Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
2,2-Di­methyl-5-[3-(4-methyl­phenyl)-2-propenyl­idene]-1,3-di­ox­ane-4,6-dione, C16H16O4, crystallizes in the triclinic space group P\overline 1, with two mol­ecules in the asymmetric unit. These mol­ecules and a centrosymmetrically related pair, linked together by weak C-H...O hydrogen bonds, form a tetramer. 5-[3-(4-Chloro­phenyl)-2-propenyl­idene]-2,2-di­methyl-1,3-dioxane-4,6-dione, C15H13ClO4, also crystallizes in the triclinic space group P\overline 1, with one mol­ecule in the asymmetric unit. Centrosymmetrically related mol­ecules are linked together by weak C-H...O hydrogen bonds to form dimers which are further linked by yet another pair of centrosymmetrically related C-H...O hydrogen bonds to form a tube which runs parallel to the a axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101018765/sk1522sup1.cif
Contains datablocks global, 3a, 3b

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101018765/sk15223asup2.hkl
Contains datablock 3a

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101018765/sk15223bsup3.hkl
Contains datablock 3b

CCDC references: 180167; 180168

Comment top

Meldrum's acid and its derivatives serve as good synthetic equivalents, most often in preparation of arylidene condensation products, which have received little attention as intermediates in heterocyclic synthesis. The condensation of Meldrum's acid arylidene derivatives with heterocyclic monoamines to afford pyridines has been reported(Morales et al., 1996, Quiroga et al., 1997, Quiroga et al., 1998, Quiroga et al., 1999, Rodríguez et al., 1996 and Rodríguez et al., 1997) or with α,β-unsaturated or dicarbonyl compounds to coumarins (Margaretha, 1972)

Here, we report an attempt to prepare triazolopyrimidines or triazolopyridazine using such condensation reaction with Meldrum's acid, 1,2-diaminotriazole and benzaldehyde. The final product was surprisingly the 3-(phenyl)-2-propenylidene derivative of Meldrum's acid, which comes from condensation of two molecules of Meldrum's acid with one of benzaldehyde. A further reaction using only the Meldrum's acid and benzaldehydes also produced that compound.

Both the title compounds crystallize in spacegroup P-1, in the case of compound (3a) with two molecules in the asymmetric unit which was chosen such that it formed a centrosymmetric dimer, see below. A view of the molecules of (3a) are shown in Figures 1a and 1 b. A view of molecule (3 b) is shown in Figure 2. The numbering system is chosen so that it is consistent for all three molecules.

The bonds and angles for the three molecules discussed in this study show no major differences except for the torsion angles involving the junction of the phenyl group and the propylidene chain. These difference are probably related to the differences in supramolecular structures found for the compounds. Selected torsion angles are given in Tables 1 for (3a) and 3 for (3 b).

The supramolecular structures of each compound are different. In compound (3a) the two molecules in the asymmetric unit are linked together head-to-tail via the C193–H193···O21 and C293–H293···O11 weak hydrogen bonds to form a dimer comprising an R22(20) ring, (Bernstein et al., 1995). These dimers are further linked together by two centrosymmetrically related pairs of weak C–H···O hydrogen bonds in which O24 at (-x, 1 - y, 2 - z) is an acceptor for H29 and H296 thus forming an R12(6) ring, (Bernstein et al., 1995). Hence a discrete tetramer is formed by the molecules in the asymmetric unit dimer and the dimer related to it by the centre of symmetry at (0, 1/2, 1), Figure 3.

In compound (3 b) in which there is only one molecule in the centrosymmetric unit, the C95–H95···O4(1 - x,2 - y,2 - z) weak hydrogen bond links the molecules into a centrosymmetric dimer centred on (1/2, 1.0, 1.0) giving an R22(20) ring, (Bernstein et al., 1995). In addition the molecules are linked by the C9–H9···O6(-1 + x,y,z) weak hydrogen bond to form C(7) chain running parallel to the a axis. Operation of the centre of symmetry at (0,1,1) produces an R44(28) ring, (Bernstein et al., 1995), resulting from a combination of centrosymmetrically related pairs of the C95–H95···O4 and C9–H9···O6 hydrogen bonds, Figure 4. The result is a tube like three-dimensional ribbon which runs parallel to the a axis.

Details of the hydrogen bonding is given in Tables 2 for (3a) and and (3 b).

There is also a short Cl97···Cl97(1 - x,1 - y,3 - z) contact of 3.4927 (8) Å in (3 b). A preliminary search of the CSD (Allen & Kennard, 1993) gave 1544 hits for short Cl–Cl contacts less than the van der Waals contact of 3.6 Å, for Cl atoms attached to C.

Experimental top

Preparation of 5-(3-(4-methylphenyl)-2-propenylidene]-2,2-dimethyl-[1,3] dioxane-4,6-dione (3a). A solution of 4-methylbenzaldehyde, (1a), (2.0 mmoles) and Meldrum's acid, (2), (4.0 mmoles) in ethoxyethanol (5 ml) with catalytic amounts of triethylamine was refluxed during 30 minutes (TLC control), the resulting precipitate was filtered, washed with ethanol, dried and purified by silica gel chromatography with chloroform. Orange crystals suitable of (3a) for X-ray diffraction were prepared by diffusion using ethyl acetate and hexane. Mp 401 K, yield 65%.

Preparation of 5-(3-(4-chlorophenyl)-2-propenylidene]-2,2-dimethyl-[1,3] dioxane-4,6-dione (3 b). A solution of 4-chlorobenzaldehyde, (1 b), (2.0 mmoles) and Meldrum's acid, (2), (4.0 mmoles) in ethoxyethanol (5 ml) with catalytic amounts of triethylamine was refluxed during 30 minutes (TLC control), the resulting precipitate was filtered, washed with ethanol, dried and purified by silica gel chromatography with chloroform. Orange crystals suitable of (3 b) for X-ray diffraction were prepared by diffusion using ethyl acetate and hexane. Mp 455 K, yield 70%.

Refinement top

Molecules (3a & 3 b) crystallized in the triclinic system; space group P-1 assumed and confirmed by the analysis. H atoms were treated as riding atoms with C—H 0.95 to 0.98 Å. Methyl hydrogen were calculated a six half H atoms at the corners of a regular hexagon. Examination of the structure with PLATON (Spek, 2001) showed that there were no solvent accessible voids in the crystal lattice.

Computing details top

For both compounds, data collection: Kappa-CCD server software (Nonius, 1997). Cell refinement: DENZO-SMN (Otwinowski & Minor, 1997) for (3a); Kappa-CCD server software (Nonius, 1997) for (3b). Data reduction: DENZO-SMN (Otwinowski & Minor, 1997) for (3a); Kappa-CCD server software (Nonius, 1997) for (3b). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: ORTEP (Johnson, 1976), PLATON (Spek, 2001) for (3a); NRCVAX96, ORTEP (Johnson, 1976), PLATON (Spek, 2001) for (3b). For both compounds, software used to prepare material for publication: SHELXL97 and WORDPERFECT macro PRPKAPPA (Ferguson, 2000).

Figures top
[Figure 1] Fig. 1. A view of the molecules of (3a). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of (3 b) with our numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. A view of the discrete tetramer formed by the molecules of (3a). The atoms labelled * are at (-x,1 - y, 2 - z). The unit cell is omitted for the sake of clarity.
[Figure 4] Fig. 4. A view of (3 b) showing the R22(20) dimers and C(7)chains and the R44(28) ring. The unit cell is omitted for the sake of clarity. The atoms labelled, * are at (-1 + x,y,z), # at (-x,2 - y,2 - z), $ at (1 - x,2 - y,2 - z), ? at (-2 + x,y,z) and & at (2 - x,2 - y,2 - z).
(3a) 5-(3-(4-methylphenyl)-2-propenylidene]-2,2-dimethyl-[1,3] dioxane-4,6-dione top
Crystal data top
C16H16O4Z = 4
Mr = 272.29F(000) = 576
Triclinic, P1Dx = 1.288 Mg m3
Hall symbol: -P 1Melting point: 401 K
a = 11.2891 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.4128 (4) ÅCell parameters from 6331 reflections
c = 13.4504 (5) Åθ = 2.9–27.5°
α = 91.217 (2)°µ = 0.09 mm1
β = 114.640 (3)°T = 120 K
γ = 113.7590 (15)°Lath, colourless
V = 1403.88 (8) Å30.15 × 0.15 × 0.1 mm
Data collection top
Kappa-CCD
diffractometer
6331 independent reflections
Radiation source: fine-focus sealed X-ray tube3359 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
ϕ scans and ω scans with κ offsetsθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
h = 1414
Tmin = 0.991, Tmax = 0.999k = 1414
21945 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0809P)2]
where P = (Fo2 + 2Fc2)/3
6331 reflections(Δ/σ)max < 0.001
367 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
C16H16O4γ = 113.7590 (15)°
Mr = 272.29V = 1403.88 (8) Å3
Triclinic, P1Z = 4
a = 11.2891 (3) ÅMo Kα radiation
b = 11.4128 (4) ŵ = 0.09 mm1
c = 13.4504 (5) ÅT = 120 K
α = 91.217 (2)°0.15 × 0.15 × 0.1 mm
β = 114.640 (3)°
Data collection top
Kappa-CCD
diffractometer
6331 independent reflections
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
3359 reflections with I > 2σ(I)
Tmin = 0.991, Tmax = 0.999Rint = 0.080
21945 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.165H-atom parameters constrained
S = 0.96Δρmax = 0.25 e Å3
6331 reflectionsΔρmin = 0.50 e Å3
367 parameters
Special details top

Experimental. The program DENZO-SMN (Otwinowski & Minor, 1997) uses a scaling algorithm (Fox & Holmes, 1966) which effectively corrects for absorption effects. High redundancy data were used in the scaling program hence the 'multi-scan' code word was used. No transmission coefficients are available from the program (only scale factors for each frame). The scale factors in the experimental table are calculated from the 'size' command in the SHELXL97 input file.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O110.25428 (17)0.07135 (15)0.57136 (13)0.0359 (4)
C120.3651 (2)0.0548 (2)0.55603 (18)0.0327 (6)
C1210.4221 (3)0.1634 (2)0.5019 (2)0.0412 (6)
C1220.4809 (3)0.0560 (2)0.66668 (18)0.0426 (6)
O130.30146 (16)0.06671 (14)0.47684 (11)0.0320 (4)
C140.2119 (2)0.1784 (2)0.49390 (17)0.0288 (5)
O140.19023 (17)0.28312 (16)0.44886 (12)0.0378 (4)
C150.1453 (2)0.1604 (2)0.56262 (16)0.0275 (5)
C160.1585 (2)0.0295 (2)0.59303 (17)0.0304 (5)
O160.08966 (18)0.00424 (16)0.63185 (13)0.0412 (4)
C170.0672 (2)0.2682 (2)0.59001 (16)0.0297 (5)
C180.0094 (2)0.2771 (2)0.65323 (17)0.0302 (5)
C190.0818 (2)0.3936 (2)0.67307 (16)0.0294 (5)
C1910.1641 (2)0.4159 (2)0.73519 (16)0.0261 (5)
C1920.1893 (2)0.3190 (2)0.77604 (17)0.0289 (5)
C1930.2664 (2)0.3448 (2)0.83681 (16)0.0301 (5)
C1940.3221 (2)0.4687 (2)0.85977 (16)0.0275 (5)
C910.4076 (3)0.4976 (2)0.92450 (18)0.0358 (6)
C1950.2986 (2)0.5650 (2)0.81877 (17)0.0307 (5)
C1960.2230 (2)0.5409 (2)0.75661 (17)0.0298 (5)
O210.31404 (16)0.06950 (14)0.89824 (12)0.0312 (4)
C220.2865 (3)0.0430 (2)1.01284 (18)0.0325 (6)
C2210.4148 (3)0.1473 (2)1.0201 (2)0.0500 (7)
C2220.1419 (3)0.0383 (2)1.09044 (18)0.0384 (6)
O230.28717 (17)0.08017 (14)1.03894 (12)0.0344 (4)
C240.2123 (2)0.1856 (2)1.00726 (17)0.0282 (5)
O240.19663 (17)0.29170 (15)1.04345 (12)0.0363 (4)
C250.1633 (2)0.1603 (2)0.92736 (16)0.0262 (5)
C260.2246 (2)0.0246 (2)0.86595 (17)0.0282 (5)
O260.20926 (17)0.00941 (15)0.78898 (12)0.0383 (4)
C270.0675 (2)0.2672 (2)0.91029 (16)0.0279 (5)
C280.0046 (2)0.2744 (2)0.83730 (17)0.0278 (5)
C290.0899 (2)0.3936 (2)0.83520 (17)0.0289 (5)
C2910.1671 (2)0.4208 (2)0.76888 (16)0.0272 (5)
C2920.1696 (2)0.3235 (2)0.70598 (17)0.0304 (5)
C2930.2447 (2)0.3554 (2)0.64403 (17)0.0326 (5)
C2940.3214 (2)0.4858 (2)0.64154 (17)0.0330 (6)
C920.4030 (3)0.5200 (3)0.57376 (19)0.0442 (7)
C2950.3203 (2)0.5827 (2)0.70421 (18)0.0349 (6)
C2960.2457 (2)0.5523 (2)0.76738 (17)0.0305 (5)
H12A0.45690.24850.54920.062*
H12B0.34360.15200.42790.062*
H12C0.50310.16040.49350.062*
H12D0.43680.01820.69600.064*
H12E0.52300.13850.72050.064*
H12F0.55810.04860.65520.064*
H170.06320.34820.56350.036*
H180.00960.20040.68180.036*
H190.07830.46780.64340.035*
H1920.15260.23390.76170.035*
H1930.28180.27720.86350.036*
H91A0.39940.56910.96140.054*
H91B0.51060.52380.87300.054*
H91C0.36870.41870.98140.054*
H1950.33530.64980.83360.037*
H1960.21080.60980.72810.036*
H22A0.42300.23400.99910.075*
H22B0.50450.14310.96870.075*
H22C0.40070.13271.09710.075*
H22D0.06330.03411.08350.058*
H22E0.14230.12161.07030.058*
H22F0.12590.02441.16810.058*
H270.03850.34950.95400.033*
H280.02830.19660.79040.033*
H290.10720.46770.88280.035*
H2920.11860.23390.70590.037*
H2930.24440.28720.60210.039*
H92D0.50750.55090.62350.066*
H92E0.38820.58950.53670.066*
H92F0.36640.44190.51690.066*
H2950.37170.67210.70400.042*
H2960.24770.62100.81010.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0376 (10)0.0269 (9)0.0520 (10)0.0126 (8)0.0304 (8)0.0116 (7)
C120.0330 (13)0.0243 (13)0.0447 (14)0.0095 (11)0.0249 (11)0.0057 (10)
C1210.0392 (15)0.0342 (15)0.0573 (15)0.0132 (12)0.0317 (13)0.0153 (12)
C1220.0333 (14)0.0381 (16)0.0424 (14)0.0096 (12)0.0120 (12)0.0035 (11)
O130.0333 (9)0.0273 (9)0.0366 (9)0.0089 (8)0.0220 (7)0.0071 (7)
C140.0237 (12)0.0302 (14)0.0302 (12)0.0094 (11)0.0132 (10)0.0066 (10)
O140.0405 (10)0.0286 (10)0.0467 (10)0.0109 (8)0.0272 (8)0.0024 (7)
C150.0243 (12)0.0275 (13)0.0292 (11)0.0090 (10)0.0139 (10)0.0042 (9)
C160.0309 (13)0.0308 (14)0.0306 (12)0.0118 (11)0.0174 (10)0.0091 (10)
O160.0507 (11)0.0340 (10)0.0567 (10)0.0206 (9)0.0386 (9)0.0139 (8)
C170.0256 (12)0.0277 (13)0.0309 (12)0.0084 (11)0.0128 (10)0.0022 (9)
C180.0276 (13)0.0284 (14)0.0328 (12)0.0094 (11)0.0158 (10)0.0031 (10)
C190.0260 (12)0.0274 (14)0.0312 (12)0.0086 (11)0.0138 (10)0.0033 (9)
C1910.0208 (11)0.0254 (13)0.0258 (11)0.0064 (10)0.0095 (9)0.0044 (9)
C1920.0280 (12)0.0201 (13)0.0327 (12)0.0061 (10)0.0137 (10)0.0037 (9)
C1930.0314 (13)0.0256 (13)0.0315 (12)0.0103 (11)0.0158 (10)0.0006 (9)
C1940.0247 (12)0.0270 (13)0.0256 (11)0.0081 (10)0.0107 (9)0.0055 (9)
C910.0336 (13)0.0397 (15)0.0370 (13)0.0147 (12)0.0205 (11)0.0111 (11)
C1950.0297 (13)0.0242 (13)0.0362 (12)0.0098 (11)0.0159 (10)0.0102 (10)
C1960.0302 (13)0.0243 (13)0.0377 (12)0.0124 (11)0.0181 (10)0.0075 (10)
O210.0300 (9)0.0217 (9)0.0387 (9)0.0077 (7)0.0174 (7)0.0055 (6)
C220.0406 (14)0.0232 (13)0.0443 (14)0.0150 (11)0.0281 (12)0.0114 (10)
C2210.0569 (18)0.0269 (15)0.0816 (19)0.0129 (13)0.0510 (16)0.0173 (13)
C2220.0496 (16)0.0335 (15)0.0372 (13)0.0228 (13)0.0206 (12)0.0122 (11)
O230.0412 (10)0.0221 (9)0.0536 (10)0.0136 (8)0.0343 (8)0.0128 (7)
C240.0257 (12)0.0250 (14)0.0355 (12)0.0123 (11)0.0148 (10)0.0076 (10)
O240.0450 (10)0.0239 (10)0.0498 (10)0.0154 (8)0.0305 (8)0.0088 (7)
C250.0240 (12)0.0238 (13)0.0321 (12)0.0112 (10)0.0138 (10)0.0077 (9)
C260.0243 (12)0.0264 (13)0.0334 (12)0.0119 (11)0.0127 (10)0.0092 (10)
O260.0453 (11)0.0326 (10)0.0377 (9)0.0147 (8)0.0231 (8)0.0036 (7)
C270.0299 (12)0.0254 (13)0.0311 (12)0.0152 (11)0.0139 (10)0.0074 (9)
C280.0299 (13)0.0274 (13)0.0325 (12)0.0153 (11)0.0177 (10)0.0081 (9)
C290.0294 (13)0.0288 (14)0.0344 (12)0.0156 (11)0.0174 (10)0.0087 (10)
C2910.0223 (11)0.0274 (13)0.0305 (11)0.0105 (10)0.0118 (9)0.0083 (9)
C2920.0276 (13)0.0255 (13)0.0359 (12)0.0117 (11)0.0131 (10)0.0059 (10)
C2930.0323 (13)0.0368 (15)0.0307 (12)0.0169 (12)0.0154 (10)0.0042 (10)
C2940.0282 (13)0.0428 (16)0.0304 (12)0.0164 (12)0.0151 (10)0.0113 (10)
C920.0386 (15)0.0576 (18)0.0410 (14)0.0187 (14)0.0253 (12)0.0138 (12)
C2950.0332 (14)0.0302 (14)0.0441 (14)0.0118 (12)0.0226 (11)0.0160 (11)
C2960.0314 (13)0.0257 (13)0.0388 (13)0.0139 (11)0.0193 (11)0.0081 (10)
Geometric parameters (Å, º) top
O11—C161.361 (3)O21—C261.369 (3)
O11—C121.431 (3)O21—C221.438 (2)
C12—O131.439 (3)C22—O231.445 (3)
C12—C1211.505 (3)C22—C2211.503 (3)
C12—C1221.512 (3)C22—C2221.504 (3)
C121—H12A0.9800C221—H22A0.9800
C121—H12B0.9800C221—H22B0.9800
C121—H12C0.9800C221—H22C0.9800
C122—H12D0.9800C222—H22D0.9800
C122—H12E0.9800C222—H22E0.9800
C122—H12F0.9800C222—H22F0.9800
O13—C141.366 (3)O23—C241.359 (3)
C14—O141.210 (3)C24—O241.210 (2)
C14—C151.469 (3)C24—C251.469 (3)
C15—C171.358 (3)C25—C271.367 (3)
C15—C161.471 (3)C25—C261.471 (3)
C16—O161.213 (2)C26—O261.200 (2)
C17—C181.424 (3)C27—C281.418 (3)
C17—H170.9500C27—H270.9500
C18—C191.352 (3)C28—C291.359 (3)
C18—H180.9500C28—H280.9500
C19—C1911.447 (3)C29—C2911.447 (3)
C19—H190.9500C29—H290.9500
C191—C1921.401 (3)C291—C2921.398 (3)
C191—C1961.404 (3)C291—C2961.408 (3)
C192—C1931.382 (3)C292—C2931.379 (3)
C192—H1920.9500C292—H2920.9500
C193—C1941.398 (3)C293—C2941.397 (3)
C193—H1930.9500C293—H2930.9500
C194—C1951.383 (3)C294—C2951.384 (3)
C194—C911.502 (3)C294—C921.503 (3)
C91—H91A0.9800C92—H92D0.9800
C91—H91B0.9800C92—H92E0.9800
C91—H91C0.9800C92—H92F0.9800
C195—C1961.386 (3)C295—C2961.387 (3)
C195—H1950.9500C295—H2950.9500
C196—H1960.9500C296—H2960.9500
C16—O11—C12119.10 (17)C26—O21—C22117.62 (17)
O11—C12—O13110.18 (17)O21—C22—O23109.68 (16)
O11—C12—C121105.73 (18)O21—C22—C221106.72 (19)
O13—C12—C121106.45 (17)O23—C22—C221105.83 (18)
O11—C12—C122110.58 (18)O21—C22—C222109.83 (18)
O13—C12—C122109.84 (18)O23—C22—C222110.53 (18)
C121—C12—C122113.9 (2)C221—C22—C222114.1 (2)
C12—C121—H12A109.5C22—C221—H22A109.5
C12—C121—H12B109.5C22—C221—H22B109.5
H12A—C121—H12B109.5H22A—C221—H22B109.5
C12—C121—H12C109.5C22—C221—H22C109.5
H12A—C121—H12C109.5H22A—C221—H22C109.5
H12B—C121—H12C109.5H22B—C221—H22C109.5
C12—C122—H12D109.5C22—C222—H22D109.5
C12—C122—H12E109.5C22—C222—H22E109.5
H12D—C122—H12E109.5H22D—C222—H22E109.5
C12—C122—H12F109.5C22—C222—H22F109.5
H12D—C122—H12F109.5H22D—C222—H22F109.5
H12E—C122—H12F109.5H22E—C222—H22F109.5
C14—O13—C12117.70 (16)C24—O23—C22118.58 (16)
O14—C14—O13118.02 (19)O24—C24—O23117.51 (19)
O14—C14—C15125.5 (2)O24—C24—C25125.3 (2)
O13—C14—C15116.41 (19)O23—C24—C25117.10 (19)
C17—C15—C14117.7 (2)C27—C25—C24117.0 (2)
C17—C15—C16123.0 (2)C27—C25—C26123.64 (19)
C14—C15—C16119.17 (19)C24—C25—C26119.31 (19)
O16—C16—O11117.7 (2)O26—C26—O21118.2 (2)
O16—C16—C15126.4 (2)O26—C26—C25126.8 (2)
O11—C16—C15115.87 (19)O21—C26—C25114.88 (18)
C15—C17—C18128.5 (2)C25—C27—C28129.9 (2)
C15—C17—H17115.7C25—C27—H27115.0
C18—C17—H17115.7C28—C27—H27115.0
C19—C18—C17120.7 (2)C29—C28—C27119.3 (2)
C19—C18—H18119.6C29—C28—H28120.3
C17—C18—H18119.6C27—C28—H28120.3
C18—C19—C191126.1 (2)C28—C29—C291127.6 (2)
C18—C19—H19116.9C28—C29—H29116.2
C191—C19—H19116.9C291—C29—H29116.2
C192—C191—C196117.28 (19)C292—C291—C296117.4 (2)
C192—C191—C19123.6 (2)C292—C291—C29123.7 (2)
C196—C191—C19119.1 (2)C296—C291—C29118.90 (19)
C193—C192—C191121.3 (2)C293—C292—C291121.1 (2)
C193—C192—H192119.4C293—C292—H292119.5
C191—C192—H192119.4C291—C292—H292119.5
C192—C193—C194121.2 (2)C292—C293—C294121.5 (2)
C192—C193—H193119.4C292—C293—H293119.2
C194—C193—H193119.4C294—C293—H293119.2
C195—C194—C193117.8 (2)C295—C294—C293117.7 (2)
C195—C194—C91121.0 (2)C295—C294—C92121.0 (2)
C193—C194—C91121.3 (2)C293—C294—C92121.3 (2)
C194—C91—H91A109.5C294—C92—H92D109.5
C194—C91—H91B109.5C294—C92—H92E109.5
H91A—C91—H91B109.5H92D—C92—H92E109.5
C194—C91—H91C109.5C294—C92—H92F109.5
H91A—C91—H91C109.5H92D—C92—H92F109.5
H91B—C91—H91C109.5H92E—C92—H92F109.5
C194—C195—C196121.7 (2)C294—C295—C296121.5 (2)
C194—C195—H195119.2C294—C295—H295119.3
C196—C195—H195119.2C296—C295—H295119.3
C195—C196—C191120.8 (2)C295—C296—C291120.8 (2)
C195—C196—H196119.6C295—C296—H296119.6
C191—C196—H196119.6C291—C296—H296119.6
C16—O11—C12—O1349.5 (2)C26—O21—C22—O2355.0 (2)
C16—O11—C12—C121164.12 (18)C26—O21—C22—C221169.22 (18)
C16—O11—C12—C12272.1 (2)C26—O21—C22—C22266.6 (2)
O11—C12—O13—C1450.6 (2)O21—C22—O23—C2446.0 (2)
C121—C12—O13—C14164.80 (17)C221—C22—O23—C24160.77 (19)
C122—C12—O13—C1471.4 (2)C222—C22—O23—C2475.2 (2)
C12—O13—C14—O14160.17 (19)C22—O23—C24—O24169.70 (18)
C12—O13—C14—C1522.2 (3)C22—O23—C24—C2513.2 (3)
O14—C14—C15—C178.7 (3)O24—C24—C25—C2714.0 (3)
O13—C14—C15—C17173.80 (18)O23—C24—C25—C27169.16 (18)
O14—C14—C15—C16167.8 (2)O24—C24—C25—C26162.6 (2)
O13—C14—C15—C169.6 (3)O23—C24—C25—C2614.2 (3)
C12—O11—C16—O16162.67 (19)C22—O21—C26—O26154.03 (19)
C12—O11—C16—C1519.5 (3)C22—O21—C26—C2529.3 (2)
C17—C15—C16—O169.9 (3)C27—C25—C26—O266.2 (3)
C14—C15—C16—O16166.5 (2)C24—C25—C26—O26170.2 (2)
C17—C15—C16—O11172.47 (19)C27—C25—C26—O21177.45 (18)
C14—C15—C16—O1111.2 (3)C24—C25—C26—O216.2 (3)
C14—C15—C17—C18178.75 (19)C24—C25—C27—C28178.17 (19)
C16—C15—C17—C182.3 (4)C26—C25—C27—C281.7 (3)
C15—C17—C18—C19179.8 (2)C25—C27—C28—C29179.7 (2)
C17—C18—C19—C191179.61 (19)C27—C28—C29—C291178.55 (19)
C18—C19—C191—C1925.4 (3)C28—C29—C291—C2928.7 (3)
C18—C19—C191—C196174.6 (2)C28—C29—C291—C296171.8 (2)
C196—C191—C192—C1931.2 (3)C296—C291—C292—C2930.7 (3)
C19—C191—C192—C193178.8 (2)C29—C291—C292—C293179.75 (19)
C191—C192—C193—C1940.0 (3)C291—C292—C293—C2940.0 (3)
C192—C193—C194—C1950.5 (3)C292—C293—C294—C2950.4 (3)
C192—C193—C194—C91179.19 (19)C292—C293—C294—C92179.9 (2)
C193—C194—C195—C1960.2 (3)C293—C294—C295—C2960.1 (3)
C91—C194—C195—C196178.43 (19)C92—C294—C295—C296179.8 (2)
C194—C195—C196—C1911.5 (3)C294—C295—C296—C2910.6 (3)
C192—C191—C196—C1952.0 (3)C292—C291—C296—C2951.0 (3)
C19—C191—C196—C195178.00 (19)C29—C291—C296—C295179.46 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C29—H29···O24i0.952.523.412 (3)156
C193—H193···O210.952.603.531 (3)166
C296—H296···O24i0.952.563.425 (3)152
C293—H293···O110.952.543.422 (3)154
Symmetry code: (i) x, y+1, z+2.
(3b) 5-(3-(4-chlorophenyl)-2-propenylidene]-2,2-dimethyl-[1,3] dioxane-4,6-dione top
Crystal data top
C15H13ClO4Z = 2
Mr = 292.70F(000) = 304
Triclinic, P1Dx = 1.423 Mg m3
Hall symbol: -P 1Melting point: 455K K
a = 7.2648 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.4705 (3) ÅCell parameters from 3057 reflections
c = 13.5855 (6) Åθ = 3.0–27.5°
α = 90.1799 (13)°µ = 0.29 mm1
β = 99.8452 (14)°T = 120 K
γ = 109.576 (3)°Block, yellow
V = 683.01 (4) Å30.15 × 0.10 × 0.10 mm
Data collection top
Kappa-CCD
diffractometer
3057 independent reflections
Radiation source: fine-focus sealed X-ray tube2350 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
ϕ scans and ω scans with κ offsetsθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
h = 98
Tmin = 0.958, Tmax = 0.972k = 99
9407 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0932P)2 + 0.2802P]
where P = (Fo2 + 2Fc2)/3
3057 reflections(Δ/σ)max = 0.001
183 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
C15H13ClO4γ = 109.576 (3)°
Mr = 292.70V = 683.01 (4) Å3
Triclinic, P1Z = 2
a = 7.2648 (2) ÅMo Kα radiation
b = 7.4705 (3) ŵ = 0.29 mm1
c = 13.5855 (6) ÅT = 120 K
α = 90.1799 (13)°0.15 × 0.10 × 0.10 mm
β = 99.8452 (14)°
Data collection top
Kappa-CCD
diffractometer
3057 independent reflections
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
2350 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.972Rint = 0.077
9407 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 0.98Δρmax = 0.62 e Å3
3057 reflectionsΔρmin = 0.66 e Å3
183 parameters
Special details top

Experimental. The program DENZO-SMN (Otwinowski & Minor, 1997) uses a scaling algorithm (Fox & Holmes, 1966) which effectively corrects for absorption effects. High redundancy data were used in the scaling program hence the 'multi-scan' code word was used. No transmission coefficients are available from the program (only scale factors for each frame). The scale factors in the experimental table are calculated from the 'size' command in the SHELXL97 input file.

Geometry. Mean-plane data from the final SHELXL97 refinement run:-

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O11.2361 (2)0.8733 (2)0.73887 (10)0.0205 (3)
C21.1593 (3)0.8931 (3)0.63540 (15)0.0193 (5)
C211.3360 (3)0.9621 (3)0.58476 (17)0.0241 (5)
C221.0071 (3)0.7068 (3)0.58938 (17)0.0250 (5)
O31.0719 (2)1.0403 (2)0.63026 (11)0.0203 (4)
C40.9434 (3)1.0391 (3)0.69179 (15)0.0195 (5)
O40.8406 (2)1.1372 (2)0.67387 (11)0.0259 (4)
C50.9478 (3)0.9239 (3)0.78005 (15)0.0184 (4)
C61.1172 (3)0.8565 (3)0.80810 (15)0.0192 (4)
O61.1626 (2)0.7951 (2)0.88697 (11)0.0270 (4)
C70.8004 (3)0.8958 (3)0.83404 (16)0.0195 (4)
C80.7819 (3)0.8043 (3)0.92632 (16)0.0205 (5)
C90.6261 (3)0.7897 (3)0.97112 (16)0.0194 (4)
C910.5980 (3)0.7101 (3)1.06755 (15)0.0184 (4)
C920.7295 (3)0.6295 (3)1.12205 (16)0.0218 (5)
C930.7025 (3)0.5620 (3)1.21510 (17)0.0227 (5)
C940.5441 (3)0.5750 (3)1.25471 (16)0.0207 (5)
Cl970.51673 (8)0.49493 (8)1.37336 (4)0.0283 (2)
C950.4077 (3)0.6503 (3)1.20245 (16)0.0220 (5)
C960.4360 (3)0.7163 (3)1.10875 (16)0.0201 (5)
H21A1.40670.87050.59140.036*0.50
H21B1.42521.08610.61620.036*0.50
H21C1.29160.97490.51370.036*0.50
H21D1.34231.08380.55610.036*0.50
H21E1.32380.86820.53130.036*0.50
H21F1.45740.97950.63380.036*0.50
H22A1.06590.60610.59730.038*0.50
H22B0.96440.71880.51800.038*0.50
H22C0.89210.67460.62300.038*0.50
H22D0.88240.72690.56160.038*0.50
H22E0.98390.61430.64080.038*0.50
H22F1.05620.65840.53590.038*0.50
H70.69680.94240.80740.023*
H80.88030.75350.95610.025*
H90.52650.83500.93710.023*
H920.83850.62111.09470.026*
H930.79200.50731.25140.027*
H950.29820.65631.23010.026*
H960.34340.76681.07180.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0196 (8)0.0316 (8)0.0127 (7)0.0118 (6)0.0035 (6)0.0026 (6)
C20.0223 (11)0.0269 (11)0.0115 (10)0.0123 (9)0.0024 (8)0.0035 (8)
C210.0241 (12)0.0324 (13)0.0192 (11)0.0120 (9)0.0084 (9)0.0053 (9)
C220.0265 (12)0.0284 (12)0.0191 (11)0.0089 (9)0.0022 (9)0.0003 (9)
O30.0223 (8)0.0278 (8)0.0143 (7)0.0115 (6)0.0065 (6)0.0047 (6)
C40.0182 (11)0.0247 (11)0.0149 (10)0.0071 (8)0.0016 (8)0.0003 (8)
O40.0275 (9)0.0386 (10)0.0188 (8)0.0197 (7)0.0058 (6)0.0071 (7)
C50.0190 (11)0.0220 (11)0.0139 (10)0.0073 (8)0.0016 (8)0.0001 (8)
C60.0194 (11)0.0254 (11)0.0128 (10)0.0080 (8)0.0024 (8)0.0010 (8)
O60.0284 (9)0.0424 (10)0.0159 (8)0.0192 (7)0.0043 (6)0.0088 (7)
C70.0197 (11)0.0221 (11)0.0158 (10)0.0065 (8)0.0021 (8)0.0003 (8)
C80.0208 (11)0.0236 (11)0.0174 (11)0.0081 (8)0.0031 (8)0.0018 (9)
C90.0209 (11)0.0216 (11)0.0149 (10)0.0066 (8)0.0023 (8)0.0003 (8)
C910.0195 (11)0.0178 (10)0.0154 (10)0.0036 (8)0.0024 (8)0.0006 (8)
C920.0191 (11)0.0280 (12)0.0186 (11)0.0080 (9)0.0045 (8)0.0013 (9)
C930.0235 (11)0.0239 (11)0.0206 (11)0.0086 (9)0.0026 (9)0.0038 (9)
C940.0248 (11)0.0210 (11)0.0134 (10)0.0042 (8)0.0029 (8)0.0009 (8)
Cl970.0326 (4)0.0357 (4)0.0169 (3)0.0104 (2)0.0074 (2)0.0084 (2)
C950.0222 (11)0.0267 (11)0.0175 (11)0.0073 (9)0.0067 (8)0.0003 (9)
C960.0203 (11)0.0223 (11)0.0187 (11)0.0084 (8)0.0038 (8)0.0014 (8)
Geometric parameters (Å, º) top
O1—C61.361 (2)C5—C71.359 (3)
O1—C21.448 (2)C5—C61.473 (3)
C2—O31.439 (2)C6—O61.205 (2)
C2—C211.500 (3)C7—C81.435 (3)
C2—C221.509 (3)C7—H70.9500
C21—H21A0.9800C8—C91.348 (3)
C21—H21B0.9800C8—H80.9500
C21—H21C0.9800C9—C911.458 (3)
C21—H21D0.9800C9—H90.9500
C21—H21E0.9800C91—C961.401 (3)
C21—H21F0.9800C91—C921.404 (3)
C22—H22A0.9800C92—C931.383 (3)
C22—H22B0.9800C92—H920.9500
C22—H22C0.9800C93—C941.382 (3)
C22—H22D0.9800C93—H930.9500
C22—H22E0.9800C94—C951.392 (3)
C22—H22F0.9800C94—Cl971.741 (2)
O3—C41.353 (2)C95—C961.390 (3)
C4—O41.208 (3)C95—H950.9500
C4—C51.480 (3)C96—H960.9500
C6—O1—C2119.05 (16)C2—C22—H22F109.5
O3—C2—O1109.57 (16)H22A—C22—H22F56.3
O3—C2—C21106.71 (17)H22B—C22—H22F56.3
O1—C2—C21106.16 (17)H22C—C22—H22F141.1
O3—C2—C22110.29 (17)H22D—C22—H22F109.5
O1—C2—C22110.17 (17)H22E—C22—H22F109.5
C21—C2—C22113.78 (18)C4—O3—C2118.97 (16)
C2—C21—H21A109.5O4—C4—O3118.49 (19)
C2—C21—H21B109.5O4—C4—C5124.7 (2)
H21A—C21—H21B109.5O3—C4—C5116.73 (17)
C2—C21—H21C109.5C7—C5—C6123.64 (19)
H21A—C21—H21C109.5C7—C5—C4117.82 (18)
H21B—C21—H21C109.5C6—C5—C4118.42 (18)
C2—C21—H21D109.5O6—C6—O1117.95 (19)
H21A—C21—H21D141.1O6—C6—C5126.09 (19)
H21B—C21—H21D56.3O1—C6—C5115.91 (17)
H21C—C21—H21D56.3C5—C7—C8128.0 (2)
C2—C21—H21E109.5C5—C7—H7116.0
H21A—C21—H21E56.3C8—C7—H7116.0
H21B—C21—H21E141.1C9—C8—C7120.59 (19)
H21C—C21—H21E56.3C9—C8—H8119.7
H21D—C21—H21E109.5C7—C8—H8119.7
C2—C21—H21F109.5C8—C9—C91125.4 (2)
H21A—C21—H21F56.3C8—C9—H9117.3
H21B—C21—H21F56.3C91—C9—H9117.3
H21C—C21—H21F141.1C96—C91—C92118.28 (19)
H21D—C21—H21F109.5C96—C91—C9119.28 (19)
H21E—C21—H21F109.5C92—C91—C9122.4 (2)
C2—C22—H22A109.5C93—C92—C91120.9 (2)
C2—C22—H22B109.5C93—C92—H92119.6
H22A—C22—H22B109.5C91—C92—H92119.6
C2—C22—H22C109.5C94—C93—C92119.3 (2)
H22A—C22—H22C109.5C94—C93—H93120.3
H22B—C22—H22C109.5C92—C93—H93120.3
C2—C22—H22D109.5C93—C94—C95121.8 (2)
H22A—C22—H22D141.1C93—C94—Cl97118.56 (17)
H22B—C22—H22D56.3C95—C94—Cl97119.68 (17)
H22C—C22—H22D56.3C96—C95—C94118.2 (2)
C2—C22—H22E109.5C96—C95—H95120.9
H22A—C22—H22E56.3C94—C95—H95120.9
H22B—C22—H22E141.1C95—C96—C91121.5 (2)
H22C—C22—H22E56.3C95—C96—H96119.3
H22D—C22—H22E109.5C91—C96—H96119.3
C6—O1—C2—O349.7 (2)C4—C5—C6—O112.8 (3)
C6—O1—C2—C21164.55 (17)C4—C5—C7—C8174.20 (19)
C6—O1—C2—C2271.8 (2)C6—C5—C7—C81.9 (4)
O1—C2—O3—C448.4 (2)C5—C7—C8—C9179.3 (2)
C21—C2—O3—C4162.88 (17)C7—C8—C9—C91176.20 (19)
C22—C2—O3—C473.1 (2)C8—C9—C91—C923.5 (3)
C2—O3—C4—O4165.13 (19)C8—C9—C91—C96175.4 (2)
C2—O3—C4—C518.1 (3)C96—C91—C92—C931.5 (3)
O4—C4—C5—C713.6 (3)C9—C91—C92—C93177.4 (2)
O3—C4—C5—C7169.81 (18)C91—C92—C93—C940.2 (3)
O4—C4—C5—C6162.7 (2)C92—C93—C94—C951.5 (3)
O3—C4—C5—C613.9 (3)C92—C93—C94—Cl97178.33 (17)
C2—O1—C6—O6162.40 (19)C93—C94—C95—C961.1 (3)
C2—O1—C6—C520.1 (3)Cl97—C94—C95—C96178.77 (16)
C7—C5—C6—O611.5 (4)C94—C95—C96—C910.7 (3)
C4—C5—C6—O6164.5 (2)C92—C91—C96—C952.0 (3)
C7—C5—C6—O1171.21 (19)C9—C91—C96—C95177.03 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O6i0.952.533.380 (3)149
C95—H95···O4ii0.952.563.396 (3)146
Symmetry codes: (i) x1, y, z; (ii) x+1, y+2, z+2.

Experimental details

(3a)(3b)
Crystal data
Chemical formulaC16H16O4C15H13ClO4
Mr272.29292.70
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)120120
a, b, c (Å)11.2891 (3), 11.4128 (4), 13.4504 (5)7.2648 (2), 7.4705 (3), 13.5855 (6)
α, β, γ (°)91.217 (2), 114.640 (3), 113.7590 (15)90.1799 (13), 99.8452 (14), 109.576 (3)
V3)1403.88 (8)683.01 (4)
Z42
Radiation typeMo KαMo Kα
µ (mm1)0.090.29
Crystal size (mm)0.15 × 0.15 × 0.10.15 × 0.10 × 0.10
Data collection
DiffractometerKappa-CCD
diffractometer
Kappa-CCD
diffractometer
Absorption correctionMulti-scan
DENZO-SMN (Otwinowski & Minor, 1997)
Multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
Tmin, Tmax0.991, 0.9990.958, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
21945, 6331, 3359 9407, 3057, 2350
Rint0.0800.077
(sin θ/λ)max1)0.6490.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.165, 0.96 0.053, 0.153, 0.98
No. of reflections63313057
No. of parameters367183
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.500.62, 0.66

Computer programs: Kappa-CCD server software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), NRCVAX96, ORTEP (Johnson, 1976), PLATON (Spek, 2001), SHELXL97 and WORDPERFECT macro PRPKAPPA (Ferguson, 2000).

Selected torsion angles (º) for (3a) top
C14—C15—C17—C18178.75 (19)C24—C25—C27—C28178.17 (19)
C16—C15—C17—C182.3 (4)C26—C25—C27—C281.7 (3)
C15—C17—C18—C19179.8 (2)C25—C27—C28—C29179.7 (2)
C17—C18—C19—C191179.61 (19)C27—C28—C29—C291178.55 (19)
C18—C19—C191—C1925.4 (3)C28—C29—C291—C2928.7 (3)
C18—C19—C191—C196174.6 (2)C28—C29—C291—C296171.8 (2)
Hydrogen-bond geometry (Å, º) for (3a) top
D—H···AD—HH···AD···AD—H···A
C29—H29···O24i0.952.523.412 (3)156
C193—H193···O210.952.603.531 (3)166
C296—H296···O24i0.952.563.425 (3)152
C293—H293···O110.952.543.422 (3)154
Symmetry code: (i) x, y+1, z+2.
Selected torsion angles (º) for (3b) top
C4—C5—C7—C8174.20 (19)C7—C8—C9—C91176.20 (19)
C6—C5—C7—C81.9 (4)C8—C9—C91—C923.5 (3)
C5—C7—C8—C9179.3 (2)C8—C9—C91—C96175.4 (2)
Hydrogen-bond geometry (Å, º) for (3b) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O6i0.952.533.380 (3)149
C95—H95···O4ii0.952.563.396 (3)146
Symmetry codes: (i) x1, y, z; (ii) x+1, y+2, z+2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds