—C2111.50 (13)
C5—N6—N7106.44 (12)C4—C3—H3A108.8 (10)
C2—N2—N1107.62 (12)C2—C3—H3A109.3 (10)
N6—C5—N9126.88 (15)C4—C3—H3B109.5 (11)
N6—C5—N8109.99 (13)C2—C3—H3B108.9 (11)
N9—C5—N8123.07 (15)H3A—C3—H3B108.8 (14)
N2—C2—N3110.01 (13)H1A—O1—H1B106 (2)
N2—C2—C3126.99 (13)
C4—N7—N6—C50.31 (18)N6—N7—C4—C3178.91 (14)
C1—N1—N2—C20.66 (18)C5—N8—C4—N70.05 (17)
N7—N6—C5—N9177.54 (16)N10—N8—C4—N7175.58 (15)
N7—N6—C5—N80.29 (17)C5—N8—C4—C3178.79 (14)
C4—N8—C5—N60.16 (17)N10—N8—C4—C35.7 (2)
N10—N8—C5—N6175.67 (14)N2—N1—C1—N4179.14 (17)
C4—N8—C5—N9177.53 (15)N2—N1—C1—N30.13 (18)
N10—N8—C5—N91.7 (2)C2—N3—C1—N10.41 (18)
N1—N2—C2—N30.93 (18)N5—N3—C1—N1178.92 (16)
N1—N2—C2—C3178.11 (16)C2—N3—C1—N4178.64 (16)
C1—N3—C2—N20.85 (17)N5—N3—C1—N40.1 (3)
N5—N3—C2—N2179.24 (17)N7—C4—C3—C2113.06 (18)
C1—N3—C2—C3178.24 (14)N8—C4—C3—C265.5 (2)
N5—N3—C2—C30.1 (3)N2—C2—C3—C49.6 (2)
N6—N7—C4—N80.22 (18)N3—C2—C3—C4169.34 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N20.89 (3)2.04 (3)2.9308 (19)177 (2)
O1—H1B···N7i0.94 (3)1.92 (3)2.852 (2)172 (2)
N4—H4A···N1ii0.87 (2)2.09 (2)2.949 (2)170.1 (18)
N9—H9A···N6iii0.88 (2)2.16 (2)3.018 (2)163.6 (18)
N4—H4B···N5iv0.87 (2)2.35 (2)3.084 (2)142.4 (19)
N10—H10A···N6v0.92 (3)2.49 (3)3.369 (2)160 (2)
N10—H10B···O1v0.88 (3)2.33 (2)3.073 (2)142 (2)
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z+1; (iii) x+1, y, z; (iv) x+1, y+2, z+1; (v) x, y+1, z.
Nitrogen equivalents of different detonation products top
Detonation productCH2N2COCO2
Nitrogen equivalent index0.150.2910.781.35
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds