Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Algorithms are presented for maximally efficient computation of the crystallographic fast Fourier transform (FFT). The approach is applicable to all 230 space groups and allows reduction of both the computation time and the memory usage by a factor equal to the number of symmetry operators. The central idea is a recursive reduction of the problem to a series of transforms on grids with no special points. The maximally efficient FFT for such grids has been described in previous papers by the same authors. The interaction between the grid size factorization and the symmetry operators and its influence on the algorithm design are discussed.

Subscribe to Acta Crystallographica Section A: Foundations and Advances

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds