Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807024051/rk2014sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S1600536807024051/rk2014Isup2.hkl |
CCDC reference: 651160
Key indicators
- Single-crystal X-ray study
- T = 295 K
- Mean (C-C) = 0.007 Å
- R factor = 0.044
- wR factor = 0.118
- Data-to-parameter ratio = 16.6
checkCIF/PLATON results
No syntax errors found
Alert level C PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for P1 PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 7
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 26.96 From the CIF: _reflns_number_total 1212 Count of symmetry unique reflns 661 Completeness (_total/calc) 183.36% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 551 Fraction of Friedel pairs measured 0.834 Are heavy atom types Z>Si present yes PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (1) 0.92 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check
The only previously described structure containing tetrakis(pyridine)copper(I) cations is the perchlorate salt described by Nilsson & Oskarsson (1981, 1982). It crystallized in the same space group as the title compound with analogous placement of the ions. The Cu atom was almost perfectly tetrahedrally coordinated.
The title compound was obtained unintentionally while attempting to crystallize a coordination compound of copper(I) with a bisoxazoline ligand. Tetrakis(acetonitrile)copper(I) hexafluorophosphate(V) (10 mg) and bisoxazoline (20 mg) were dissolved in a mixture of pyridine and toluene (10 ml, 1:1) and heated to boiling. The resulting solution was cooled to room temperature and left to slowly evaporate. Colourless crystals of (I) were obtained after 4 days.
All H atoms were placed geometrically and included in the refinement in the riding-model approximation, with C—H distances 0.93 with U_{iso} = 1.2U_{eq }of the carrier atom.
The crystal structure of (I) consists of discrete tetrakis(pyridine)copper(I) and hexafluorophosphate(V) ions. The copper and phosphorus atoms are placed in 2a and 2c special positions of the space group respectively. The coordination of copper is almost perfectly tetrahedral with N—Cu—N angles 110.00 (9)° and 108.42 (17)°. The planes of the pyridine rings are at angles of 79.38° and 65.93°.
The hexafluorophosphate anions are octahedral and slightly elongated along z axes with F—P—F angles in the range 89.4 (3)° - 90.6 (3)° and P—F bond lengths 1.527 (4) Å and 1.553 (5) Å.
The shortest intermolecular distance is a C—H···F contact of 3.445 Å
The only previously described structure containing tetrakis(pyridine)copper(I) cations is the perchlorate salt described by Nilsson & Oskarsson (1981, 1982). It crystallized in the same space group as the title compound with analogous placement of the ions. The Cu atom was almost perfectly tetrahedrally coordinated.
Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis RED (Oxford Diffraction, 2003); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST95 (Nardelli, 1995).
[Cu(C_{5}H_{5}N)_{4}]PF_{6} | D_{x} = 1.547 Mg m^{−}^{3} |
M_{r} = 524.91 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, I4 | Cell parameters from 1485 reflections |
Hall symbol: I -4 | θ = 4.6–32.0° |
a = 12.600 (2) Å | µ = 1.10 mm^{−}^{1} |
c = 7.0983 (14) Å | T = 295 K |
V = 1126.9 (3) Å^{3} | Prism, colourless |
Z = 2 | 0.39 × 0.19 × 0.14 mm |
F(000) = 532 |
Oxford Diffraction Xcalibur CCD area-detector diffractometer | 1212 independent reflections |
Radiation source: fine–focus sealed tube | 1074 reflections with I > 2σ(I) |
Graphite monochromator | R_{int} = 0.041 |
ω scans | θ_{max} = 27.0°, θ_{min} = 4.6° |
Absorption correction: analytical (Alcock, 1970) | h = −16→16 |
T_{min} = 0.616, T_{max} = 0.791 | k = −16→15 |
4610 measured reflections | l = −9→9 |
Refinement on F^{2} | H-atom parameters constrained |
Least-squares matrix: full | w = 1/[σ^{2}(F_{o}^{2}) + (0.0713P)^{2}] where P = (F_{o}^{2} + 2F_{c}^{2})/3 |
R[F^{2} > 2σ(F^{2})] = 0.044 | (Δ/σ)_{max} = 0.003 |
wR(F^{2}) = 0.118 | Δρ_{max} = 0.23 e Å^{−}^{3} |
S = 1.09 | Δρ_{min} = −0.21 e Å^{−}^{3} |
1212 reflections | Absolute structure: Flack (1983), with 551 Friedel pairs |
73 parameters | Absolute structure parameter: −0.01 (3) |
1 restraint |
[Cu(C_{5}H_{5}N)_{4}]PF_{6} | Z = 2 |
M_{r} = 524.91 | Mo Kα radiation |
Tetragonal, I4 | µ = 1.10 mm^{−}^{1} |
a = 12.600 (2) Å | T = 295 K |
c = 7.0983 (14) Å | 0.39 × 0.19 × 0.14 mm |
V = 1126.9 (3) Å^{3} |
Oxford Diffraction Xcalibur CCD area-detector diffractometer | 1212 independent reflections |
Absorption correction: analytical (Alcock, 1970) | 1074 reflections with I > 2σ(I) |
T_{min} = 0.616, T_{max} = 0.791 | R_{int} = 0.041 |
4610 measured reflections |
R[F^{2} > 2σ(F^{2})] = 0.044 | H-atom parameters constrained |
wR(F^{2}) = 0.118 | Δρ_{max} = 0.23 e Å^{−}^{3} |
S = 1.09 | Δρ_{min} = −0.21 e Å^{−}^{3} |
1212 reflections | Absolute structure: Flack (1983), with 551 Friedel pairs |
73 parameters | Absolute structure parameter: −0.01 (3) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | U_{iso}*/U_{eq} | ||
Cu1 | 0 | 0 | 0 | 0.0670 (3) | |
P1 | 0.5 | 0 | 0.25 | 0.0556 (4) | |
C5 | 0.0527 (3) | 0.2144 (3) | 0.1582 (6) | 0.0663 (9) | |
H5 | 0.007 | 0.2382 | 0.0643 | 0.08* | |
N1 | 0.0734 (2) | 0.1106 (2) | 0.1698 (4) | 0.0594 (7) | |
C4 | 0.0961 (3) | 0.2872 (3) | 0.2790 (7) | 0.0770 (12) | |
H4 | 0.0789 | 0.3587 | 0.2691 | 0.092* | |
C3 | 0.1657 (4) | 0.2524 (4) | 0.4157 (7) | 0.0828 (12) | |
H3 | 0.1956 | 0.2998 | 0.501 | 0.099* | |
C2 | 0.1896 (5) | 0.1477 (4) | 0.4225 (7) | 0.0879 (13) | |
H2 | 0.2386 | 0.1225 | 0.5096 | 0.105* | |
C1 | 0.1414 (3) | 0.0798 (3) | 0.3012 (6) | 0.0702 (10) | |
H1 | 0.1569 | 0.0079 | 0.3109 | 0.084* | |
F2 | 0.5 | 0 | 0.4688 (6) | 0.156 (2) | |
F1 | 0.3816 (3) | −0.0255 (6) | 0.2479 (10) | 0.196 (3) |
U^{11} | U^{22} | U^{33} | U^{12} | U^{13} | U^{23} | |
Cu1 | 0.0591 (4) | 0.0591 (4) | 0.0828 (6) | 0 | 0 | 0 |
P1 | 0.0555 (6) | 0.0555 (6) | 0.0558 (9) | 0 | 0 | 0 |
C5 | 0.061 (2) | 0.0560 (19) | 0.082 (2) | 0.0073 (17) | −0.0066 (18) | −0.0021 (18) |
N1 | 0.0593 (16) | 0.0497 (14) | 0.0694 (16) | −0.0001 (12) | 0.0014 (13) | 0.0025 (12) |
C4 | 0.078 (3) | 0.058 (2) | 0.095 (3) | −0.0017 (19) | 0.010 (2) | −0.012 (2) |
C3 | 0.085 (3) | 0.083 (3) | 0.080 (2) | −0.016 (2) | −0.001 (2) | −0.024 (2) |
C2 | 0.101 (3) | 0.091 (3) | 0.072 (2) | −0.010 (3) | −0.020 (2) | −0.001 (2) |
C1 | 0.078 (2) | 0.059 (2) | 0.074 (2) | −0.0019 (19) | −0.0111 (18) | 0.0089 (17) |
F2 | 0.178 (6) | 0.227 (7) | 0.062 (3) | −0.019 (5) | 0 | 0 |
F1 | 0.0681 (19) | 0.323 (8) | 0.198 (5) | −0.030 (3) | −0.012 (3) | −0.014 (5) |
Cu1—N1 | 2.061 (3) | C5—C4 | 1.369 (6) |
Cu1—N1^{i} | 2.061 (3) | C5—H5 | 0.93 |
Cu1—N1^{ii} | 2.061 (3) | N1—C1 | 1.324 (5) |
Cu1—N1^{iii} | 2.061 (3) | C4—C3 | 1.379 (7) |
P1—F1^{iv} | 1.526 (4) | C4—H4 | 0.93 |
P1—F1 | 1.526 (4) | C3—C2 | 1.354 (7) |
P1—F1^{v} | 1.526 (4) | C3—H3 | 0.93 |
P1—F1^{vi} | 1.526 (4) | C2—C1 | 1.357 (7) |
P1—F2^{iv} | 1.553 (5) | C2—H2 | 0.93 |
P1—F2 | 1.553 (5) | C1—H1 | 0.93 |
C5—N1 | 1.337 (5) | ||
N1—Cu1—N1^{i} | 110.00 (9) | F2^{iv}—P1—F2 | 180 |
N1—Cu1—N1^{ii} | 110.00 (9) | N1—C5—C4 | 122.6 (4) |
N1^{i}—Cu1—N1^{ii} | 108.42 (17) | N1—C5—H5 | 118.7 |
N1—Cu1—N1^{iii} | 108.42 (17) | C4—C5—H5 | 118.7 |
N1^{i}—Cu1—N1^{iii} | 110.00 (9) | C1—N1—C5 | 117.1 (3) |
N1^{ii}—Cu1—N1^{iii} | 110.00 (9) | C1—N1—Cu1 | 120.3 (2) |
F1^{iv}—P1—F1 | 90.006 (6) | C5—N1—Cu1 | 122.6 (3) |
F1^{iv}—P1—F1^{v} | 90.006 (6) | C5—C4—C3 | 118.8 (4) |
F1—P1—F1^{v} | 178.9 (6) | C5—C4—H4 | 120.6 |
F1^{iv}—P1—F1^{vi} | 178.9 (6) | C3—C4—H4 | 120.6 |
F1—P1—F1^{vi} | 90.006 (6) | C2—C3—C4 | 118.4 (4) |
F1^{v}—P1—F1^{vi} | 90.006 (6) | C2—C3—H3 | 120.8 |
F1^{iv}—P1—F2^{iv} | 90.6 (3) | C4—C3—H3 | 120.8 |
F1—P1—F2^{iv} | 89.4 (3) | C3—C2—C1 | 119.5 (5) |
F1^{v}—P1—F2^{iv} | 89.4 (3) | C3—C2—H2 | 120.3 |
F1^{vi}—P1—F2^{iv} | 90.6 (3) | C1—C2—H2 | 120.3 |
F1^{iv}—P1—F2 | 89.4 (3) | N1—C1—C2 | 123.5 (4) |
F1—P1—F2 | 90.6 (3) | N1—C1—H1 | 118.2 |
F1^{v}—P1—F2 | 90.6 (3) | C2—C1—H1 | 118.2 |
F1^{vi}—P1—F2 | 89.4 (3) |
Symmetry codes: (i) −y, x, −z; (ii) y, −x, −z; (iii) −x, −y, z; (iv) y+1/2, −x+1/2, −z+1/2; (v) −x+1, −y, z; (vi) −y+1/2, x−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C_{5}H_{5}N)_{4}]PF_{6} |
M_{r} | 524.91 |
Crystal system, space group | Tetragonal, I4 |
Temperature (K) | 295 |
a, c (Å) | 12.600 (2), 7.0983 (14) |
V (Å^{3}) | 1126.9 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm^{−}^{1}) | 1.10 |
Crystal size (mm) | 0.39 × 0.19 × 0.14 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur CCD area-detector |
Absorption correction | Analytical (Alcock, 1970) |
T_{min}, T_{max} | 0.616, 0.791 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4610, 1212, 1074 |
R_{int} | 0.041 |
(sin θ/λ)_{max} (Å^{−}^{1}) | 0.638 |
Refinement | |
R[F^{2} > 2σ(F^{2})], wR(F^{2}), S | 0.044, 0.118, 1.09 |
No. of reflections | 1212 |
No. of parameters | 73 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρ_{max}, Δρ_{min} (e Å^{−}^{3}) | 0.23, −0.21 |
Absolute structure | Flack (1983), with 551 Friedel pairs |
Absolute structure parameter | −0.01 (3) |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2003), CrysAlis RED (Oxford Diffraction, 2003), CrysAlis RED, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999) and PARST95 (Nardelli, 1995).
Subscribe to Acta Crystallographica Section E: Crystallographic Communications
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- If you have already subscribed, you may need to register
The crystal structure of (I) consists of discrete tetrakis(pyridine)copper(I) and hexafluorophosphate(V) ions. The copper and phosphorus atoms are placed in 2a and 2c special positions of the space group respectively. The coordination of copper is almost perfectly tetrahedral with N—Cu—N angles 110.00 (9)° and 108.42 (17)°. The planes of the pyridine rings are at angles of 79.38° and 65.93°.
The hexafluorophosphate anions are octahedral and slightly elongated along z axes with F—P—F angles in the range 89.4 (3)° - 90.6 (3)° and P—F bond lengths 1.527 (4) Å and 1.553 (5) Å.
The shortest intermolecular distance is a C—H···F contact of 3.445 Å