Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
(S)-1-(Methyl­amino­carbon­yl)-3-phenyl­propanaminium chloride (S2·HCl), C10H15N2O+·Cl-, crystallizes in the ortho­rhom­bic space group P212121 with a single formula unit per asymmetric unit. (5R/S)-5-Benzyl-2,2,3-trimethyl-4-oxoimidazolidin-1-ium chloride (R3 and S3), C13H19N2O+·Cl-, crystallize in the same space group as S2·HCl but contain three symmetry-independent formula units. (R/S)-5-Benzyl-2,2,3-trimethyl-4-oxoimidazolidin-1-ium chloride monohydrate (R4 and S4), C13H19N2O+·Cl-·H2O, crystallize in the space group P21 with a single formula unit per asymmetric unit. Calculations at the B3LYP/6-31G(d,p) and B3LYP/6-311G(d,p) levels of the conformational energies of the cation in R3, S3, R4 and S4 indicate that the ideal gas-phase global energy minimum conformation is not observed in the solid state. Rather, the effects of hydrogen-bonding and van der Waals inter­actions in the crystal structure cause the mol­ecules to adopt higher-energy conformations, which correspond to local minima in the mol­ecular potential energy surface.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107051396/sf3055sup1.cif
Contains datablocks S2.HCl, R3, S3, R4, S4, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107051396/sf3055S2.HClsup2.hkl
Contains datablock S2.HCl

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107051396/sf3055R3sup3.hkl
Contains datablock R3

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107051396/sf3055S3sup4.hkl
Contains datablock S3

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107051396/sf3055R4sup5.hkl
Contains datablock R4

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107051396/sf3055S4sup6.hkl
Contains datablock S4

CCDC references: 677212; 677213; 677214; 677215; 677216

Comment top

A number of research groups have reported on the utility of chiral imidazolidinone catalysts for a range of enantioselective organic reactions (Ahrendt et al., 2000; Wilson et al., 2005; Paras & MacMillan, 2001; Jen et al., 2000; Marigo et al., 2005; Kunz & MacMillan, 2005; Beeson & MacMillan, 2005; Brochu et al., 2004). Several reviews of the field of organocatalysis exist (Almaşi et al., 2007; Bolm et al., 2005; Gaunt et al., 2007; Tsogoeva 2007; List 2006). Enantiomeric excesses greater than 90% are regularly achieved in relatively high yielding reactions that are difficult to accomplish by other means. However, there are to date very few structural studies of these materials, and no reports of their stability to storage or recrystallization. Both of these factors are expected to be highly relevant to possible use of the materials in both industrial and laboratory settings.

The catalyst studied in the current work is a typical example of the class (Ahrendt et al., 2000), is commercially available, and has been described as `an inexpensive, bench-stable solid that is readily handled by experimentalists or automated systems' (Beeson & MacMillan, 2005). We therefore selected this compound for a full structural characterization, which is of interest both to confirm the reported molecular structure of this material, and with a view to rationalizing its solid-state properties, including particle morphology and flow, solubility, stability etc. Synchrotron radiation was employed in order to gain the best quality structural information from these weakly scattering materials and to ensure that our study was not biased in favour of solid forms which readily form single crystals. A simplified reaction scheme is given in Scheme 1.

S2.HCl [(S)-phenylalanine methylamide hydrochloride] adopts the orthorhombic spacegroup P212121 with a single formula unit per asymmetric unit (Fig. 1a). All chemically intuitive hydrogen bonding opportunities are satisfied in the solid state (Fig. 2a). Sheets of hydrogen bonds are formed, which lie parallel to the ab plane. The chloride ion is hydrogen-bonded by three protonated amine groups [N16···Cl1 = 3.094 (2), 3.149 (2) and 3.166 (2) Å], and the carbonyl group of the amide unit is hydrogen bonded to the amide H atom on an adjacent molecule [N11···O10 = 3.018 (3) Å]. The hydrophobic (phenyl) and hydrophilic (amide) fragments of the molecule form layers, which are segregated along the c axis. Solid-state packing forces appear to have a slight influence on the molecular conformation; comparison of the observed molecular conformation with one computed using a gas-phase molecular mechanics model shows no unusual features, the two conformations being broadly similar. The primary differences arise because of a change in the C6—C7—C8—C9 torsion angle from 98.15° in the gas phase (calculated as described in the Experimental section) to 54.65° in the solid-state, which is presumably driven by a combination of crystal packing (optimal space filling) requirements and intermolecular hydrogen bonding of the amide group.

R3 and S3 [5(R/S)-5-benzyl-2,2,3-trimethylimidazolidin-4-one hydrochloride] both crystallize in the orthorhombic space group P212121 with three formula units per asymmetric unit (S3 is shown in Fig. 1b). The three organic molecules adopt different but related conformations which differ primarily as a result of changes in the orientation of the imidazolidinone fragment with respect to the phenyl ring via C—C bond rotation. These differences in conformation do not affect the hydrogen-bonding topology, with all three organic cations forming two N—H···Cl hydrogen bonds from the protonated N atom to the free chloride ion (Fig. 2b). Neither the carbonyl nor the nitrogen of the amide group are involved in classical hydrogen bonding for any of the three distinct molecules, which is in contrast to the extensive hydrogen bonding observed for the precursor S2.HCl. Two of the three independent formula units are linked to each other by hydrogen bonding through Cl1 and Cl2 via N—H···Cl interactions and thereby form a chain of hydrogen bonds which runs parallel to the a axis. The third symmetry-independent formula unit again forms N—H···Cl hydrogen bonds to create a chain that runs parallel to both the a axis and the other hydrogen-bonding chain, but in this case the chain comprises only a single symmetry-independent molecule and a single symmetry-independent chloride ion (Cl1). The hydrophilic sections of the structure (Cl- ions and the polar parts of the organic cation) are layered in the ac plane and are separated by the hydrophobic phenyl rings. As expected, no significant differences exist between the crystal packing of the (R) and (S) isomers.

The presence of three formula units with different molecular conformations in the asymmetric unit is curious, and could result from either different minima on the molecular energy surface or distortions away from the same minimum caused by differences in packing forces experienced by the three independent molecules in the unit cell. To distinguish between these possibilities, we have performed calculations designed to elucidate the gas-phase conformers and their relative energies. R3 and S3 have two torsional degrees of freedom, which we label ϕ (torsion angle C6—C7—C8—C9) and θ (torsion angle C5—C6—C7—C8). Initial low-level calculations (using the molecular mechanics model Tripos 5.2) indicate that three distinct conformational energy minima exist in the gas phase (Fig. 3). The three minima were then re-optimized at higher levels of theory for more reliable relative energies, revealing large energy differences between the conformations: the relative energies are 0, +10.67 [+11.29], +32.57 [+33.95] kJ mol-1 for conformations i, ii and iii, respectively, at the B3LYP/6–31 G(d,p) [B3LYP/6–311 G(d,p)] levels. The good quantitative agreement between the two methods indicates that the effects of basis set superposition error on the relative conformational energies is small, while the stability of the most folded conformation i might even be underestimated owing to the known poor treatment of nonbonded interactions in density functional theory calculations (van Mourik et al., 2006). As typical energy differences between polymorphs are of the order of 1–10 kJ mol-1 (Bernstein, 2002), we might only expect the lowest energy conformation to be observed in the crystal structure. However, it is clear from Fig. 3 that two molecules (A and C) adopt conformations related to the intermediate-energy calculated conformation ii, while molecule (B) is within the potential energy well of the highest-energy calculated conformation iii, although significantly distorted away from the minimum. It therefore appears that in order to optimize the lattice energy, the three molecules avoid the lowest-energy, folded gas-phase conformation in favor of the two open conformations. The conformational energy penalty of at least 18 kJ mol-1 (2 × 11 kJ mol-1 for A and C, 33 kJ mol-1 for B) is presumably compensated by the formation of hydrogen bonds and van der Waals interactions in the crystal.

Both R4 and S4 [5(R/S)-5-benzyl-2,2,3-trimethylimidazolidin-4-one hydrochloride hydrate] crystallize in the noncentrosymmetric monoclinic space group P21 with a single formula unit per asymmetric unit (S4 is shown in Fig. 1c). The conformation of the cation (θ = 109.3°, ϕ = 173.4°) corresponds most closely with minimum ii (Fig. 3), and it therefore appears that, as with R3 and S3, intermolecular factors including hydrogen bonding and van der Waals interactions outweigh intramolecular ones in determining the conformation of the cation in the solid state. Overall the hydrogen bonding leads to the formation of tapes which run parallel to the b axis (Fig. 2c). Again, the hydrophobic and hydrophilic parts of the structure are segregated into chains which follow the hydrogen-bonding topology. Again, no unexpected differences exist between the crystal packing of the (R) and (S) isomers.

In conclusion, computational and experimental studies indicate that intermolecular rather than intramolecular forces are primarily responsible for the molecular conformations observed in the solid state for this class of compounds.

Related literature top

For related literature, see: Ahrendt et al. (2000); Almaşi et al. (2007); Amos (1995); Beeson & MacMillan (2005); Bernstein (2002); Bolm et al. (2005); Brochu et al. (2004); Gaunt et al. (2007); Hassinen & Peräkylä (2001); Jen et al. (2000); Kunz & MacMillan (2005); List (2006); Marigo et al. (2005); Mourik et al. (2006); Paras & MacMillan (2001); Tsogoeva (2007); Wilson et al. (2005).

Experimental top

For the synthesis of the catalyst, 5(S)-5-benzyl-2,2,3-trimethylimidazolidin-4-one was synthesized from commercially available (S)-phenylalanine methylester hydrochloride according to the literature method described by Ahrendt et al. (2000). Treatment of (S)-phenylalanine methylester hydrochloride with ethanolic methylamine furnished the intermediate (S)-phenylalanine N-methyl amide hydrochloride, which was not isolated, but heated to reflux in MeOH and acetone with catalytic para-toluenesulfonic acid (p-TSA). The cyclized (S)-imidazolidinone product was precipitated as the HCl salt and recrystallized from 2-propanol to yield a microcrystalline white needle-like material, which was identical to that previously characterized. The (R)-enantiomer was prepared in an identical manner starting from commercially available (R)-phenylalanine methylamide hydrochloride. This material displayed identical 1H and 13C NMR spectra to the (S)-enantiomer, and had an equal but opposite optical rotation value, as expected. A simplified reaction scheme is shown in the Comment section.

Initial attempts to grow large crystals by slow evaporation (several months, 277 K) from CHCl3 were successful in this aim, but crystallographic characterization indicated that ring opening of the imidazolidinone had occurred to yield (R/S)-phenylalanine methylamide hydrochloride. As the crystal structure of this material had not been reported, a full data set was collected on the (S) isomer and is reported here. Crystals of 5(R/S)-5-benzyl-2,2,3-trimethylimidazolidin-4-one hydrochloride were grown by rapid evaporation (ca 2 days, ambient temperature) from CHCl3. Samples of 5(R/S)-5-benzyl-2,2,3-trimethylimidazolidin-4-one hydrochloride hydrate were crystallized from 2-propanol as a microcrystalline powder and correspond to the `raw' reagent described in the synthesis; these were subject to standard benchtop storage conditions for several months after crystallization.

Single crystals were selected, mounted at the end of two-stage glass fibres and studied at 150 K on station 9.8 or station 16.2 SMX of the UK Synchrotron Radiation Source, Daresbury. Routine data collection involved three series of ω scans. Data were corrected for beam decay and absorption using a method based on equivalents. Further details can be found in the relevant section of the CIF that accompanies this paper.

Computational studies were performed to investigate the conformational energy landscape of the molecular cations. For both protonated (R/S)-phenylalanine methylamide and for the imidazolidinone cation, initial calculations were performed using a simple molecular mechanics model (Tripos 5.2) as implemented in Ghemical (Hassinen & Peräkylä, 2001). For the imidazolidinone cation, for which the potential energy landscape was relatively complex, the three local minima located in the initial molecular mechanics search were investigated at a higher level of theory. The three molecular mechanics energy minima were energy minimized using both B3LYP/6–31 G(d,p) and B3LYP/6–311 G(d,p) levels of theory, giving refined gas phase molecular structures and their relative energies. All density functional theory calculations were performed using the program CADPAC (Amos, 1995).

Computing details top

Data collection: APEX2 (Bruker, 2004) for S2.HCl, R3, S3, R4; APEXII (Bruker, 2004) for S4. Cell refinement: APEX2 (Bruker, 2004) for S2.HCl, R3, S3, R4; APEXII (Bruker, 2004) for S4. Data reduction: APEX2 (Bruker, 2004) for S2.HCl, R3, S3, R4; APEXII (Bruker, 2004) for S4. For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: WinGX (Version 1.64; Farrugia, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. : The asymmetric units of (a) S2.HCl, (b) S3 and (c) S4. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. : Hydrogen-bonding patterns observed in (a) S2.HCl (the hydrogen-bonded sheet is viewed side-on for clarity), (b) S3 (only one of the three chains is shown for clarity) and (c) S4. (Colour key for the onoline version of the journal: carbon grey, hydrogen white, nitrogen blue, oxygen red, chlorine green.)
[Figure 3] Fig. 3. : Calculated (Tripos 5.2) conformational energy landscape for the (S)-5-benzyl-2,2,3-trimethyl-4-oxoimidazolidin-1-ium cation, and energy-minimized calculated conformations. Numbers refer to calculated conformations, letters to those observed experimentally. See text and Fig. 1 for further details.
(S2.HCl) (S)-1-(methylaminocarbonyl)-3-phenylpropanaminium chloride top
Crystal data top
C10H15N2O+·ClF(000) = 456
Mr = 214.69Dx = 1.303 Mg m3
Orthorhombic, P212121Synchrotron radiation, λ = 0.69040 Å
Hall symbol: P 2ac 2abCell parameters from 2000 reflections
a = 4.9758 (7) Åθ = 2.4–24.5°
b = 8.6213 (13) ŵ = 0.32 mm1
c = 25.521 (4) ÅT = 150 K
V = 1094.8 (3) Å3Block, colourless
Z = 40.15 × 0.07 × 0.07 mm
Data collection top
Bruker D8
diffractometer
3619 independent reflections
Radiation source: Daresbury SRS, Station 16.2SMX2971 reflections with I > 2σ(I)
Silicon 111 monochromatorRint = 0.091
ω rotation with narrow frame scansθmax = 31.2°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 77
Tmin = 0.953, Tmax = 0.978k = 1212
12758 measured reflectionsl = 3636
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.157 w = 1/[σ2(Fo2) + (0.0882P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
3619 reflectionsΔρmax = 0.58 e Å3
141 parametersΔρmin = 0.57 e Å3
4 restraintsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (9)
Crystal data top
C10H15N2O+·ClV = 1094.8 (3) Å3
Mr = 214.69Z = 4
Orthorhombic, P212121Synchrotron radiation, λ = 0.69040 Å
a = 4.9758 (7) ŵ = 0.32 mm1
b = 8.6213 (13) ÅT = 150 K
c = 25.521 (4) Å0.15 × 0.07 × 0.07 mm
Data collection top
Bruker D8
diffractometer
3619 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2971 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.978Rint = 0.091
12758 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.157Δρmax = 0.58 e Å3
S = 1.00Δρmin = 0.57 e Å3
3619 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
141 parametersAbsolute structure parameter: 0.01 (9)
4 restraints
Special details top

Experimental. A correction to account for beam decay and absorption was applied using SADABS. The ratio of max to min apparent transmission was 0.748

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.80225 (12)0.77857 (7)0.21217 (2)0.02442 (15)
C10.5003 (6)0.4375 (3)0.03794 (10)0.0265 (5)
H10.63700.39340.05780.032*
C20.4683 (6)0.3934 (3)0.01397 (11)0.0309 (6)
H20.58310.32050.02880.037*
C30.2642 (6)0.4586 (3)0.04355 (10)0.0290 (6)
H30.24190.42920.07830.035*
C40.0933 (6)0.5672 (3)0.02155 (10)0.0306 (6)
H40.04310.61120.04160.037*
C50.1262 (6)0.6104 (3)0.03054 (10)0.0266 (5)
H50.00990.68260.04540.032*
C60.3310 (5)0.5468 (3)0.06072 (9)0.0220 (4)
C70.3747 (6)0.5994 (3)0.11668 (9)0.0246 (5)
H7A0.29880.70230.12090.029*
H7B0.56630.60670.12320.029*
C80.2494 (5)0.4913 (3)0.15748 (9)0.0210 (5)
H80.05590.48300.15090.025*
C90.3736 (5)0.3295 (3)0.15676 (9)0.0205 (4)
O100.6195 (4)0.3128 (2)0.16136 (8)0.0290 (4)
N110.1991 (4)0.2140 (2)0.15128 (8)0.0211 (4)
H110.031 (4)0.236 (4)0.1547 (11)0.036 (4)*
C120.2767 (6)0.0524 (3)0.15529 (10)0.0293 (6)
H12A0.15760.00010.17900.044*
H12B0.45750.04550.16820.044*
H12C0.26640.00480.12130.044*
N160.2938 (4)0.5585 (2)0.21067 (8)0.0218 (4)
H16A0.176 (6)0.632 (3)0.2181 (12)0.036 (4)*
H16B0.282 (7)0.491 (3)0.2370 (9)0.036 (4)*
H16C0.451 (5)0.605 (4)0.2140 (13)0.036 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0236 (3)0.0211 (2)0.0285 (3)0.0000 (2)0.0011 (2)0.0047 (2)
C10.0216 (12)0.0296 (13)0.0284 (12)0.0018 (11)0.0031 (10)0.0009 (10)
C20.0295 (15)0.0334 (13)0.0297 (12)0.0031 (11)0.0001 (11)0.0020 (11)
C30.0276 (14)0.0347 (13)0.0246 (11)0.0021 (11)0.0046 (9)0.0001 (9)
C40.0298 (14)0.0312 (13)0.0309 (13)0.0002 (11)0.0053 (11)0.0048 (10)
C50.0253 (13)0.0233 (11)0.0312 (12)0.0030 (10)0.0021 (10)0.0001 (10)
C60.0220 (12)0.0200 (9)0.0238 (10)0.0030 (9)0.0015 (9)0.0024 (8)
C70.0295 (13)0.0173 (10)0.0269 (11)0.0031 (9)0.0006 (10)0.0019 (9)
C80.0189 (12)0.0185 (9)0.0256 (10)0.0000 (8)0.0001 (8)0.0001 (8)
C90.0204 (11)0.0191 (10)0.0220 (10)0.0017 (9)0.0016 (8)0.0021 (8)
O100.0176 (8)0.0256 (9)0.0440 (11)0.0024 (7)0.0012 (8)0.0014 (7)
N110.0195 (9)0.0175 (8)0.0263 (9)0.0007 (9)0.0025 (8)0.0016 (7)
C120.0324 (14)0.0170 (10)0.0385 (13)0.0000 (10)0.0042 (11)0.0021 (9)
N160.0210 (9)0.0192 (8)0.0252 (9)0.0008 (8)0.0037 (9)0.0004 (7)
Geometric parameters (Å, º) top
C1—C21.388 (4)C7—H7B0.9700
C1—C61.391 (4)C8—N161.492 (3)
C1—H10.9300C8—C91.526 (3)
C2—C31.384 (4)C8—H80.9800
C2—H20.9300C9—O101.238 (3)
C3—C41.384 (4)C9—N111.328 (3)
C3—H30.9300N11—C121.449 (3)
C4—C51.390 (4)N11—H110.864 (18)
C4—H40.9300C12—H12A0.9600
C5—C61.390 (3)C12—H12B0.9600
C5—H50.9300C12—H12C0.9600
C6—C71.514 (3)N16—H16A0.883 (18)
C7—C81.530 (3)N16—H16B0.892 (17)
C7—H7A0.9700N16—H16C0.880 (18)
C2—C1—C6121.0 (2)N16—C8—C9107.81 (18)
C2—C1—H1119.5N16—C8—C7108.84 (19)
C6—C1—H1119.5C9—C8—C7112.6 (2)
C3—C2—C1119.6 (3)N16—C8—H8109.2
C3—C2—H2120.2C9—C8—H8109.2
C1—C2—H2120.2C7—C8—H8109.2
C4—C3—C2120.3 (2)O10—C9—N11124.7 (2)
C4—C3—H3119.9O10—C9—C8120.3 (2)
C2—C3—H3119.9N11—C9—C8115.0 (2)
C3—C4—C5119.8 (3)C9—N11—C12122.6 (2)
C3—C4—H4120.1C9—N11—H11117 (2)
C5—C4—H4120.1C12—N11—H11118 (2)
C6—C5—C4120.7 (2)N11—C12—H12A109.5
C6—C5—H5119.7N11—C12—H12B109.5
C4—C5—H5119.7H12A—C12—H12B109.5
C5—C6—C1118.7 (2)N11—C12—H12C109.5
C5—C6—C7120.6 (2)H12A—C12—H12C109.5
C1—C6—C7120.7 (2)H12B—C12—H12C109.5
C6—C7—C8113.7 (2)C8—N16—H16A112 (2)
C6—C7—H7A108.8C8—N16—H16B115 (2)
C8—C7—H7A108.8H16A—N16—H16B105 (3)
C6—C7—H7B108.8C8—N16—H16C113 (2)
C8—C7—H7B108.8H16A—N16—H16C104 (3)
H7A—C7—H7B107.7H16B—N16—H16C106 (3)
(R3) (R)-5-benzyl-2,2,3-trimethyl-4-oxoimidazolidin-1-ium chloride top
Crystal data top
C13H19N2O+·ClF(000) = 1632
Mr = 254.75Dx = 1.221 Mg m3
Orthorhombic, P212121Synchrotron radiation, λ = 0.69040 Å
Hall symbol: P 2ac 2abCell parameters from 2939 reflections
a = 7.1167 (14) Åθ = 2.6–23.5°
b = 19.237 (4) ŵ = 0.26 mm1
c = 30.370 (6) ÅT = 150 K
V = 4157.7 (14) Å3Block, colourless
Z = 120.1 × 0.08 × 0.04 mm
Data collection top
Bruker D8
diffractometer
9772 independent reflections
Radiation source: Daresbury SRS, Station 16.2SMX7354 reflections with I > 2σ(I)
Silicon 111 monochromatorRint = 0.071
ω rotation with narrow frame scansθmax = 27.2°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 98
Tmin = 0.974, Tmax = 0.990k = 2524
24370 measured reflectionsl = 3740
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0431P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
9772 reflectionsΔρmax = 0.28 e Å3
488 parametersΔρmin = 0.23 e Å3
6 restraintsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (6)
Crystal data top
C13H19N2O+·ClV = 4157.7 (14) Å3
Mr = 254.75Z = 12
Orthorhombic, P212121Synchrotron radiation, λ = 0.69040 Å
a = 7.1167 (14) ŵ = 0.26 mm1
b = 19.237 (4) ÅT = 150 K
c = 30.370 (6) Å0.1 × 0.08 × 0.04 mm
Data collection top
Bruker D8
diffractometer
9772 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
7354 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.990Rint = 0.071
24370 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131Δρmax = 0.28 e Å3
S = 0.99Δρmin = 0.23 e Å3
9772 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
488 parametersAbsolute structure parameter: 0.00 (6)
6 restraints
Special details top

Experimental. A correction to account for beam decay and absorption was applied using SADABS. The ratio of max to min apparent transmission was 0.692.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Ffrom the least squares refinement, Flack x parameter = 0.0036 e.s.d. 0.0555

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.46650 (11)0.67659 (4)0.20932 (2)0.03596 (17)
Cl20.03772 (12)0.29717 (4)0.03881 (2)0.03702 (17)
Cl30.95538 (11)0.74670 (4)0.12677 (2)0.03563 (17)
C10.7744 (6)0.46455 (15)0.01218 (11)0.0456 (9)
H10.89450.45440.02420.055*
C20.7600 (7)0.50897 (18)0.02362 (13)0.0585 (11)
H20.86980.52900.03600.070*
C30.5861 (7)0.52401 (18)0.04115 (12)0.0638 (12)
H30.57570.55480.06550.077*
C40.4280 (7)0.49429 (17)0.02337 (11)0.0564 (11)
H40.30830.50440.03560.068*
C50.4418 (6)0.44972 (16)0.01234 (10)0.0473 (9)
H50.33160.42930.02440.057*
C60.6155 (5)0.43491 (14)0.03055 (10)0.0376 (8)
C70.6356 (5)0.39431 (14)0.07324 (10)0.0353 (7)
H7A0.59850.42540.09770.042*
H7B0.77050.38340.07720.042*
C80.5259 (5)0.32682 (13)0.07814 (8)0.0293 (6)
H80.39280.33370.06850.035*
C90.5317 (4)0.30392 (14)0.12622 (9)0.0311 (6)
O100.5073 (3)0.34214 (10)0.15770 (6)0.0437 (6)
N110.5659 (4)0.23550 (11)0.12752 (7)0.0308 (5)
C120.5528 (5)0.19533 (16)0.16773 (9)0.0390 (7)
H12A0.55900.22660.19310.058*
H12B0.65720.16220.16910.058*
H12C0.43330.17000.16820.058*
C130.5733 (4)0.20211 (14)0.08390 (9)0.0304 (7)
C140.3854 (5)0.16930 (16)0.07276 (10)0.0414 (8)
H14A0.35620.13300.09440.062*
H14B0.39150.14870.04330.062*
H14C0.28710.20500.07340.062*
C150.7356 (5)0.15277 (16)0.07957 (10)0.0405 (8)
H15A0.85060.17540.09010.061*
H15B0.75100.13960.04860.061*
H15C0.71120.11110.09720.061*
N160.6093 (4)0.26534 (12)0.05525 (8)0.0291 (5)
H16A0.730 (3)0.2719 (17)0.0534 (11)0.041 (4)*
H16B0.576 (5)0.2568 (15)0.0282 (7)0.041 (4)*
C211.1491 (5)0.52093 (16)0.20431 (11)0.0439 (8)
H211.22650.52520.22970.053*
C221.2151 (6)0.48585 (16)0.16804 (11)0.0482 (9)
H221.33710.46580.16840.058*
C231.1041 (6)0.47985 (15)0.13141 (11)0.0471 (9)
H231.14820.45450.10660.057*
C240.9307 (6)0.51003 (16)0.13026 (11)0.0500 (9)
H240.85620.50720.10440.060*
C250.8636 (5)0.54468 (15)0.16681 (10)0.0414 (8)
H250.74200.56500.16600.050*
C260.9706 (5)0.55017 (13)0.20433 (9)0.0328 (6)
C270.8962 (4)0.58805 (14)0.24435 (9)0.0329 (7)
H27A0.92190.55960.27090.039*
H27B0.75830.59290.24160.039*
C280.9821 (4)0.66006 (13)0.25076 (9)0.0298 (6)
H281.11790.65860.24230.036*
C290.9646 (4)0.68746 (14)0.29762 (9)0.0304 (6)
O300.9865 (3)0.65260 (10)0.33076 (6)0.0404 (5)
N310.9272 (4)0.75559 (12)0.29557 (7)0.0308 (5)
C320.9406 (5)0.80102 (16)0.33398 (9)0.0403 (8)
H32A0.93290.77300.36090.060*
H32B0.83710.83460.33350.060*
H32C1.06070.82590.33330.060*
C330.9131 (4)0.78357 (14)0.25062 (9)0.0305 (7)
C341.0940 (5)0.81854 (16)0.23651 (11)0.0412 (8)
H34A1.12030.85780.25610.062*
H34B1.08110.83540.20620.062*
H34C1.19750.78500.23810.062*
C350.7443 (5)0.82979 (16)0.24437 (10)0.0385 (7)
H35A0.63270.80690.25650.058*
H35B0.72560.83860.21290.058*
H35C0.76490.87400.25970.058*
N360.8859 (4)0.71663 (13)0.22517 (8)0.0293 (5)
H36A0.935 (5)0.7194 (16)0.1989 (7)0.041 (4)*
H36B0.765 (3)0.7066 (17)0.2250 (11)0.041 (4)*
C410.6783 (5)0.91208 (17)0.12749 (11)0.0409 (7)
H410.73100.88070.10670.049*
C420.7844 (5)0.96729 (16)0.14272 (10)0.0419 (8)
H420.90940.97310.13240.050*
C430.7130 (5)1.01334 (16)0.17222 (11)0.0450 (8)
H430.78671.05110.18260.054*
C440.5314 (6)1.00407 (17)0.18681 (13)0.0597 (10)
H440.47941.03610.20730.072*
C450.4241 (5)0.94923 (16)0.17223 (12)0.0487 (9)
H450.29950.94350.18280.058*
C460.4971 (4)0.90207 (14)0.14203 (9)0.0321 (7)
C470.3752 (4)0.84086 (15)0.12911 (11)0.0375 (7)
H47A0.31520.82230.15610.045*
H47B0.27370.85810.10970.045*
C480.4734 (4)0.78160 (13)0.10597 (9)0.0295 (6)
H480.60350.77720.11810.035*
C490.4846 (4)0.78635 (14)0.05643 (9)0.0300 (6)
O500.5207 (3)0.83844 (10)0.03534 (7)0.0404 (5)
N510.4441 (4)0.72297 (12)0.03941 (7)0.0320 (6)
C520.4636 (6)0.70676 (17)0.00714 (9)0.0450 (8)
H52A0.45560.74970.02440.068*
H52B0.36280.67510.01610.068*
H52C0.58560.68460.01230.068*
C530.4100 (4)0.66876 (14)0.07240 (9)0.0294 (6)
C540.2379 (5)0.62580 (15)0.06236 (10)0.0367 (7)
H54A0.13320.65660.05480.055*
H54B0.20440.59810.08830.055*
H54C0.26430.59480.03750.055*
C550.5835 (5)0.62492 (16)0.08050 (10)0.0404 (8)
H55A0.62000.60160.05310.061*
H55B0.55620.59000.10310.061*
H55C0.68650.65480.09050.061*
N560.3730 (4)0.71421 (12)0.11235 (8)0.0276 (5)
H56A0.411 (4)0.6939 (14)0.1374 (7)0.041 (4)*
H56B0.254 (3)0.7225 (16)0.1151 (11)0.041 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0272 (4)0.0518 (4)0.0288 (3)0.0009 (3)0.0003 (3)0.0016 (3)
Cl20.0310 (4)0.0531 (4)0.0270 (3)0.0020 (4)0.0009 (3)0.0046 (3)
Cl30.0247 (3)0.0557 (4)0.0265 (3)0.0007 (4)0.0009 (3)0.0008 (3)
C10.059 (2)0.0333 (16)0.0443 (19)0.0063 (16)0.0077 (18)0.0072 (14)
C20.084 (3)0.0417 (19)0.050 (2)0.018 (2)0.013 (2)0.0044 (17)
C30.107 (4)0.0432 (19)0.0409 (19)0.017 (2)0.008 (2)0.0042 (16)
C40.081 (3)0.0426 (18)0.0457 (19)0.009 (2)0.020 (2)0.0036 (15)
C50.065 (3)0.0361 (16)0.0408 (18)0.0084 (18)0.0093 (18)0.0002 (13)
C60.057 (2)0.0226 (13)0.0328 (16)0.0054 (14)0.0020 (16)0.0085 (11)
C70.0360 (18)0.0343 (15)0.0355 (16)0.0001 (13)0.0001 (14)0.0054 (12)
C80.0308 (15)0.0293 (13)0.0277 (13)0.0007 (13)0.0006 (13)0.0030 (10)
C90.0289 (15)0.0352 (14)0.0292 (13)0.0017 (13)0.0014 (14)0.0019 (11)
O100.0555 (17)0.0432 (11)0.0324 (11)0.0009 (11)0.0096 (11)0.0089 (9)
N110.0343 (15)0.0345 (12)0.0236 (11)0.0040 (11)0.0013 (11)0.0021 (9)
C120.047 (2)0.0460 (16)0.0244 (14)0.0049 (16)0.0004 (14)0.0041 (12)
C130.0381 (19)0.0295 (13)0.0236 (13)0.0024 (12)0.0016 (13)0.0002 (11)
C140.047 (2)0.0392 (16)0.0382 (17)0.0080 (16)0.0041 (15)0.0017 (13)
C150.053 (2)0.0396 (16)0.0288 (16)0.0134 (16)0.0028 (15)0.0028 (13)
N160.0302 (14)0.0329 (12)0.0242 (12)0.0002 (11)0.0013 (11)0.0021 (9)
C210.050 (2)0.0419 (17)0.0403 (18)0.0053 (16)0.0040 (17)0.0007 (14)
C220.056 (2)0.0375 (17)0.051 (2)0.0090 (17)0.0115 (18)0.0010 (15)
C230.076 (3)0.0262 (15)0.0389 (18)0.0030 (16)0.0091 (19)0.0045 (13)
C240.071 (3)0.0408 (17)0.0382 (17)0.0108 (18)0.0092 (19)0.0041 (14)
C250.046 (2)0.0382 (16)0.0400 (18)0.0033 (15)0.0046 (16)0.0008 (14)
C260.0428 (17)0.0248 (12)0.0307 (14)0.0050 (13)0.0010 (15)0.0002 (11)
C270.0325 (17)0.0348 (15)0.0314 (15)0.0010 (13)0.0014 (13)0.0014 (12)
C280.0286 (16)0.0322 (14)0.0287 (13)0.0035 (12)0.0004 (12)0.0004 (11)
C290.0255 (14)0.0394 (15)0.0262 (13)0.0046 (13)0.0008 (13)0.0022 (11)
O300.0445 (15)0.0467 (11)0.0300 (10)0.0116 (11)0.0034 (10)0.0045 (9)
N310.0329 (15)0.0376 (12)0.0219 (11)0.0041 (11)0.0015 (10)0.0022 (9)
C320.048 (2)0.0441 (16)0.0289 (15)0.0060 (16)0.0036 (15)0.0099 (12)
C330.0322 (18)0.0325 (14)0.0269 (14)0.0013 (12)0.0028 (12)0.0041 (11)
C340.041 (2)0.0436 (17)0.0387 (17)0.0109 (15)0.0086 (15)0.0086 (14)
C350.047 (2)0.0367 (16)0.0317 (16)0.0067 (15)0.0011 (14)0.0058 (13)
N360.0280 (14)0.0362 (13)0.0236 (11)0.0022 (11)0.0021 (11)0.0001 (10)
C410.0406 (19)0.0456 (18)0.0365 (17)0.0084 (15)0.0090 (16)0.0055 (14)
C420.043 (2)0.0448 (18)0.0380 (17)0.0148 (15)0.0021 (15)0.0043 (14)
C430.051 (2)0.0307 (16)0.053 (2)0.0063 (16)0.0079 (18)0.0005 (15)
C440.058 (3)0.0424 (19)0.078 (3)0.0053 (19)0.017 (2)0.0264 (18)
C450.042 (2)0.0409 (17)0.063 (2)0.0044 (15)0.0148 (18)0.0093 (16)
C460.0354 (19)0.0287 (13)0.0321 (14)0.0010 (12)0.0002 (13)0.0030 (11)
C470.0325 (17)0.0378 (16)0.0422 (17)0.0061 (14)0.0073 (15)0.0073 (13)
C480.0234 (15)0.0353 (14)0.0297 (13)0.0021 (13)0.0002 (13)0.0011 (11)
C490.0248 (17)0.0345 (14)0.0306 (14)0.0005 (12)0.0003 (12)0.0019 (11)
O500.0455 (14)0.0366 (10)0.0390 (11)0.0050 (10)0.0076 (11)0.0073 (9)
N510.0350 (15)0.0361 (12)0.0249 (11)0.0053 (11)0.0019 (11)0.0007 (9)
C520.054 (2)0.0530 (18)0.0279 (14)0.0115 (18)0.0053 (17)0.0044 (13)
C530.0299 (16)0.0324 (14)0.0260 (14)0.0002 (12)0.0013 (12)0.0003 (11)
C540.0379 (19)0.0340 (15)0.0383 (17)0.0061 (14)0.0032 (14)0.0033 (13)
C550.038 (2)0.0415 (16)0.0417 (17)0.0099 (15)0.0024 (15)0.0028 (14)
N560.0241 (13)0.0320 (12)0.0267 (12)0.0012 (10)0.0004 (11)0.0040 (9)
Geometric parameters (Å, º) top
C1—C61.384 (5)C29—O301.219 (3)
C1—C21.387 (5)C29—N311.339 (3)
C1—H10.9500N31—C321.461 (3)
C2—C31.377 (6)N31—C331.471 (3)
C2—H20.9500C32—H32A0.9800
C3—C41.373 (6)C32—H32B0.9800
C3—H30.9500C32—H32C0.9800
C4—C51.386 (4)C33—C351.506 (4)
C4—H40.9500C33—C341.514 (4)
C5—C61.384 (5)C33—N361.514 (4)
C5—H50.9500C34—H34A0.9800
C6—C71.520 (4)C34—H34B0.9800
C7—C81.522 (4)C34—H34C0.9800
C7—H7A0.9900C35—H35A0.9800
C7—H7B0.9900C35—H35B0.9800
C8—N161.495 (3)C35—H35C0.9800
C8—C91.526 (4)N36—H36A0.872 (17)
C8—H81.0000N36—H36B0.883 (18)
C9—O101.219 (3)C41—C461.376 (4)
C9—N111.339 (3)C41—C421.383 (4)
N11—C121.448 (3)C41—H410.9500
N11—C131.473 (3)C42—C431.359 (5)
C12—H12A0.9800C42—H420.9500
C12—H12B0.9800C43—C441.378 (5)
C12—H12C0.9800C43—H430.9500
C13—C151.501 (4)C44—C451.375 (5)
C13—C141.517 (4)C44—H440.9500
C13—N161.517 (4)C45—C461.391 (4)
C14—H14A0.9800C45—H450.9500
C14—H14B0.9800C46—C471.514 (4)
C14—H14C0.9800C47—C481.510 (4)
C15—H15A0.9800C47—H47A0.9900
C15—H15B0.9800C47—H47B0.9900
C15—H15C0.9800C48—N561.493 (4)
N16—H16A0.867 (18)C48—C491.510 (4)
N16—H16B0.872 (17)C48—H481.0000
C21—C221.375 (4)C49—O501.217 (3)
C21—C261.390 (5)C49—N511.355 (3)
C21—H210.9500N51—C521.454 (3)
C22—C231.369 (5)N51—C531.466 (3)
C22—H220.9500C52—H52A0.9800
C23—C241.365 (5)C52—H52B0.9800
C23—H230.9500C52—H52C0.9800
C24—C251.380 (5)C53—C541.509 (4)
C24—H240.9500C53—C551.515 (4)
C25—C261.374 (4)C53—N561.518 (4)
C25—H250.9500C54—H54A0.9800
C26—C271.513 (4)C54—H54B0.9800
C27—C281.527 (4)C54—H54C0.9800
C27—H27A0.9900C55—H55A0.9800
C27—H27B0.9900C55—H55B0.9800
C28—N361.502 (4)C55—H55C0.9800
C28—C291.523 (4)N56—H56A0.895 (17)
C28—H281.0000N56—H56B0.868 (18)
C6—C1—C2120.6 (4)C29—N31—C32122.4 (2)
C6—C1—H1119.7C29—N31—C33114.5 (2)
C2—C1—H1119.7C32—N31—C33121.8 (2)
C3—C2—C1119.9 (4)N31—C32—H32A109.5
C3—C2—H2120.0N31—C32—H32B109.5
C1—C2—H2120.0H32A—C32—H32B109.5
C4—C3—C2119.8 (3)N31—C32—H32C109.5
C4—C3—H3120.1H32A—C32—H32C109.5
C2—C3—H3120.1H32B—C32—H32C109.5
C3—C4—C5120.5 (4)N31—C33—C35112.8 (2)
C3—C4—H4119.7N31—C33—C34111.6 (2)
C5—C4—H4119.7C35—C33—C34112.3 (2)
C6—C5—C4120.2 (4)N31—C33—N3699.9 (2)
C6—C5—H5119.9C35—C33—N36109.6 (2)
C4—C5—H5119.9C34—C33—N36110.0 (2)
C1—C6—C5118.9 (3)C33—C34—H34A109.5
C1—C6—C7118.6 (3)C33—C34—H34B109.5
C5—C6—C7122.0 (3)H34A—C34—H34B109.5
C6—C7—C8118.3 (2)C33—C34—H34C109.5
C6—C7—H7A107.7H34A—C34—H34C109.5
C8—C7—H7A107.7H34B—C34—H34C109.5
C6—C7—H7B107.7C33—C35—H35A109.5
C8—C7—H7B107.7C33—C35—H35B109.5
H7A—C7—H7B107.1H35A—C35—H35B109.5
N16—C8—C7115.2 (2)C33—C35—H35C109.5
N16—C8—C9101.9 (2)H35A—C35—H35C109.5
C7—C8—C9109.0 (2)H35B—C35—H35C109.5
N16—C8—H8110.1C28—N36—C33107.1 (2)
C7—C8—H8110.1C28—N36—H36A110 (2)
C9—C8—H8110.1C33—N36—H36A111 (2)
O10—C9—N11126.6 (3)C28—N36—H36B107 (2)
O10—C9—C8124.9 (2)C33—N36—H36B108 (2)
N11—C9—C8108.5 (2)H36A—N36—H36B113 (3)
C9—N11—C12122.5 (2)C46—C41—C42120.8 (3)
C9—N11—C13114.1 (2)C46—C41—H41119.6
C12—N11—C13121.9 (2)C42—C41—H41119.6
N11—C12—H12A109.5C43—C42—C41121.1 (3)
N11—C12—H12B109.5C43—C42—H42119.4
H12A—C12—H12B109.5C41—C42—H42119.4
N11—C12—H12C109.5C42—C43—C44118.6 (3)
H12A—C12—H12C109.5C42—C43—H43120.7
H12B—C12—H12C109.5C44—C43—H43120.7
N11—C13—C15112.5 (2)C45—C44—C43121.1 (3)
N11—C13—C14110.5 (2)C45—C44—H44119.5
C15—C13—C14113.3 (2)C43—C44—H44119.5
N11—C13—N1699.9 (2)C44—C45—C46120.4 (3)
C15—C13—N16109.1 (2)C44—C45—H45119.8
C14—C13—N16110.8 (2)C46—C45—H45119.8
C13—C14—H14A109.5C41—C46—C45118.0 (3)
C13—C14—H14B109.5C41—C46—C47124.2 (3)
H14A—C14—H14B109.5C45—C46—C47117.7 (3)
C13—C14—H14C109.5C48—C47—C46116.3 (3)
H14A—C14—H14C109.5C48—C47—H47A108.2
H14B—C14—H14C109.5C46—C47—H47A108.2
C13—C15—H15A109.5C48—C47—H47B108.2
C13—C15—H15B109.5C46—C47—H47B108.2
H15A—C15—H15B109.5H47A—C47—H47B107.4
C13—C15—H15C109.5N56—C48—C49102.0 (2)
H15A—C15—H15C109.5N56—C48—C47112.0 (2)
H15B—C15—H15C109.5C49—C48—C47116.3 (2)
C8—N16—C13107.5 (2)N56—C48—H48108.8
C8—N16—H16A108 (2)C49—C48—H48108.8
C13—N16—H16A109 (2)C47—C48—H48108.8
C8—N16—H16B119 (2)O50—C49—N51125.8 (3)
C13—N16—H16B110 (2)O50—C49—C48125.8 (3)
H16A—N16—H16B104 (3)N51—C49—C48108.3 (2)
C22—C21—C26120.7 (3)C49—N51—C52122.9 (2)
C22—C21—H21119.6C49—N51—C53114.5 (2)
C26—C21—H21119.6C52—N51—C53121.8 (2)
C23—C22—C21119.7 (4)N51—C52—H52A109.5
C23—C22—H22120.1N51—C52—H52B109.5
C21—C22—H22120.1H52A—C52—H52B109.5
C24—C23—C22120.4 (3)N51—C52—H52C109.5
C24—C23—H23119.8H52A—C52—H52C109.5
C22—C23—H23119.8H52B—C52—H52C109.5
C23—C24—C25119.9 (3)N51—C53—C54112.7 (2)
C23—C24—H24120.1N51—C53—C55111.8 (2)
C25—C24—H24120.1C54—C53—C55112.9 (2)
C26—C25—C24120.8 (3)N51—C53—N5699.5 (2)
C26—C25—H25119.6C54—C53—N56109.6 (2)
C24—C25—H25119.6C55—C53—N56109.4 (2)
C25—C26—C21118.4 (3)C53—C54—H54A109.5
C25—C26—C27120.6 (3)C53—C54—H54B109.5
C21—C26—C27121.0 (3)H54A—C54—H54B109.5
C26—C27—C28113.6 (2)C53—C54—H54C109.5
C26—C27—H27A108.9H54A—C54—H54C109.5
C28—C27—H27A108.9H54B—C54—H54C109.5
C26—C27—H27B108.9C53—C55—H55A109.5
C28—C27—H27B108.9C53—C55—H55B109.5
H27A—C27—H27B107.7H55A—C55—H55B109.5
N36—C28—C29101.3 (2)C53—C55—H55C109.5
N36—C28—C27114.1 (2)H55A—C55—H55C109.5
C29—C28—C27113.6 (2)H55B—C55—H55C109.5
N36—C28—H28109.2C48—N56—C53108.3 (2)
C29—C28—H28109.2C48—N56—H56A110 (2)
C27—C28—H28109.2C53—N56—H56A112 (2)
O30—C29—N31127.0 (2)C48—N56—H56B109 (2)
O30—C29—C28124.8 (2)C53—N56—H56B111 (2)
N31—C29—C28108.2 (2)H56A—N56—H56B107 (3)
(S3) (S)-5-benzyl-2,2,3-trimethyl-4-oxoimidazolidin-1-ium chloride top
Crystal data top
C13H19N2O+·ClF(000) = 1632
Mr = 254.75Dx = 1.220 Mg m3
Orthorhombic, P212121Synchrotron radiation, λ = 0.69040 Å
Hall symbol: P 2ac 2abCell parameters from 3066 reflections
a = 7.123 (1) Åθ = 2.7–23.6°
b = 19.232 (3) ŵ = 0.26 mm1
c = 30.384 (4) ÅT = 150 K
V = 4162.3 (10) Å3Block, colourless
Z = 120.2 × 0.06 × 0.04 mm
Data collection top
Bruker D8
diffractometer
13171 independent reflections
Radiation source: Daresbury SRS, Station 16.2SMX8896 reflections with I > 2σ(I)
Silicon 111 monochromatorRint = 0.126
ω rotation with narrow frame scansθmax = 30.0°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1010
Tmin = 0.949, Tmax = 0.990k = 2727
48955 measured reflectionsl = 4343
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.071H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.171 w = 1/[σ2(Fo2) + (0.0126P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
13171 reflectionsΔρmax = 0.46 e Å3
488 parametersΔρmin = 0.32 e Å3
6 restraintsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.09 (6)
Crystal data top
C13H19N2O+·ClV = 4162.3 (10) Å3
Mr = 254.75Z = 12
Orthorhombic, P212121Synchrotron radiation, λ = 0.69040 Å
a = 7.123 (1) ŵ = 0.26 mm1
b = 19.232 (3) ÅT = 150 K
c = 30.384 (4) Å0.2 × 0.06 × 0.04 mm
Data collection top
Bruker D8
diffractometer
13171 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
8896 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.990Rint = 0.126
48955 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.071H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.171Δρmax = 0.46 e Å3
S = 1.03Δρmin = 0.32 e Å3
13171 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
488 parametersAbsolute structure parameter: 0.09 (6)
6 restraints
Special details top

Experimental. A correction to account for beam decay and absorption was applied using SADABS. The ratio of max to min apparent transmission was 0.739.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.53380 (11)0.32275 (4)0.79074 (2)0.03396 (16)
Cl20.96381 (13)0.70284 (4)0.96122 (2)0.03500 (17)
Cl30.04468 (11)0.25258 (4)0.87330 (2)0.03409 (17)
H56A0.600 (5)0.3032 (16)0.8612 (7)0.036 (4)*
H56B0.746 (3)0.2736 (17)0.8869 (11)0.036 (4)*
C10.2282 (6)0.53542 (17)0.98777 (11)0.0430 (8)
H10.10760.54560.97600.052*
C20.2455 (7)0.4905 (2)1.02394 (13)0.0560 (11)
H20.13640.47031.03670.067*
C30.4205 (8)0.47542 (19)1.04115 (12)0.0622 (13)
H30.43190.44431.06530.075*
C40.5774 (7)0.50544 (18)1.02342 (12)0.0539 (11)
H40.69750.49581.03570.065*
C50.5619 (6)0.54990 (17)0.98758 (11)0.0422 (8)
H50.67160.57030.97530.051*
C60.3866 (5)0.56480 (15)0.96944 (10)0.0349 (7)
C70.3667 (5)0.60562 (15)0.92724 (10)0.0318 (7)
H7A0.23170.61640.92330.038*
H7B0.40370.57470.90270.038*
C80.4754 (5)0.67320 (14)0.92214 (9)0.0276 (6)
H80.60820.66650.93200.033*
C90.4718 (4)0.69630 (15)0.87405 (9)0.0306 (6)
O100.4953 (4)0.65743 (11)0.84275 (7)0.0407 (6)
N110.4343 (4)0.76402 (12)0.87275 (8)0.0293 (5)
C120.4476 (5)0.80409 (18)0.83224 (9)0.0381 (8)
H12A0.43570.77280.80690.057*
H12B0.56950.82770.83110.057*
H12C0.34660.83870.83140.057*
C130.4273 (5)0.79772 (15)0.91599 (9)0.0292 (6)
C140.6154 (5)0.83084 (18)0.92734 (11)0.0407 (8)
H14A0.64390.86750.90600.061*
H14B0.71430.79540.92640.061*
H14C0.60930.85090.95700.061*
C150.2643 (5)0.84718 (17)0.92033 (10)0.0393 (8)
H15A0.14870.82400.91070.059*
H15B0.28680.88820.90190.059*
H15C0.25140.86150.95120.059*
N160.3922 (4)0.73451 (13)0.94478 (8)0.0275 (5)
H16A0.272 (3)0.7298 (18)0.9466 (11)0.036 (4)*
H16B0.421 (5)0.7438 (16)0.9719 (7)0.036 (4)*
C210.1484 (5)0.47847 (18)0.79588 (11)0.0409 (8)
H210.22600.47420.77060.049*
C220.2146 (6)0.51350 (18)0.83248 (12)0.0475 (9)
H220.33710.53310.83220.057*
C230.1043 (6)0.52008 (17)0.86910 (12)0.0478 (10)
H230.14860.54550.89380.057*
C240.0712 (6)0.48976 (18)0.87013 (11)0.0472 (9)
H240.14590.49250.89600.057*
C250.1383 (5)0.45512 (17)0.83318 (10)0.0388 (8)
H250.26030.43510.83370.047*
C260.0300 (5)0.44944 (14)0.79575 (9)0.0321 (6)
C270.1026 (5)0.41159 (15)0.75596 (9)0.0321 (7)
H27A0.24070.40710.75850.039*
H27B0.07590.44000.72950.039*
C280.0186 (4)0.33942 (14)0.74938 (9)0.0274 (6)
H280.11710.34060.75790.033*
C290.0348 (5)0.31232 (15)0.70267 (9)0.0302 (6)
O300.0128 (4)0.34709 (12)0.66958 (7)0.0404 (6)
N310.0729 (4)0.24400 (13)0.70432 (7)0.0289 (5)
C320.0578 (6)0.19817 (18)0.66614 (10)0.0395 (8)
H32A0.05840.22610.63910.059*
H32B0.05970.17170.66790.059*
H32C0.16440.16600.66580.059*
C330.0869 (4)0.21537 (15)0.74915 (9)0.0277 (6)
C340.0947 (5)0.18070 (18)0.76337 (11)0.0390 (8)
H34A0.12300.14200.74340.059*
H34B0.19730.21460.76240.059*
H34C0.08100.16300.79350.059*
C350.2567 (5)0.16925 (17)0.75526 (10)0.0360 (7)
H35A0.36980.19420.74580.054*
H35B0.24200.12700.73750.054*
H35C0.26860.15660.78640.054*
N360.1146 (4)0.28279 (13)0.77481 (8)0.0265 (5)
H36A0.080 (5)0.2829 (17)0.8024 (6)0.036 (4)*
H36B0.236 (3)0.2922 (18)0.7749 (11)0.036 (4)*
C410.3222 (5)0.08721 (18)0.87222 (11)0.0381 (7)
H410.26950.11860.89300.046*
C420.2153 (5)0.03171 (17)0.85695 (11)0.0392 (8)
H420.09060.02560.86740.047*
C430.2876 (6)0.01399 (18)0.82713 (12)0.0434 (8)
H430.21410.05180.81670.052*
C440.4680 (6)0.00467 (18)0.81235 (14)0.0553 (10)
H440.51980.03620.79150.066*
C450.5744 (6)0.05022 (18)0.82757 (12)0.0463 (9)
H450.69940.05580.81720.056*
C460.5030 (4)0.09731 (15)0.85769 (9)0.0297 (7)
C470.6257 (4)0.15824 (16)0.87117 (11)0.0345 (7)
H47A0.72530.14070.89100.041*
H47B0.68830.17660.84450.041*
C480.5267 (4)0.21795 (14)0.89394 (9)0.0260 (6)
H480.39650.22230.88180.031*
C490.5162 (4)0.21312 (15)0.94358 (9)0.0286 (6)
O500.4780 (4)0.16091 (11)0.96445 (7)0.0391 (5)
N510.5560 (4)0.27634 (13)0.96047 (8)0.0307 (6)
C520.5372 (6)0.29278 (18)1.00678 (9)0.0425 (8)
H52A0.54780.25011.02420.064*
H52B0.41430.31421.01210.064*
H52C0.63670.32521.01550.064*
C530.5908 (4)0.33055 (15)0.92720 (9)0.0291 (6)
C540.7626 (5)0.37387 (16)0.93720 (10)0.0350 (7)
H54A0.86990.34320.94270.053*
H54B0.73880.40250.96330.053*
H54C0.79030.40410.91200.053*
C550.4180 (5)0.37474 (18)0.91928 (11)0.0388 (8)
H55A0.38220.39800.94670.058*
H55B0.31450.34510.90930.058*
H55C0.44560.40970.89670.058*
N560.6276 (4)0.28507 (13)0.88767 (8)0.0268 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0249 (3)0.0500 (4)0.0270 (3)0.0013 (3)0.0001 (3)0.0018 (3)
Cl20.0294 (4)0.0500 (4)0.0256 (3)0.0017 (4)0.0005 (3)0.0043 (3)
Cl30.0227 (3)0.0542 (4)0.0255 (3)0.0003 (4)0.0005 (3)0.0001 (3)
C10.055 (2)0.0341 (17)0.0397 (18)0.0077 (17)0.0087 (17)0.0059 (14)
C20.083 (3)0.041 (2)0.044 (2)0.018 (2)0.017 (2)0.0034 (17)
C30.111 (4)0.0370 (19)0.0382 (19)0.015 (2)0.008 (2)0.0027 (16)
C40.075 (3)0.0396 (19)0.047 (2)0.008 (2)0.020 (2)0.0037 (16)
C50.053 (2)0.0363 (17)0.0377 (17)0.0046 (17)0.0051 (17)0.0020 (14)
C60.052 (2)0.0253 (14)0.0276 (15)0.0024 (14)0.0008 (14)0.0065 (11)
C70.0313 (17)0.0304 (15)0.0337 (15)0.0000 (13)0.0005 (13)0.0079 (12)
C80.0277 (14)0.0297 (13)0.0254 (13)0.0038 (13)0.0010 (12)0.0041 (11)
C90.0274 (14)0.0369 (15)0.0274 (13)0.0029 (13)0.0029 (13)0.0030 (12)
O100.0510 (16)0.0409 (12)0.0303 (10)0.0025 (11)0.0109 (10)0.0086 (9)
N110.0337 (14)0.0302 (12)0.0239 (11)0.0045 (11)0.0008 (11)0.0002 (9)
C120.044 (2)0.0492 (18)0.0208 (13)0.0078 (17)0.0034 (14)0.0036 (13)
C130.0391 (19)0.0285 (14)0.0201 (12)0.0009 (13)0.0010 (12)0.0001 (11)
C140.046 (2)0.0391 (18)0.0367 (17)0.0075 (16)0.0032 (15)0.0015 (14)
C150.051 (2)0.0377 (17)0.0293 (16)0.0155 (16)0.0048 (15)0.0004 (14)
N160.0312 (14)0.0302 (12)0.0210 (11)0.0003 (11)0.0023 (10)0.0028 (10)
C210.042 (2)0.0428 (18)0.0376 (18)0.0071 (16)0.0056 (16)0.0002 (15)
C220.057 (3)0.0360 (18)0.050 (2)0.0088 (18)0.0107 (19)0.0017 (16)
C230.081 (3)0.0271 (16)0.0355 (17)0.0012 (18)0.0136 (19)0.0033 (14)
C240.069 (3)0.0414 (18)0.0315 (16)0.0119 (19)0.0065 (18)0.0055 (14)
C250.045 (2)0.0359 (16)0.0356 (17)0.0053 (15)0.0066 (15)0.0022 (14)
C260.0402 (17)0.0254 (13)0.0306 (14)0.0033 (13)0.0011 (14)0.0029 (11)
C270.0308 (16)0.0355 (16)0.0300 (15)0.0063 (13)0.0002 (13)0.0028 (12)
C280.0234 (14)0.0325 (14)0.0262 (13)0.0042 (12)0.0019 (11)0.0024 (11)
C290.0252 (14)0.0369 (15)0.0285 (14)0.0042 (13)0.0037 (12)0.0010 (12)
O300.0482 (16)0.0446 (12)0.0284 (10)0.0123 (11)0.0047 (10)0.0039 (9)
N310.0313 (14)0.0341 (12)0.0213 (11)0.0058 (11)0.0002 (10)0.0035 (10)
C320.047 (2)0.0441 (18)0.0268 (14)0.0088 (17)0.0006 (14)0.0095 (13)
C330.0316 (17)0.0308 (14)0.0208 (13)0.0006 (12)0.0025 (11)0.0026 (11)
C340.0381 (19)0.0408 (18)0.0381 (17)0.0102 (15)0.0085 (14)0.0060 (14)
C350.0387 (19)0.0383 (17)0.0309 (15)0.0091 (15)0.0001 (13)0.0021 (13)
N360.0264 (13)0.0330 (13)0.0200 (11)0.0001 (11)0.0034 (10)0.0003 (10)
C410.0371 (18)0.0417 (18)0.0354 (16)0.0081 (15)0.0061 (15)0.0039 (14)
C420.0363 (18)0.0447 (19)0.0366 (17)0.0149 (15)0.0003 (14)0.0086 (15)
C430.050 (2)0.0312 (16)0.049 (2)0.0070 (16)0.0101 (17)0.0019 (15)
C440.052 (2)0.0383 (19)0.076 (3)0.0032 (19)0.009 (2)0.0229 (18)
C450.041 (2)0.0371 (17)0.061 (2)0.0005 (16)0.0085 (17)0.0091 (16)
C460.0326 (18)0.0288 (13)0.0277 (13)0.0022 (12)0.0001 (12)0.0048 (11)
C470.0282 (16)0.0361 (16)0.0393 (16)0.0051 (13)0.0070 (14)0.0060 (13)
C480.0220 (13)0.0271 (13)0.0289 (13)0.0037 (12)0.0028 (12)0.0002 (11)
C490.0245 (16)0.0347 (15)0.0267 (13)0.0009 (12)0.0012 (11)0.0005 (11)
O500.0458 (14)0.0370 (11)0.0344 (11)0.0053 (11)0.0063 (11)0.0066 (9)
N510.0334 (15)0.0341 (12)0.0244 (11)0.0047 (11)0.0033 (11)0.0016 (10)
C520.055 (2)0.0471 (18)0.0257 (14)0.0105 (19)0.0005 (16)0.0022 (13)
C530.0312 (16)0.0315 (14)0.0247 (13)0.0021 (12)0.0004 (11)0.0002 (11)
C540.0373 (18)0.0317 (15)0.0360 (16)0.0089 (14)0.0040 (14)0.0042 (13)
C550.0351 (19)0.0411 (17)0.0401 (17)0.0070 (15)0.0020 (14)0.0070 (14)
N560.0263 (13)0.0301 (13)0.0240 (11)0.0019 (11)0.0007 (10)0.0004 (10)
Geometric parameters (Å, º) top
C1—C61.379 (5)C29—O301.217 (3)
C1—C21.403 (5)C29—N311.343 (4)
C1—H10.9500N31—C321.460 (4)
C2—C31.381 (7)N31—C331.472 (3)
C2—H20.9500C32—H32A0.9800
C3—C41.367 (6)C32—H32B0.9800
C3—H30.9500C32—H32C0.9800
C4—C51.389 (5)C33—C351.511 (4)
C4—H40.9500C33—C341.517 (4)
C5—C61.393 (5)C33—N361.526 (4)
C5—H50.9500C34—H34A0.9800
C6—C71.510 (4)C34—H34B0.9800
C7—C81.521 (4)C34—H34C0.9800
C7—H7A0.9900C35—H35A0.9800
C7—H7B0.9900C35—H35B0.9800
C8—N161.488 (4)C35—H35C0.9800
C8—C91.527 (4)N36—H36A0.874 (17)
C8—H81.0000N36—H36B0.884 (18)
C9—O101.221 (3)C41—C461.375 (4)
C9—N111.330 (4)C41—C421.390 (4)
N11—C121.455 (4)C41—H410.9500
N11—C131.465 (3)C42—C431.363 (5)
C12—H12A0.9800C42—H420.9500
C12—H12B0.9800C43—C441.371 (6)
C12—H12C0.9800C43—H430.9500
C13—C151.506 (4)C44—C451.379 (5)
C13—N161.518 (4)C44—H440.9500
C13—C141.522 (5)C45—C461.384 (4)
C14—H14A0.9800C45—H450.9500
C14—H14B0.9800C46—C471.518 (4)
C14—H14C0.9800C47—C481.515 (4)
C15—H15A0.9800C47—H47A0.9900
C15—H15B0.9800C47—H47B0.9900
C15—H15C0.9800C48—N561.490 (4)
N16—H16A0.864 (18)C48—C491.512 (4)
N16—H16B0.867 (17)C48—H481.0000
C21—C221.382 (5)C49—O501.218 (3)
C21—C261.387 (5)C49—N511.350 (4)
C21—H210.9500N51—C521.448 (4)
C22—C231.367 (5)N51—C531.473 (4)
C22—H220.9500C52—H52A0.9800
C23—C241.379 (5)C52—H52B0.9800
C23—H230.9500C52—H52C0.9800
C24—C251.390 (5)C53—N561.508 (4)
C24—H240.9500C53—C541.510 (4)
C25—C261.377 (4)C53—C551.514 (4)
C25—H250.9500C54—H54A0.9800
C26—C271.502 (4)C54—H54B0.9800
C27—C281.525 (4)C54—H54C0.9800
C27—H27A0.9900C55—H55A0.9800
C27—H27B0.9900C55—H55B0.9800
C28—N361.500 (4)C55—H55C0.9800
C28—C291.516 (4)N56—H56A0.899 (17)
C28—H281.0000N56—H56B0.869 (18)
C6—C1—C2119.8 (4)C29—N31—C32123.1 (2)
C6—C1—H1120.1C29—N31—C33114.5 (2)
C2—C1—H1120.1C32—N31—C33120.9 (2)
C3—C2—C1120.3 (4)N31—C32—H32A109.5
C3—C2—H2119.8N31—C32—H32B109.5
C1—C2—H2119.8H32A—C32—H32B109.5
C4—C3—C2119.9 (4)N31—C32—H32C109.5
C4—C3—H3120.0H32A—C32—H32C109.5
C2—C3—H3120.0H32B—C32—H32C109.5
C3—C4—C5120.3 (4)N31—C33—C35112.8 (2)
C3—C4—H4119.9N31—C33—C34111.7 (3)
C5—C4—H4119.9C35—C33—C34112.8 (3)
C4—C5—C6120.5 (4)N31—C33—N3699.4 (2)
C4—C5—H5119.7C35—C33—N36109.5 (2)
C6—C5—H5119.7C34—C33—N36109.8 (2)
C1—C6—C5119.2 (3)C33—C34—H34A109.5
C1—C6—C7118.6 (3)C33—C34—H34B109.5
C5—C6—C7121.8 (3)H34A—C34—H34B109.5
C6—C7—C8118.9 (3)C33—C34—H34C109.5
C6—C7—H7A107.6H34A—C34—H34C109.5
C8—C7—H7A107.6H34B—C34—H34C109.5
C6—C7—H7B107.6C33—C35—H35A109.5
C8—C7—H7B107.6C33—C35—H35B109.5
H7A—C7—H7B107.0H35A—C35—H35B109.5
N16—C8—C7115.4 (3)C33—C35—H35C109.5
N16—C8—C9101.8 (2)H35A—C35—H35C109.5
C7—C8—C9109.7 (2)H35B—C35—H35C109.5
N16—C8—H8109.9C28—N36—C33107.2 (2)
C7—C8—H8109.9C28—N36—H36A111 (2)
C9—C8—H8109.9C33—N36—H36A117 (2)
O10—C9—N11127.2 (3)C28—N36—H36B107 (2)
O10—C9—C8124.4 (3)C33—N36—H36B108 (2)
N11—C9—C8108.5 (2)H36A—N36—H36B106 (3)
C9—N11—C12122.1 (2)C46—C41—C42120.9 (3)
C9—N11—C13114.4 (2)C46—C41—H41119.5
C12—N11—C13121.7 (2)C42—C41—H41119.5
N11—C12—H12A109.5C43—C42—C41120.7 (3)
N11—C12—H12B109.5C43—C42—H42119.7
H12A—C12—H12B109.5C41—C42—H42119.7
N11—C12—H12C109.5C42—C43—C44119.1 (3)
H12A—C12—H12C109.5C42—C43—H43120.4
H12B—C12—H12C109.5C44—C43—H43120.4
N11—C13—C15112.6 (2)C43—C44—C45120.3 (4)
N11—C13—N1699.6 (2)C43—C44—H44119.9
C15—C13—N16109.2 (3)C45—C44—H44119.9
N11—C13—C14111.0 (3)C44—C45—C46121.4 (4)
C15—C13—C14113.2 (3)C44—C45—H45119.3
N16—C13—C14110.5 (3)C46—C45—H45119.3
C13—C14—H14A109.5C41—C46—C45117.6 (3)
C13—C14—H14B109.5C41—C46—C47124.1 (3)
H14A—C14—H14B109.5C45—C46—C47118.2 (3)
C13—C14—H14C109.5C48—C47—C46116.2 (3)
H14A—C14—H14C109.5C48—C47—H47A108.2
H14B—C14—H14C109.5C46—C47—H47A108.2
C13—C15—H15A109.5C48—C47—H47B108.2
C13—C15—H15B109.5C46—C47—H47B108.2
H15A—C15—H15B109.5H47A—C47—H47B107.4
C13—C15—H15C109.5N56—C48—C49101.8 (2)
H15A—C15—H15C109.5N56—C48—C47112.0 (2)
H15B—C15—H15C109.5C49—C48—C47115.6 (3)
C8—N16—C13107.6 (2)N56—C48—H48109.1
C8—N16—H16A110 (2)C49—C48—H48109.1
C13—N16—H16A106 (2)C47—C48—H48109.1
C8—N16—H16B120 (2)O50—C49—N51126.3 (3)
C13—N16—H16B110 (2)O50—C49—C48125.5 (3)
H16A—N16—H16B101 (3)N51—C49—C48108.2 (2)
C22—C21—C26120.7 (3)C49—N51—C52123.1 (3)
C22—C21—H21119.7C49—N51—C53114.4 (2)
C26—C21—H21119.7C52—N51—C53121.8 (2)
C23—C22—C21120.2 (4)N51—C52—H52A109.5
C23—C22—H22119.9N51—C52—H52B109.5
C21—C22—H22119.9H52A—C52—H52B109.5
C22—C23—C24120.0 (3)N51—C52—H52C109.5
C22—C23—H23120.0H52A—C52—H52C109.5
C24—C23—H23120.0H52B—C52—H52C109.5
C23—C24—C25119.7 (3)N51—C53—N5699.5 (2)
C23—C24—H24120.1N51—C53—C54112.9 (2)
C25—C24—H24120.1N56—C53—C54109.9 (2)
C26—C25—C24120.8 (4)N51—C53—C55111.7 (3)
C26—C25—H25119.6N56—C53—C55109.9 (2)
C24—C25—H25119.6C54—C53—C55112.3 (3)
C25—C26—C21118.5 (3)C53—C54—H54A109.5
C25—C26—C27120.7 (3)C53—C54—H54B109.5
C21—C26—C27120.8 (3)H54A—C54—H54B109.5
C26—C27—C28114.3 (2)C53—C54—H54C109.5
C26—C27—H27A108.7H54A—C54—H54C109.5
C28—C27—H27A108.7H54B—C54—H54C109.5
C26—C27—H27B108.7C53—C55—H55A109.5
C28—C27—H27B108.7C53—C55—H55B109.5
H27A—C27—H27B107.6H55A—C55—H55B109.5
N36—C28—C29101.4 (2)C53—C55—H55C109.5
N36—C28—C27114.5 (2)H55A—C55—H55C109.5
C29—C28—C27114.0 (2)H55B—C55—H55C109.5
N36—C28—H28108.9C48—N56—C53108.5 (2)
C29—C28—H28108.9C48—N56—H56A110 (2)
C27—C28—H28108.9C53—N56—H56A117 (2)
O30—C29—N31126.5 (3)C48—N56—H56B104 (2)
O30—C29—C28125.0 (3)C53—N56—H56B110 (2)
N31—C29—C28108.5 (2)H56A—N56—H56B107 (3)
(R4) (R)-5-benzyl-2,2,3-trimethyl-4-oxoimidazolidin-1-ium chloride monohydrate top
Crystal data top
C13H19N2O+·Cl·H2OF(000) = 292
Mr = 272.77Dx = 1.251 Mg m3
Monoclinic, P21Synchrotron radiation, λ = 0.79770 Å
Hall symbol: P 2ybCell parameters from 1277 reflections
a = 9.6320 (19) Åθ = 3.7–25.6°
b = 7.0446 (14) ŵ = 0.26 mm1
c = 11.093 (2) ÅT = 150 K
β = 105.82 (3)°Block, colourless
V = 724.2 (3) Å30.08 × 0.03 × 0.01 mm
Z = 2
Data collection top
Bruker D8
diffractometer
3480 independent reflections
Radiation source: Daresbury SRS, Station 16.2SMX2485 reflections with I > 2σ(I)
Silicon 111 monochromatorRint = 0.049
ω rotation with narrow frame scansθmax = 32.1°, θmin = 3.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1212
Tmin = 0.979, Tmax = 1k = 99
6282 measured reflectionsl = 1314
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0587P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max < 0.001
3480 reflectionsΔρmax = 0.30 e Å3
182 parametersΔρmin = 0.39 e Å3
5 restraintsAbsolute structure: Flack (1983), 1545 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.15 (9)
Crystal data top
C13H19N2O+·Cl·H2OV = 724.2 (3) Å3
Mr = 272.77Z = 2
Monoclinic, P21Synchrotron radiation, λ = 0.79770 Å
a = 9.6320 (19) ŵ = 0.26 mm1
b = 7.0446 (14) ÅT = 150 K
c = 11.093 (2) Å0.08 × 0.03 × 0.01 mm
β = 105.82 (3)°
Data collection top
Bruker D8
diffractometer
3480 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2485 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 1Rint = 0.049
6282 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.130Δρmax = 0.30 e Å3
S = 0.96Δρmin = 0.39 e Å3
3480 reflectionsAbsolute structure: Flack (1983), 1545 Friedel pairs
182 parametersAbsolute structure parameter: 0.15 (9)
5 restraints
Special details top

Experimental. A correction to account for beam decay and for absorption was applied using SADABS. Ratio of min/max transmission 0.450.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1W0.5949 (3)0.5880 (4)0.5927 (2)0.0357 (6)
Cl10.73236 (8)0.01536 (10)0.53347 (8)0.0319 (2)
C10.6492 (3)0.0160 (4)0.9371 (3)0.0275 (8)
H10.73280.03491.00490.033*
C20.5814 (4)0.1589 (5)0.9230 (3)0.0316 (8)
H20.61680.25810.98130.038*
C30.4610 (4)0.1874 (5)0.8225 (4)0.0366 (9)
H30.41410.30730.81110.044*
C40.4093 (4)0.0425 (6)0.7392 (4)0.0420 (10)
H40.32700.06330.67050.050*
C50.4760 (4)0.1329 (5)0.7547 (3)0.0337 (8)
H50.43870.23230.69700.040*
C60.5980 (3)0.1646 (4)0.8548 (3)0.0229 (7)
C70.6727 (3)0.3548 (5)0.8741 (3)0.0248 (7)
H7A0.68750.39460.96220.030*
H7B0.60970.45000.81990.030*
C80.8174 (3)0.3514 (4)0.8443 (3)0.0221 (7)
H80.87580.24270.88940.027*
C90.9036 (3)0.5347 (4)0.8786 (3)0.0222 (7)
O100.9149 (2)0.6252 (3)0.9741 (2)0.0328 (6)
N110.9619 (3)0.5769 (4)0.7829 (2)0.0222 (6)
C121.0484 (4)0.7448 (5)0.7802 (4)0.0319 (8)
H12A1.04640.82780.85060.048*
H12B1.00920.81290.70120.048*
H12C1.14820.70690.78700.048*
C130.9429 (3)0.4239 (4)0.6898 (3)0.0207 (7)
C141.0675 (4)0.2802 (5)0.7256 (3)0.0286 (8)
H14A1.15730.34180.72130.043*
H14B1.04680.17280.66730.043*
H14C1.07800.23440.81110.043*
C150.9194 (3)0.4956 (5)0.5573 (3)0.0264 (7)
H15A0.84610.59580.54060.040*
H15B0.88680.39080.49830.040*
H15C1.01020.54660.54710.040*
N160.8062 (3)0.3367 (4)0.7071 (2)0.0217 (6)
H1B0.500 (3)0.554 (7)0.555 (4)0.091 (19)*
H1A0.617 (5)0.711 (4)0.578 (5)0.085 (18)*
H16B0.729 (3)0.400 (4)0.667 (3)0.021 (9)*
H16A0.795 (4)0.229 (4)0.666 (3)0.041 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1W0.0283 (14)0.0269 (14)0.0457 (16)0.0008 (11)0.0000 (12)0.0063 (11)
Cl10.0281 (4)0.0207 (4)0.0442 (5)0.0007 (4)0.0055 (3)0.0096 (4)
C10.0294 (17)0.022 (2)0.0291 (17)0.0003 (14)0.0048 (14)0.0016 (14)
C20.0321 (19)0.0202 (17)0.042 (2)0.0029 (15)0.0095 (16)0.0036 (16)
C30.032 (2)0.026 (2)0.055 (3)0.0051 (15)0.0166 (19)0.0030 (17)
C40.0298 (19)0.041 (3)0.046 (2)0.0100 (18)0.0045 (17)0.0030 (19)
C50.0286 (19)0.0303 (19)0.038 (2)0.0013 (15)0.0020 (16)0.0058 (16)
C60.0236 (17)0.0196 (16)0.0265 (17)0.0011 (13)0.0084 (14)0.0012 (13)
C70.0270 (17)0.0197 (16)0.0289 (17)0.0014 (13)0.0093 (14)0.0010 (14)
C80.0258 (17)0.0150 (14)0.0257 (17)0.0025 (13)0.0074 (14)0.0035 (13)
C90.0221 (16)0.0168 (16)0.0254 (16)0.0023 (11)0.0027 (13)0.0011 (12)
O100.0336 (14)0.0347 (14)0.0283 (13)0.0061 (11)0.0055 (11)0.0105 (11)
N110.0259 (14)0.0141 (12)0.0242 (14)0.0034 (11)0.0029 (11)0.0004 (10)
C120.031 (2)0.0214 (17)0.042 (2)0.0088 (14)0.0071 (17)0.0043 (15)
C130.0216 (16)0.0161 (15)0.0239 (17)0.0007 (11)0.0051 (13)0.0002 (12)
C140.0279 (18)0.0227 (17)0.036 (2)0.0042 (14)0.0101 (16)0.0061 (14)
C150.0307 (16)0.0235 (16)0.0255 (16)0.0023 (17)0.0083 (13)0.0038 (15)
N160.0228 (14)0.0180 (13)0.0228 (15)0.0017 (11)0.0040 (12)0.0033 (11)
Geometric parameters (Å, º) top
O1W—H1B0.93 (2)C8—H81.0000
O1W—H1A0.92 (2)C9—O101.215 (4)
C1—C21.383 (5)C9—N111.362 (4)
C1—C61.388 (4)N11—C121.452 (4)
C1—H10.9500N11—C131.470 (4)
C2—C31.387 (5)C12—H12A0.9800
C2—H20.9500C12—H12B0.9800
C3—C41.375 (5)C12—H12C0.9800
C3—H30.9500C13—C151.512 (4)
C4—C51.382 (5)C13—N161.512 (4)
C4—H40.9500C13—C141.538 (4)
C5—C61.398 (5)C14—H14A0.9800
C5—H50.9500C14—H14B0.9800
C6—C71.508 (5)C14—H14C0.9800
C7—C81.517 (4)C15—H15A0.9800
C7—H7A0.9900C15—H15B0.9800
C7—H7B0.9900C15—H15C0.9800
C8—N161.500 (4)N16—H16B0.877 (18)
C8—C91.526 (4)N16—H16A0.877 (19)
H1B—O1W—H1A114 (5)C9—N11—C12123.7 (3)
C2—C1—C6121.7 (3)C9—N11—C13112.9 (2)
C2—C1—H1119.1C12—N11—C13123.0 (3)
C6—C1—H1119.1N11—C12—H12A109.5
C1—C2—C3119.0 (3)N11—C12—H12B109.5
C1—C2—H2120.5H12A—C12—H12B109.5
C3—C2—H2120.5N11—C12—H12C109.5
C4—C3—C2120.2 (3)H12A—C12—H12C109.5
C4—C3—H3119.9H12B—C12—H12C109.5
C2—C3—H3119.9N11—C13—C15113.3 (2)
C3—C4—C5120.6 (3)N11—C13—N1698.9 (2)
C3—C4—H4119.7C15—C13—N16110.8 (2)
C5—C4—H4119.7N11—C13—C14111.2 (3)
C4—C5—C6120.2 (3)C15—C13—C14111.7 (3)
C4—C5—H5119.9N16—C13—C14110.2 (3)
C6—C5—H5119.9C13—C14—H14A109.5
C1—C6—C5118.2 (3)C13—C14—H14B109.5
C1—C6—C7120.5 (3)H14A—C14—H14B109.5
C5—C6—C7121.3 (3)C13—C14—H14C109.5
C6—C7—C8112.7 (3)H14A—C14—H14C109.5
C6—C7—H7A109.0H14B—C14—H14C109.5
C8—C7—H7A109.0C13—C15—H15A109.5
C6—C7—H7B109.0C13—C15—H15B109.5
C8—C7—H7B109.0H15A—C15—H15B109.5
H7A—C7—H7B107.8C13—C15—H15C109.5
N16—C8—C7113.9 (3)H15A—C15—H15C109.5
N16—C8—C9101.3 (2)H15B—C15—H15C109.5
C7—C8—C9113.7 (3)C8—N16—C13106.1 (2)
N16—C8—H8109.2C8—N16—H16B108 (2)
C7—C8—H8109.2C13—N16—H16B112 (2)
C9—C8—H8109.2C8—N16—H16A123 (3)
O10—C9—N11127.3 (3)C13—N16—H16A106 (2)
O10—C9—C8125.1 (3)H16B—N16—H16A102 (3)
N11—C9—C8107.6 (3)
(S4) (S)-5-benzyl-2,2,3-trimethyl-4-oxoimidazolidin-1-ium chloride monohydrate top
Crystal data top
C13H19N2O+·Cl·H2OF(000) = 292
Mr = 272.77Dx = 1.249 Mg m3
Monoclinic, P21Synchrotron radiation, λ = 0.79770 Å
Hall symbol: P 2ybCell parameters from 914 reflections
a = 9.6425 (14) Åθ = 3.7–24.1°
b = 7.0517 (10) ŵ = 0.26 mm1
c = 11.0895 (16) ÅT = 150 K
β = 105.796 (2)°Square plate, colourless
V = 725.57 (18) Å30.04 × 0.04 × 0.01 mm
Z = 2
Data collection top
Bruker D8
diffractometer
3330 independent reflections
Radiation source: Daresbury SRS, Station 16.2SMX2438 reflections with I > 2σ(I)
Silicon 111 monochromatorRint = 0.052
ω rotation with narrow frame scansθmax = 32.4°, θmin = 3.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1212
Tmin = 0.987, Tmax = 0.99k = 99
6377 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0529P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
3330 reflectionsΔρmax = 0.27 e Å3
181 parametersΔρmin = 0.38 e Å3
5 restraintsAbsolute structure: Flack (1983), 1339 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (9)
Crystal data top
C13H19N2O+·Cl·H2OV = 725.57 (18) Å3
Mr = 272.77Z = 2
Monoclinic, P21Synchrotron radiation, λ = 0.79770 Å
a = 9.6425 (14) ŵ = 0.26 mm1
b = 7.0517 (10) ÅT = 150 K
c = 11.0895 (16) Å0.04 × 0.04 × 0.01 mm
β = 105.796 (2)°
Data collection top
Bruker D8
diffractometer
3330 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2438 reflections with I > 2σ(I)
Tmin = 0.987, Tmax = 0.99Rint = 0.052
6377 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.122Δρmax = 0.27 e Å3
S = 0.98Δρmin = 0.38 e Å3
3330 reflectionsAbsolute structure: Flack (1983), 1339 Friedel pairs
181 parametersAbsolute structure parameter: 0.01 (9)
5 restraints
Special details top

Experimental. A correction to account for beam decay and for absorption was applied using SADABS. Ratio of min/max transmission 0.56.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1W0.4053 (3)0.4119 (4)0.4073 (3)0.0331 (6)
H1B0.499 (3)0.441 (7)0.453 (4)0.089 (14)*
H1A0.386 (6)0.289 (4)0.423 (5)0.089 (14)*
Cl10.26752 (8)1.01537 (11)0.46663 (8)0.0286 (2)
C10.3516 (4)0.9829 (5)0.0632 (3)0.0251 (8)
H10.26830.96340.00480.030*
C20.4190 (4)1.1592 (5)0.0771 (3)0.0294 (8)
H20.38281.25870.01930.035*
C30.5404 (4)1.1868 (6)0.1773 (4)0.0347 (9)
H30.58831.30580.18800.042*
C40.5914 (4)1.0420 (6)0.2610 (4)0.0388 (10)
H40.67301.06270.33030.047*
C50.5247 (4)0.8670 (5)0.2448 (3)0.0292 (8)
H50.56260.76730.30200.035*
C60.4024 (4)0.8347 (5)0.1457 (3)0.0199 (7)
C70.3281 (3)0.6452 (5)0.1261 (3)0.0216 (7)
H7A0.39060.55000.18060.026*
H7B0.31410.60530.03800.026*
C80.1818 (3)0.6490 (5)0.1551 (3)0.0178 (7)
H80.12310.75720.10980.021*
C90.0976 (3)0.4657 (4)0.1218 (3)0.0186 (7)
O100.0850 (2)0.3747 (4)0.0258 (2)0.0288 (6)
N110.0383 (3)0.4234 (4)0.2169 (2)0.0195 (6)
C120.0486 (4)0.2561 (5)0.2200 (3)0.0284 (8)
H12A0.05270.17740.14620.043*
H12B0.14630.29490.21950.043*
H12C0.00530.18320.29620.043*
C130.0567 (3)0.5769 (4)0.3105 (3)0.0180 (7)
C140.0673 (4)0.7197 (5)0.2744 (3)0.0235 (7)
H14A0.15690.65840.27910.035*
H14B0.07780.76460.18880.035*
H14C0.04650.82750.33230.035*
C150.0808 (3)0.5036 (6)0.4428 (3)0.0241 (7)
H15A0.15050.39920.45730.036*
H15B0.01070.45790.45430.036*
H15C0.11820.60610.50240.036*
N160.1943 (3)0.6638 (4)0.2933 (2)0.0179 (6)
H16B0.265 (3)0.585 (5)0.330 (4)0.056 (14)*
H16A0.206 (4)0.777 (3)0.327 (4)0.046 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1W0.0236 (13)0.0284 (15)0.0403 (16)0.0039 (12)0.0032 (11)0.0087 (12)
Cl10.0241 (4)0.0222 (4)0.0367 (5)0.0002 (4)0.0034 (3)0.0085 (4)
C10.0295 (17)0.023 (2)0.0203 (17)0.0003 (15)0.0031 (13)0.0020 (14)
C20.032 (2)0.0206 (18)0.037 (2)0.0014 (16)0.0108 (17)0.0004 (16)
C30.029 (2)0.030 (2)0.048 (2)0.0045 (17)0.0160 (19)0.0012 (19)
C40.0258 (19)0.042 (3)0.040 (2)0.0091 (19)0.0063 (16)0.002 (2)
C50.0249 (19)0.032 (2)0.0273 (19)0.0010 (16)0.0004 (15)0.0080 (16)
C60.0211 (17)0.0214 (17)0.0177 (16)0.0041 (14)0.0061 (13)0.0014 (13)
C70.0215 (17)0.0229 (18)0.0205 (16)0.0001 (14)0.0060 (13)0.0015 (14)
C80.0212 (16)0.0179 (16)0.0143 (15)0.0046 (14)0.0047 (12)0.0005 (13)
C90.0186 (16)0.0158 (17)0.0189 (16)0.0002 (12)0.0009 (13)0.0005 (12)
O100.0314 (14)0.0339 (14)0.0191 (12)0.0060 (12)0.0033 (10)0.0078 (11)
N110.0212 (14)0.0174 (13)0.0187 (14)0.0060 (12)0.0035 (11)0.0006 (11)
C120.029 (2)0.0274 (19)0.027 (2)0.0064 (16)0.0051 (16)0.0018 (15)
C130.0164 (16)0.0158 (15)0.0207 (17)0.0013 (12)0.0034 (13)0.0010 (12)
C140.0229 (18)0.0238 (18)0.0228 (18)0.0050 (15)0.0044 (14)0.0017 (14)
C150.0269 (16)0.0253 (17)0.0196 (16)0.0021 (19)0.0057 (12)0.0011 (16)
N160.0197 (14)0.0148 (14)0.0173 (14)0.0007 (12)0.0021 (11)0.0019 (12)
Geometric parameters (Å, º) top
O1W—H1B0.93 (2)C8—H81.0000
O1W—H1A0.912 (19)C9—O101.220 (4)
C1—C61.388 (4)C9—N111.362 (4)
C1—C21.392 (5)N11—C121.453 (4)
C1—H10.9500N11—C131.476 (4)
C2—C31.391 (5)C12—H12A0.9800
C2—H20.9500C12—H12B0.9800
C3—C41.377 (6)C12—H12C0.9800
C3—H30.9500C13—C151.512 (4)
C4—C51.381 (5)C13—N161.520 (4)
C4—H40.9500C13—C141.531 (4)
C5—C61.395 (5)C14—H14A0.9800
C5—H50.9500C14—H14B0.9800
C6—C71.504 (5)C14—H14C0.9800
C7—C81.530 (4)C15—H15A0.9800
C7—H7A0.9900C15—H15B0.9800
C7—H7B0.9900C15—H15C0.9800
C8—N161.508 (4)N16—H16B0.89 (2)
C8—C91.517 (4)N16—H16A0.874 (19)
H1B—O1W—H1A109 (5)C9—N11—C12124.2 (3)
C6—C1—C2122.0 (3)C9—N11—C13112.9 (2)
C6—C1—H1119.0C12—N11—C13122.6 (3)
C2—C1—H1119.0N11—C12—H12A109.5
C3—C2—C1118.6 (3)N11—C12—H12B109.5
C3—C2—H2120.7H12A—C12—H12B109.5
C1—C2—H2120.7N11—C12—H12C109.5
C4—C3—C2120.2 (4)H12A—C12—H12C109.5
C4—C3—H3119.9H12B—C12—H12C109.5
C2—C3—H3119.9N11—C13—C15112.9 (3)
C3—C4—C5120.5 (3)N11—C13—N1698.6 (2)
C3—C4—H4119.8C15—C13—N16110.6 (2)
C5—C4—H4119.8N11—C13—C14111.2 (3)
C4—C5—C6120.8 (3)C15—C13—C14112.4 (3)
C4—C5—H5119.6N16—C13—C14110.4 (3)
C6—C5—H5119.6C13—C14—H14A109.5
C1—C6—C5117.9 (3)C13—C14—H14B109.5
C1—C6—C7120.4 (3)H14A—C14—H14B109.5
C5—C6—C7121.8 (3)C13—C14—H14C109.5
C6—C7—C8112.6 (3)H14A—C14—H14C109.5
C6—C7—H7A109.1H14B—C14—H14C109.5
C8—C7—H7A109.1C13—C15—H15A109.5
C6—C7—H7B109.1C13—C15—H15B109.5
C8—C7—H7B109.1H15A—C15—H15B109.5
H7A—C7—H7B107.8C13—C15—H15C109.5
N16—C8—C9101.3 (2)H15A—C15—H15C109.5
N16—C8—C7113.1 (2)H15B—C15—H15C109.5
C9—C8—C7113.4 (3)C8—N16—C13105.6 (2)
N16—C8—H8109.6C8—N16—H16B106 (3)
C9—C8—H8109.6C13—N16—H16B106 (3)
C7—C8—H8109.6C8—N16—H16A117 (3)
O10—C9—N11126.7 (3)C13—N16—H16A109 (3)
O10—C9—C8125.4 (3)H16B—N16—H16A112 (4)
N11—C9—C8107.9 (3)

Experimental details

(S2.HCl)(R3)(S3)(R4)
Crystal data
Chemical formulaC10H15N2O+·ClC13H19N2O+·ClC13H19N2O+·ClC13H19N2O+·Cl·H2O
Mr214.69254.75254.75272.77
Crystal system, space groupOrthorhombic, P212121Orthorhombic, P212121Orthorhombic, P212121Monoclinic, P21
Temperature (K)150150150150
a, b, c (Å)4.9758 (7), 8.6213 (13), 25.521 (4)7.1167 (14), 19.237 (4), 30.370 (6)7.123 (1), 19.232 (3), 30.384 (4)9.6320 (19), 7.0446 (14), 11.093 (2)
α, β, γ (°)90, 90, 9090, 90, 9090, 90, 9090, 105.82 (3), 90
V3)1094.8 (3)4157.7 (14)4162.3 (10)724.2 (3)
Z412122
Radiation typeSynchrotron, λ = 0.69040 ÅSynchrotron, λ = 0.69040 ÅSynchrotron, λ = 0.69040 ÅSynchrotron, λ = 0.79770 Å
µ (mm1)0.320.260.260.26
Crystal size (mm)0.15 × 0.07 × 0.070.1 × 0.08 × 0.040.2 × 0.06 × 0.040.08 × 0.03 × 0.01
Data collection
DiffractometerBruker D8
diffractometer
Bruker D8
diffractometer
Bruker D8
diffractometer
Bruker D8
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.953, 0.9780.974, 0.9900.949, 0.9900.979, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
12758, 3619, 2971 24370, 9772, 7354 48955, 13171, 8896 6282, 3480, 2485
Rint0.0910.0710.1260.049
(sin θ/λ)max1)0.7500.6620.7240.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.157, 1.00 0.056, 0.131, 0.99 0.071, 0.171, 1.03 0.056, 0.130, 0.96
No. of reflections36199772131713480
No. of parameters141488488182
No. of restraints4665
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.58, 0.570.28, 0.230.46, 0.320.30, 0.39
Absolute structureFlack H D (1983), Acta Cryst. A39, 876-881Flack H D (1983), Acta Cryst. A39, 876-881Flack H D (1983), Acta Cryst. A39, 876-881Flack (1983), 1545 Friedel pairs
Absolute structure parameter0.01 (9)0.00 (6)0.09 (6)0.15 (9)


(S4)
Crystal data
Chemical formulaC13H19N2O+·Cl·H2O
Mr272.77
Crystal system, space groupMonoclinic, P21
Temperature (K)150
a, b, c (Å)9.6425 (14), 7.0517 (10), 11.0895 (16)
α, β, γ (°)90, 105.796 (2), 90
V3)725.57 (18)
Z2
Radiation typeSynchrotron, λ = 0.79770 Å
µ (mm1)0.26
Crystal size (mm)0.04 × 0.04 × 0.01
Data collection
DiffractometerBruker D8
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.987, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
6377, 3330, 2438
Rint0.052
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.122, 0.98
No. of reflections3330
No. of parameters181
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.38
Absolute structureFlack (1983), 1339 Friedel pairs
Absolute structure parameter0.01 (9)

Computer programs: APEX2 (Bruker, 2004), APEXII (Bruker, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), WinGX (Version 1.64; Farrugia, 1999).

 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds