Buy article online - an online subscription or single-article purchase is required to access this article.
Four strontium(II) salts with organic acids have been studied. Poly[diaquadi-
-ibuprofenato-strontium(II)] or poly[diaquabis[
-2-(4-isobutylphenyl)propionato]strontium(II)], [Sr(C
13H
17O
2)
2(H
2O)
2]
n, crystallizes with eight-coordinated Sr atoms. The coordination polyhedra are interconnected by edge-sharing to form chains. The Sr coordination chains are packed into layers, which are stacked by van der Waals interactions. Poly[
-aqua-diaquadi-
-malonato-distrontium(II)], [Sr
2(C
3H
2O
4)
2(H
2O)
3]
n, crystallizes with nine-coordinated Sr atoms three-dimensionally interconnected into a framework structure. One of the two crystallographically independent water molecules is located on a twofold axial site.
catena-Poly[[diaqua(ascorbato)strontium(II)]-
-ascorbato], [Sr(C
6H
7O
6)
2(H
2O)
2]
n, crystallizes with isolated eight-coordinated Sr polyhedra. One of the ascorbate ligands bridges two Sr atoms, forming zigzag polyhedral ascorbate chains. These chains are tied together by a three-dimensional hydrogen-bonding network. Poly[aqua-
-2-oxidobenzoato-strontium(II)], [Sr(C
7H
4O
3)(H
2O)]
n, crystallizes with eight-coordinated Sr atoms. The polyhedra are interconnected by face- and edge-sharing into layers. These layers are stacked by van der Waals forces between the protruding 2-oxidobenzoate ligands.
Supporting information
CCDC references: 605662; 605663; 605664; 605665
For the preparation of (I), solid strontium carbonate was added to a saturated solution of racemic ibuprofen at 317 K in a molar ratio of 1:2. The product was obtained in high yield and purity after cooling to room temperature and filtration. For the preparation of (II), an equimolar amount of solid strontium carbonate was added to a saturated aqueous solution of malonic acid at 303–317 K. The product precipitated upon cooling to room temperature. Consequtive cycles of evaporation of the solvent below 343 K followed by filtration at room temperature resulted in yields between 90 and 100%. Heating of the product above 343 K resulted in complete dehydration and irreversible transformation to anhydrous strontium malonate. For the preparation of (III), strontium chloride hexahydrate was added to a solution of sodium ascorbate in a molar ratio of 1:2. More strontium chloride hexahydrate, approximately 100 g in total, and sodium ascorbate, approximately 77 g in total, were added to the solution at 317 K until a transparent yellow syrup was obtained. The syrup was suction filtered for 12 h and the product was obtained by drying the syrup in a desiccator. The final product was a white powder with a yellow tarnish, while the selected single crystals appeared colorless. The product was also obtained by pouring an aqueous solution of ascorbic acid and powdered strontium carbonate into a large volume of acetone according to the procedure of Ruskin & Merrill (1947). For the preparation of (IV), powdered strontium carbonate was added to an equimolar amount of a saturated solution of salicylic acid at 313 K. Strontium 2-oxidobenzoate hydrate was obtained in high yield and purity as a pecipitate on cooling to 293 K.
In all refinements all H-atom sites were initially located in difference Fourier maps and refined freely. In the final cycles, H atoms of the CH, CH2 and CH3 groups were placed in calculated positions, with C—H = 0.93 (aromatic CH), 0.98 (aliphatic CH), 0.97 (CH2) and 0.96 Å (CH3), and refined as riding atoms. In water molecules and OH groups the O—H distances were restrained to 0.82 (2) Å. The displacement parameters were set to 1.2 (CH, CH2 and CH3) or 1.5 (OH) times Ueq of the corresponding C or O atoms. In (I), several of the terminal methyl groups show signs of disorder. Several models with split positions for atoms C19, C22 and C23 were tried, with up to ten different positions. Using 353 parameters with mixed anisotrpic and isotropic displacement parameters for the different split sites, but not including the corresponding H-atom positions, resulted in an wR2 value of 0.1536, while the unsplit model including H-atom positions with 310 parameters resulted in an wR2 value of 0.1450. The unsplit model was therefore judged as appropriate on the present level of experimental resolution. The absolute structure determination of (III) is based on 2226 Bijvoet pairs.
For all compounds, data collection: SMART (Bruker, 1999); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus and SADABS (Sheldrick, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and ATOMS (Dowty, 2000); software used to prepare material for publication: SHELXL97.
(I) poly[diaquabis[µ-2-(4-isobutylphenyl)propionato]strontium(II)]
top
Crystal data top
[Sr(C13H17O2)2(H2O)2] | Z = 2 |
Mr = 534.18 | F(000) = 560 |
Triclinic, P1 | Dx = 1.262 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.9116 (7) Å | Cell parameters from 3382 reflections |
b = 10.487 (1) Å | θ = 2.3–27.6° |
c = 18.2493 (17) Å | µ = 1.95 mm−1 |
α = 86.088 (2)° | T = 120 K |
β = 79.784 (2)° | Plate, colorless |
γ = 70.605 (2)° | 0.35 × 0.06 × 0.03 mm |
V = 1405.5 (2) Å3 | |
Data collection top
Bruker SMART APEX diffractometer | 8160 independent reflections |
Radiation source: fine-focus sealed tube | 5038 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.051 |
ω scan, frame data integration | θmax = 31.0°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | h = −11→11 |
Tmin = 0.548, Tmax = 0.944 | k = −15→14 |
19139 measured reflections | l = −26→26 |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.058 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.145 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.98 | w = 1/[σ2(Fo2) + (0.0724P)2] where P = (Fo2 + 2Fc2)/3 |
8160 reflections | (Δ/σ)max = 0.001 |
310 parameters | Δρmax = 0.79 e Å−3 |
4 restraints | Δρmin = −0.44 e Å−3 |
Crystal data top
[Sr(C13H17O2)2(H2O)2] | γ = 70.605 (2)° |
Mr = 534.18 | V = 1405.5 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.9116 (7) Å | Mo Kα radiation |
b = 10.487 (1) Å | µ = 1.95 mm−1 |
c = 18.2493 (17) Å | T = 120 K |
α = 86.088 (2)° | 0.35 × 0.06 × 0.03 mm |
β = 79.784 (2)° | |
Data collection top
Bruker SMART APEX diffractometer | 8160 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | 5038 reflections with I > 2σ(I) |
Tmin = 0.548, Tmax = 0.944 | Rint = 0.051 |
19139 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.058 | 4 restraints |
wR(F2) = 0.145 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.98 | Δρmax = 0.79 e Å−3 |
8160 reflections | Δρmin = −0.44 e Å−3 |
310 parameters | |
Special details top
Experimental. Oxford Cryosystem liquid nitrogen cryostream cooler |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Sr1 | 0.76760 (4) | 0.44979 (4) | 0.012433 (17) | 0.03868 (12) | |
O3 | 0.8918 (3) | 0.3797 (3) | 0.13485 (14) | 0.0453 (6) | |
H31 | 0.976 (4) | 0.403 (4) | 0.139 (2) | 0.068* | |
H32 | 0.819 (5) | 0.400 (4) | 0.1733 (16) | 0.068* | |
O4 | 0.7381 (3) | 0.2360 (3) | −0.03646 (15) | 0.0476 (6) | |
H41 | 0.641 (4) | 0.253 (4) | −0.049 (2) | 0.071* | |
H42 | 0.815 (5) | 0.179 (3) | −0.065 (2) | 0.071* | |
O11 | 0.5234 (3) | 0.5662 (3) | −0.08197 (13) | 0.0463 (6) | |
O12 | 0.8107 (3) | 0.5425 (3) | −0.12268 (13) | 0.0464 (6) | |
C11 | 0.5004 (4) | 0.5821 (4) | −0.24407 (18) | 0.0370 (8) | |
C12 | 0.5251 (4) | 0.4451 (4) | −0.23561 (19) | 0.0405 (8) | |
H12 | 0.5999 | 0.3940 | −0.2029 | 0.049* | |
C13 | 0.4399 (5) | 0.3828 (4) | −0.27514 (18) | 0.0424 (8) | |
H13 | 0.4583 | 0.2907 | −0.2685 | 0.051* | |
C14 | 0.3282 (5) | 0.4564 (4) | −0.32417 (18) | 0.0417 (8) | |
C15 | 0.3020 (5) | 0.5935 (4) | −0.33199 (19) | 0.0427 (8) | |
H15 | 0.2263 | 0.6450 | −0.3643 | 0.051* | |
C16 | 0.3874 (5) | 0.6554 (4) | −0.29224 (18) | 0.0405 (8) | |
H16 | 0.3678 | 0.7477 | −0.2983 | 0.049* | |
C17 | 0.6473 (4) | 0.5823 (4) | −0.13118 (19) | 0.0409 (8) | |
C18 | 0.5944 (6) | 0.6549 (4) | −0.2032 (2) | 0.0534 (10) | |
H18 | 0.5035 | 0.7425 | −0.1884 | 0.064* | |
C19 | 0.7462 (8) | 0.6859 (7) | −0.2536 (3) | 0.110 (2) | |
H19A | 0.7035 | 0.7314 | −0.2975 | 0.132* | |
H19B | 0.8430 | 0.6032 | −0.2673 | 0.132* | |
H19C | 0.7899 | 0.7429 | −0.2283 | 0.132* | |
C20 | 0.2412 (7) | 0.3893 (5) | −0.3721 (2) | 0.0651 (12) | |
H20A | 0.1134 | 0.4414 | −0.3690 | 0.078* | |
H20B | 0.2500 | 0.2994 | −0.3526 | 0.078* | |
C21 | 0.3331 (10) | 0.3791 (6) | −0.4542 (2) | 0.094 (2) | |
H21 | 0.3255 | 0.4706 | −0.4724 | 0.113* | |
C22 | 0.2258 (13) | 0.3248 (8) | −0.4996 (3) | 0.177 (5) | |
H22A | 0.1013 | 0.3823 | −0.4927 | 0.212* | |
H22B | 0.2320 | 0.2348 | −0.4830 | 0.212* | |
H22C | 0.2773 | 0.3236 | −0.5514 | 0.212* | |
C23 | 0.5376 (11) | 0.2925 (6) | −0.4625 (3) | 0.129 (3) | |
H23A | 0.5984 | 0.3328 | −0.4345 | 0.155* | |
H23B | 0.5917 | 0.2887 | −0.5141 | 0.155* | |
H23C | 0.5488 | 0.2027 | −0.4439 | 0.155* | |
O31 | 0.8989 (3) | 0.6557 (3) | 0.02531 (13) | 0.0481 (6) | |
O32 | 0.6074 (3) | 0.6942 (3) | 0.06225 (14) | 0.0490 (6) | |
C31 | 0.8393 (4) | 0.8894 (3) | 0.12206 (17) | 0.0351 (7) | |
C32 | 0.8892 (5) | 1.0051 (4) | 0.1233 (2) | 0.0446 (8) | |
H32A | 0.8533 | 1.0742 | 0.0888 | 0.053* | |
C33 | 0.9909 (5) | 1.0190 (4) | 0.1747 (2) | 0.0473 (9) | |
H33 | 1.0230 | 1.0967 | 0.1742 | 0.057* | |
C34 | 1.0450 (5) | 0.9188 (4) | 0.22697 (19) | 0.0427 (8) | |
C35 | 0.9992 (5) | 0.8025 (3) | 0.22540 (18) | 0.0390 (8) | |
H35 | 1.0367 | 0.7334 | 0.2596 | 0.047* | |
C36 | 0.8985 (4) | 0.7874 (3) | 0.17374 (18) | 0.0367 (7) | |
H36 | 0.8701 | 0.7082 | 0.1736 | 0.044* | |
C37 | 0.7435 (4) | 0.7334 (4) | 0.05112 (18) | 0.0414 (8) | |
C38 | 0.7215 (5) | 0.8792 (4) | 0.0677 (2) | 0.0456 (9) | |
H38 | 0.7601 | 0.9207 | 0.0207 | 0.055* | |
C39 | 0.5246 (6) | 0.9680 (5) | 0.0984 (3) | 0.0775 (14) | |
H39A | 0.4450 | 0.9646 | 0.0650 | 0.093* | |
H39B | 0.5207 | 1.0597 | 0.1026 | 0.093* | |
H39C | 0.4862 | 0.9346 | 0.1465 | 0.093* | |
C40 | 1.1434 (6) | 0.9389 (4) | 0.2874 (2) | 0.0555 (10) | |
H40A | 1.2437 | 0.9697 | 0.2647 | 0.067* | |
H40B | 1.1934 | 0.8530 | 0.3119 | 0.067* | |
C41 | 1.0180 (7) | 1.0416 (4) | 0.3455 (2) | 0.0614 (12) | |
H41A | 0.9715 | 1.1280 | 0.3196 | 0.074* | |
C42 | 1.1266 (9) | 1.0630 (5) | 0.4018 (3) | 0.097 (2) | |
H42A | 1.2278 | 1.0883 | 0.3762 | 0.117* | |
H42B | 1.1703 | 0.9807 | 0.4294 | 0.117* | |
H42C | 1.0501 | 1.1335 | 0.4355 | 0.117* | |
C43 | 0.8562 (7) | 1.0009 (5) | 0.3824 (3) | 0.0766 (14) | |
H43A | 0.7930 | 0.9869 | 0.3449 | 0.092* | |
H43B | 0.7757 | 1.0712 | 0.4152 | 0.092* | |
H43C | 0.8973 | 0.9187 | 0.4103 | 0.092* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Sr1 | 0.01726 (14) | 0.0745 (3) | 0.03160 (17) | −0.02246 (14) | −0.00314 (11) | −0.01354 (14) |
O3 | 0.0255 (12) | 0.0823 (18) | 0.0360 (13) | −0.0290 (13) | −0.0001 (10) | −0.0079 (12) |
O4 | 0.0209 (12) | 0.0727 (18) | 0.0510 (16) | −0.0147 (12) | −0.0039 (11) | −0.0207 (13) |
O11 | 0.0240 (11) | 0.0844 (18) | 0.0376 (13) | −0.0274 (12) | −0.0026 (10) | −0.0062 (12) |
O12 | 0.0225 (11) | 0.0815 (17) | 0.0426 (14) | −0.0266 (12) | −0.0022 (10) | −0.0100 (12) |
C11 | 0.0260 (16) | 0.057 (2) | 0.0310 (17) | −0.0178 (15) | −0.0036 (13) | −0.0036 (15) |
C12 | 0.0287 (17) | 0.055 (2) | 0.0346 (18) | −0.0092 (15) | −0.0039 (14) | −0.0028 (15) |
C13 | 0.049 (2) | 0.045 (2) | 0.0319 (18) | −0.0161 (17) | −0.0018 (16) | −0.0070 (15) |
C14 | 0.0418 (19) | 0.055 (2) | 0.0307 (17) | −0.0202 (17) | −0.0005 (15) | −0.0120 (15) |
C15 | 0.0400 (19) | 0.055 (2) | 0.0328 (18) | −0.0115 (17) | −0.0107 (15) | −0.0060 (15) |
C16 | 0.0417 (19) | 0.049 (2) | 0.0330 (18) | −0.0166 (16) | −0.0060 (15) | −0.0038 (15) |
C17 | 0.0302 (17) | 0.067 (2) | 0.0358 (18) | −0.0283 (17) | −0.0047 (14) | −0.0099 (16) |
C18 | 0.053 (2) | 0.082 (3) | 0.045 (2) | −0.045 (2) | −0.0154 (18) | 0.0029 (19) |
C19 | 0.122 (5) | 0.202 (7) | 0.066 (3) | −0.128 (5) | −0.041 (3) | 0.040 (4) |
C20 | 0.088 (3) | 0.076 (3) | 0.049 (2) | −0.044 (3) | −0.019 (2) | −0.011 (2) |
C21 | 0.192 (7) | 0.086 (4) | 0.041 (3) | −0.085 (4) | −0.035 (3) | 0.003 (2) |
C22 | 0.374 (14) | 0.180 (7) | 0.071 (4) | −0.193 (9) | −0.081 (6) | 0.002 (4) |
C23 | 0.211 (9) | 0.091 (4) | 0.060 (4) | −0.042 (5) | 0.039 (4) | −0.025 (3) |
O31 | 0.0209 (11) | 0.0852 (18) | 0.0431 (14) | −0.0214 (12) | −0.0013 (10) | −0.0241 (12) |
O32 | 0.0204 (11) | 0.0809 (18) | 0.0507 (15) | −0.0218 (11) | −0.0019 (10) | −0.0183 (13) |
C31 | 0.0254 (15) | 0.048 (2) | 0.0304 (17) | −0.0089 (14) | −0.0031 (13) | −0.0063 (14) |
C32 | 0.044 (2) | 0.047 (2) | 0.041 (2) | −0.0104 (17) | −0.0129 (16) | −0.0009 (16) |
C33 | 0.051 (2) | 0.046 (2) | 0.048 (2) | −0.0170 (18) | −0.0087 (18) | −0.0104 (17) |
C34 | 0.0404 (19) | 0.052 (2) | 0.0380 (19) | −0.0139 (16) | −0.0101 (16) | −0.0137 (16) |
C35 | 0.0383 (18) | 0.044 (2) | 0.0331 (18) | −0.0089 (15) | −0.0086 (15) | −0.0057 (14) |
C36 | 0.0330 (17) | 0.0432 (19) | 0.0351 (18) | −0.0123 (15) | −0.0053 (14) | −0.0104 (14) |
C37 | 0.0216 (15) | 0.075 (2) | 0.0291 (17) | −0.0141 (16) | −0.0081 (13) | −0.0092 (16) |
C38 | 0.0303 (17) | 0.069 (3) | 0.039 (2) | −0.0159 (17) | −0.0148 (15) | 0.0052 (17) |
C39 | 0.047 (3) | 0.091 (3) | 0.096 (4) | −0.015 (2) | −0.028 (3) | −0.014 (3) |
C40 | 0.063 (3) | 0.059 (2) | 0.052 (2) | −0.020 (2) | −0.022 (2) | −0.0124 (18) |
C41 | 0.089 (3) | 0.049 (2) | 0.050 (2) | −0.020 (2) | −0.025 (2) | −0.0102 (18) |
C42 | 0.166 (6) | 0.087 (4) | 0.067 (3) | −0.058 (4) | −0.054 (4) | −0.011 (3) |
C43 | 0.096 (4) | 0.078 (3) | 0.049 (3) | −0.024 (3) | 0.002 (3) | −0.017 (2) |
Geometric parameters (Å, º) top
Sr1—O11i | 2.476 (2) | C22—H22A | 0.9600 |
Sr1—O31ii | 2.486 (2) | C22—H22B | 0.9600 |
Sr1—O3 | 2.563 (3) | C22—H22C | 0.9600 |
Sr1—O4 | 2.563 (3) | C23—H23A | 0.9600 |
Sr1—O12 | 2.595 (2) | C23—H23B | 0.9600 |
Sr1—O32 | 2.599 (3) | C23—H23C | 0.9600 |
Sr1—O31 | 2.728 (2) | O31—C37 | 1.257 (4) |
Sr1—O11 | 2.742 (2) | O32—C37 | 1.255 (4) |
O3—H31 | 0.804 (18) | C31—C36 | 1.393 (5) |
O3—H32 | 0.815 (19) | C31—C32 | 1.397 (5) |
O4—H41 | 0.798 (19) | C31—C38 | 1.508 (4) |
O4—H42 | 0.829 (19) | C32—C33 | 1.384 (5) |
O11—C17 | 1.254 (4) | C32—H32A | 0.9300 |
O12—C17 | 1.254 (4) | C33—C34 | 1.380 (5) |
C11—C16 | 1.376 (5) | C33—H33 | 0.9300 |
C11—C12 | 1.386 (5) | C34—C35 | 1.386 (5) |
C11—C18 | 1.531 (5) | C34—C40 | 1.520 (5) |
C12—C13 | 1.390 (5) | C35—C36 | 1.385 (4) |
C12—H12 | 0.9300 | C35—H35 | 0.9300 |
C13—C14 | 1.382 (5) | C36—H36 | 0.9300 |
C13—H13 | 0.9300 | C37—C38 | 1.526 (5) |
C14—C15 | 1.385 (5) | C38—C39 | 1.551 (6) |
C14—C20 | 1.533 (5) | C38—H38 | 0.9800 |
C15—C16 | 1.390 (5) | C39—H39A | 0.9600 |
C15—H15 | 0.9300 | C39—H39B | 0.9600 |
C16—H16 | 0.9300 | C39—H39C | 0.9600 |
C17—C18 | 1.527 (5) | C40—C41 | 1.530 (6) |
C18—C19 | 1.489 (6) | C40—H40A | 0.9700 |
C18—H18 | 0.9800 | C40—H40B | 0.9700 |
C19—H19A | 0.9600 | C41—C43 | 1.514 (6) |
C19—H19B | 0.9600 | C41—C42 | 1.523 (6) |
C19—H19C | 0.9600 | C41—H41A | 0.9800 |
C20—C21 | 1.540 (6) | C42—H42A | 0.9600 |
C20—H20A | 0.9700 | C42—H42B | 0.9600 |
C20—H20B | 0.9700 | C42—H42C | 0.9600 |
C21—C22 | 1.537 (7) | C43—H43A | 0.9600 |
C21—C23 | 1.556 (9) | C43—H43B | 0.9600 |
C21—H21 | 0.9800 | C43—H43C | 0.9600 |
| | | |
H31—O3—H32 | 107 (4) | H23B—C23—H23C | 109.5 |
H41—O4—H42 | 109 (4) | C36—C31—C32 | 117.5 (3) |
C16—C11—C12 | 118.1 (3) | C36—C31—C38 | 122.1 (3) |
C16—C11—C18 | 118.7 (3) | C32—C31—C38 | 120.3 (3) |
C12—C11—C18 | 123.2 (3) | C33—C32—C31 | 121.3 (3) |
C11—C12—C13 | 121.1 (3) | C33—C32—H32A | 119.3 |
C11—C12—H12 | 119.4 | C31—C32—H32A | 119.3 |
C13—C12—H12 | 119.4 | C34—C33—C32 | 120.7 (3) |
C14—C13—C12 | 120.6 (3) | C34—C33—H33 | 119.6 |
C14—C13—H13 | 119.7 | C32—C33—H33 | 119.6 |
C12—C13—H13 | 119.7 | C33—C34—C35 | 118.4 (3) |
C13—C14—C15 | 118.2 (3) | C33—C34—C40 | 120.7 (3) |
C13—C14—C20 | 121.9 (3) | C35—C34—C40 | 120.8 (3) |
C15—C14—C20 | 119.8 (3) | C36—C35—C34 | 121.2 (3) |
C14—C15—C16 | 120.9 (3) | C36—C35—H35 | 119.4 |
C14—C15—H15 | 119.5 | C34—C35—H35 | 119.4 |
C16—C15—H15 | 119.5 | C35—C36—C31 | 120.8 (3) |
C11—C16—C15 | 121.0 (3) | C35—C36—H36 | 119.6 |
C11—C16—H16 | 119.5 | C31—C36—H36 | 119.6 |
C15—C16—H16 | 119.5 | O32—C37—O31 | 121.5 (3) |
O11—C17—O12 | 122.4 (3) | O32—C37—C38 | 119.9 (3) |
O11—C17—C18 | 118.0 (3) | O31—C37—C38 | 118.6 (3) |
O12—C17—C18 | 119.6 (3) | C31—C38—C37 | 112.8 (3) |
C19—C18—C17 | 113.9 (3) | C31—C38—C39 | 106.8 (3) |
C19—C18—C11 | 111.8 (3) | C37—C38—C39 | 114.9 (3) |
C17—C18—C11 | 112.3 (3) | C31—C38—H38 | 107.3 |
C19—C18—H18 | 106.0 | C37—C38—H38 | 107.3 |
C17—C18—H18 | 106.0 | C39—C38—H38 | 107.3 |
C11—C18—H18 | 106.0 | C38—C39—H39A | 109.5 |
C18—C19—H19A | 109.5 | C38—C39—H39B | 109.5 |
C18—C19—H19B | 109.5 | H39A—C39—H39B | 109.5 |
H19A—C19—H19B | 109.5 | C38—C39—H39C | 109.5 |
C18—C19—H19C | 109.5 | H39A—C39—H39C | 109.5 |
H19A—C19—H19C | 109.5 | H39B—C39—H39C | 109.5 |
H19B—C19—H19C | 109.5 | C34—C40—C41 | 112.3 (3) |
C14—C20—C21 | 112.2 (4) | C34—C40—H40A | 109.2 |
C14—C20—H20A | 109.2 | C41—C40—H40A | 109.2 |
C21—C20—H20A | 109.2 | C34—C40—H40B | 109.2 |
C14—C20—H20B | 109.2 | C41—C40—H40B | 109.2 |
C21—C20—H20B | 109.2 | H40A—C40—H40B | 107.9 |
H20A—C20—H20B | 107.9 | C43—C41—C42 | 112.2 (4) |
C22—C21—C20 | 108.8 (5) | C43—C41—C40 | 111.9 (3) |
C22—C21—C23 | 113.1 (6) | C42—C41—C40 | 109.7 (4) |
C20—C21—C23 | 111.2 (4) | C43—C41—H41A | 107.6 |
C22—C21—H21 | 107.8 | C42—C41—H41A | 107.6 |
C20—C21—H21 | 107.8 | C40—C41—H41A | 107.6 |
C23—C21—H21 | 107.8 | C41—C42—H42A | 109.5 |
C21—C22—H22A | 109.5 | C41—C42—H42B | 109.5 |
C21—C22—H22B | 109.5 | H42A—C42—H42B | 109.5 |
H22A—C22—H22B | 109.5 | C41—C42—H42C | 109.5 |
C21—C22—H22C | 109.5 | H42A—C42—H42C | 109.5 |
H22A—C22—H22C | 109.5 | H42B—C42—H42C | 109.5 |
H22B—C22—H22C | 109.5 | C41—C43—H43A | 109.5 |
C21—C23—H23A | 109.5 | C41—C43—H43B | 109.5 |
C21—C23—H23B | 109.5 | H43A—C43—H43B | 109.5 |
H23A—C23—H23B | 109.5 | C41—C43—H43C | 109.5 |
C21—C23—H23C | 109.5 | H43A—C43—H43C | 109.5 |
H23A—C23—H23C | 109.5 | H43B—C43—H43C | 109.5 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+2, −y+1, −z. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H31···O12ii | 0.80 (2) | 1.92 (2) | 2.706 (3) | 165 (4) |
O4—H41···O32i | 0.80 (2) | 1.91 (2) | 2.704 (3) | 171 (5) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+2, −y+1, −z. |
(II) Poly[µ-aqua-diaquadi-µ-malonato-distrontium(II)]
top
Crystal data top
[Sr2(C3H2O4)2(H2O)3] | F(000) = 840 |
Mr = 433.38 | Dx = 2.480 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 5770 reflections |
a = 14.3345 (9) Å | θ = 3.0–30.9° |
b = 7.3458 (5) Å | µ = 9.25 mm−1 |
c = 11.5075 (7) Å | T = 120 K |
β = 106.710 (1)° | Irregular, colorless |
V = 1160.55 (13) Å3 | 0.33 × 0.30 × 0.08 mm |
Z = 4 | |
Data collection top
Bruker SMART APEX diffractometer | 1708 independent reflections |
Radiation source: fine-focus sealed tube | 1630 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
ω scan, frame data integration | θmax = 30.7°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | h = −19→19 |
Tmin = 0.06, Tmax = 0.48 | k = −10→10 |
7363 measured reflections | l = −16→15 |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.016 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.041 | w = 1/[σ2(Fo2) + (0.0238P)2 + 0.6829P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.003 |
1708 reflections | Δρmax = 0.55 e Å−3 |
97 parameters | Δρmin = −0.49 e Å−3 |
3 restraints | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0044 (2) |
Crystal data top
[Sr2(C3H2O4)2(H2O)3] | V = 1160.55 (13) Å3 |
Mr = 433.38 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 14.3345 (9) Å | µ = 9.25 mm−1 |
b = 7.3458 (5) Å | T = 120 K |
c = 11.5075 (7) Å | 0.33 × 0.30 × 0.08 mm |
β = 106.710 (1)° | |
Data collection top
Bruker SMART APEX diffractometer | 1708 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | 1630 reflections with I > 2σ(I) |
Tmin = 0.06, Tmax = 0.48 | Rint = 0.023 |
7363 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.016 | 3 restraints |
wR(F2) = 0.041 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | Δρmax = 0.55 e Å−3 |
1708 reflections | Δρmin = −0.49 e Å−3 |
97 parameters | |
Special details top
Experimental. Oxford Cryosystem liquid nitrogen cryostream cooler |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Sr1 | 0.587276 (8) | 0.183425 (15) | 0.420747 (9) | 0.00682 (6) | |
O5 | 0.5000 | −0.06214 (19) | 0.2500 | 0.0107 (2) | |
H5 | 0.5347 (14) | −0.132 (2) | 0.2248 (18) | 0.016* | |
O6 | 0.55766 (7) | 0.53002 (14) | 0.39529 (9) | 0.01319 (19) | |
H6A | 0.5016 (11) | 0.551 (3) | 0.3629 (17) | 0.020* | |
H6B | 0.5791 (14) | 0.617 (3) | 0.4375 (17) | 0.020* | |
O1 | 0.59628 (7) | 0.26538 (14) | 0.20622 (8) | 0.01000 (18) | |
O2 | 0.59520 (7) | 0.12878 (14) | 0.03327 (8) | 0.01064 (18) | |
O3 | 0.88290 (7) | 0.24146 (14) | 0.35119 (8) | 0.01177 (18) | |
O4 | 0.75451 (7) | 0.12301 (15) | 0.39481 (9) | 0.01383 (19) | |
C1 | 0.63950 (10) | 0.18388 (15) | 0.13999 (12) | 0.0077 (2) | |
C2 | 0.74886 (9) | 0.15711 (18) | 0.18314 (12) | 0.0099 (2) | |
H2A | 0.7785 | 0.2449 | 0.1417 | 0.012* | |
H2B | 0.7634 | 0.0369 | 0.1581 | 0.012* | |
C3 | 0.79744 (10) | 0.17521 (16) | 0.31886 (12) | 0.0089 (2) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Sr1 | 0.00625 (8) | 0.00896 (8) | 0.00554 (8) | 0.00000 (3) | 0.00218 (5) | 0.00040 (3) |
O5 | 0.0113 (6) | 0.0106 (6) | 0.0112 (6) | 0.000 | 0.0051 (5) | 0.000 |
O6 | 0.0093 (4) | 0.0128 (5) | 0.0160 (4) | −0.0008 (4) | 0.0013 (4) | −0.0037 (4) |
O1 | 0.0095 (4) | 0.0130 (4) | 0.0084 (4) | 0.0018 (3) | 0.0039 (3) | 0.0006 (3) |
O2 | 0.0112 (4) | 0.0117 (4) | 0.0076 (4) | 0.0001 (3) | 0.0005 (3) | −0.0013 (3) |
O3 | 0.0088 (4) | 0.0161 (5) | 0.0098 (4) | −0.0022 (4) | 0.0017 (3) | −0.0016 (4) |
O4 | 0.0089 (4) | 0.0225 (5) | 0.0107 (4) | 0.0022 (4) | 0.0038 (3) | 0.0042 (4) |
C1 | 0.0071 (5) | 0.0077 (6) | 0.0080 (5) | −0.0011 (4) | 0.0018 (5) | 0.0016 (4) |
C2 | 0.0068 (5) | 0.0150 (6) | 0.0084 (5) | 0.0005 (4) | 0.0027 (4) | −0.0014 (4) |
C3 | 0.0082 (6) | 0.0094 (6) | 0.0092 (6) | 0.0021 (4) | 0.0023 (5) | −0.0007 (4) |
Geometric parameters (Å, º) top
Sr1—O4 | 2.5386 (10) | O6—H6A | 0.797 (15) |
Sr1—O1 | 2.5801 (9) | O6—H6B | 0.805 (15) |
Sr1—O6 | 2.5839 (10) | O1—C1 | 1.2627 (15) |
Sr1—O3i | 2.5942 (9) | O2—C1 | 1.2754 (16) |
Sr1—O2ii | 2.6201 (10) | O3—C3 | 1.2704 (16) |
Sr1—O1iii | 2.6850 (10) | O4—C3 | 1.2644 (16) |
Sr1—O5 | 2.6956 (9) | C1—C2 | 1.5149 (18) |
Sr1—O2iii | 2.8423 (10) | C2—C3 | 1.5219 (18) |
Sr1—O4i | 2.9836 (11) | C2—H2A | 0.9700 |
O5—H5 | 0.824 (14) | C2—H2B | 0.9700 |
| | | |
H6A—O6—H6B | 107 (2) | C1—C2—H2B | 108.1 |
O1—C1—O2 | 122.46 (12) | C3—C2—H2B | 108.1 |
O1—C1—C2 | 120.31 (11) | H2A—C2—H2B | 107.3 |
O2—C1—C2 | 117.14 (11) | O4—C3—O3 | 122.25 (12) |
C1—C2—C3 | 116.75 (10) | O4—C3—C2 | 120.85 (12) |
C1—C2—H2A | 108.1 | O3—C3—C2 | 116.88 (11) |
C3—C2—H2A | 108.1 | | |
Symmetry codes: (i) −x+3/2, −y+1/2, −z+1; (ii) x, −y, z+1/2; (iii) −x+1, y, −z+1/2. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5···O3iv | 0.82 (1) | 1.90 (1) | 2.7165 (12) | 170 (2) |
O6—H6A···O3v | 0.80 (2) | 2.18 (2) | 2.8662 (14) | 145 (2) |
O6—H6B···O2vi | 0.81 (2) | 2.15 (2) | 2.9328 (14) | 164 (2) |
Symmetry codes: (iv) −x+3/2, y−1/2, −z+1/2; (v) x−1/2, y+1/2, z; (vi) x, −y+1, z+1/2. |
(III)
catena-Poly[[diaqua(ascorbato)strontium(II)]-µ-ascorbato]
top
Crystal data top
[Sr(C6H7O6)2(H2O)2] | F(000) = 480 |
Mr = 473.88 | Dx = 1.906 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 6673 reflections |
a = 6.4358 (5) Å | θ = 2.5–30.7° |
b = 16.1040 (13) Å | µ = 3.34 mm−1 |
c = 8.3646 (7) Å | T = 120 K |
β = 107.696 (1)° | Irregular, colorless |
V = 825.90 (12) Å3 | 0.28 × 0.05 × 0.04 mm |
Z = 2 | |
Data collection top
Bruker SMART APEX diffractometer | 4728 independent reflections |
Radiation source: fine-focus sealed tube | 4507 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
ω scan, frame data integration | θmax = 30.9°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | h = −9→9 |
Tmin = 0.455, Tmax = 0.878 | k = −22→23 |
10978 measured reflections | l = −12→11 |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.057 | w = 1/[σ2(Fo2) + (0.0321P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
4728 reflections | Δρmax = 0.73 e Å−3 |
274 parameters | Δρmin = −0.28 e Å−3 |
11 restraints | Absolute structure: Flack (1983), 2035 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.017 (4) |
Crystal data top
[Sr(C6H7O6)2(H2O)2] | V = 825.90 (12) Å3 |
Mr = 473.88 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 6.4358 (5) Å | µ = 3.34 mm−1 |
b = 16.1040 (13) Å | T = 120 K |
c = 8.3646 (7) Å | 0.28 × 0.05 × 0.04 mm |
β = 107.696 (1)° | |
Data collection top
Bruker SMART APEX diffractometer | 4728 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | 4507 reflections with I > 2σ(I) |
Tmin = 0.455, Tmax = 0.878 | Rint = 0.023 |
10978 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.025 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.057 | Δρmax = 0.73 e Å−3 |
S = 1.04 | Δρmin = −0.28 e Å−3 |
4728 reflections | Absolute structure: Flack (1983), 2035 Friedel pairs |
274 parameters | Absolute structure parameter: −0.017 (4) |
11 restraints | |
Special details top
Experimental. Oxford Cryosystem liquid nitrogen cryostream cooler |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Sr1 | 0.02286 (3) | 0.889795 (13) | 0.77741 (2) | 0.00880 (5) | |
O1 | −0.3373 (3) | 0.87790 (10) | 0.5303 (2) | 0.0173 (3) | |
H1A | −0.367 (5) | 0.8328 (14) | 0.481 (4) | 0.026* | |
H1B | −0.353 (5) | 0.9149 (15) | 0.464 (3) | 0.026* | |
O2 | 0.4158 (3) | 0.84918 (11) | 0.9468 (2) | 0.0178 (3) | |
H2A | 0.456 (5) | 0.8027 (13) | 0.983 (4) | 0.027* | |
H2B | 0.530 (3) | 0.8693 (18) | 0.946 (4) | 0.027* | |
O11 | −0.1618 (3) | 0.78079 (10) | 0.9079 (2) | 0.0133 (3) | |
O12 | −0.4119 (3) | 0.68869 (10) | 1.08944 (19) | 0.0119 (3) | |
H12 | −0.411 (5) | 0.6975 (18) | 1.186 (2) | 0.018* | |
O13 | −0.0986 (3) | 0.54439 (9) | 1.2563 (2) | 0.0117 (3) | |
O14 | 0.0906 (2) | 0.67923 (9) | 0.98560 (18) | 0.0109 (3) | |
O15 | 0.2856 (3) | 0.47033 (9) | 1.13780 (19) | 0.0114 (3) | |
H15 | 0.381 (4) | 0.4895 (18) | 1.212 (3) | 0.017* | |
O16 | −0.1178 (3) | 0.45095 (11) | 0.9253 (2) | 0.0146 (3) | |
H16 | −0.242 (3) | 0.4591 (19) | 0.871 (3) | 0.022* | |
C14 | −0.1049 (3) | 0.71517 (13) | 0.9845 (3) | 0.0090 (4) | |
C15 | −0.2095 (3) | 0.66672 (13) | 1.0807 (2) | 0.0094 (4) | |
C16 | −0.0767 (3) | 0.60100 (13) | 1.1513 (2) | 0.0094 (4) | |
C17 | 0.1305 (3) | 0.60872 (12) | 1.0993 (3) | 0.0095 (4) | |
H17 | 0.2499 | 0.6238 | 1.1995 | 0.011* | |
C18 | 0.2082 (4) | 0.53544 (13) | 1.0153 (3) | 0.0102 (4) | |
H18 | 0.3302 | 0.5542 | 0.9773 | 0.012* | |
C19 | 0.0354 (4) | 0.49712 (14) | 0.8664 (3) | 0.0134 (4) | |
H19A | −0.0401 | 0.5406 | 0.7905 | 0.016* | |
H19B | 0.1045 | 0.4606 | 0.8054 | 0.016* | |
O21 | 0.4790 (2) | 0.49852 (11) | 0.70847 (19) | 0.0145 (3) | |
O22 | 0.6075 (3) | 0.53606 (10) | 0.4076 (2) | 0.0123 (3) | |
H22 | 0.704 (4) | 0.5523 (18) | 0.377 (4) | 0.018* | |
O23 | 0.5624 (3) | 0.72781 (10) | 0.3809 (2) | 0.0124 (3) | |
O24 | 0.4032 (3) | 0.63437 (9) | 0.71404 (18) | 0.0128 (3) | |
O25 | 0.0576 (3) | 0.74240 (10) | 0.6550 (2) | 0.0130 (3) | |
H25 | 0.093 (5) | 0.7074 (15) | 0.723 (3) | 0.020* | |
O26 | 0.1785 (3) | 0.87959 (11) | 0.52356 (19) | 0.0144 (3) | |
H26 | 0.296 (3) | 0.891 (2) | 0.521 (3) | 0.022* | |
C24 | 0.4774 (4) | 0.56818 (15) | 0.6452 (3) | 0.0106 (4) | |
C25 | 0.5420 (4) | 0.59363 (14) | 0.5032 (3) | 0.0094 (4) | |
C26 | 0.5169 (4) | 0.67820 (14) | 0.4846 (3) | 0.0097 (4) | |
C27 | 0.4051 (4) | 0.70724 (13) | 0.6114 (3) | 0.0098 (4) | |
H27 | 0.4840 | 0.7535 | 0.6794 | 0.012* | |
C28 | 0.1622 (4) | 0.72909 (13) | 0.5272 (3) | 0.0110 (4) | |
H28 | 0.0912 | 0.6822 | 0.4570 | 0.013* | |
C29 | 0.1212 (4) | 0.80711 (14) | 0.4207 (3) | 0.0135 (4) | |
H29A | 0.2067 | 0.8052 | 0.3432 | 0.016* | |
H29B | −0.0316 | 0.8098 | 0.3555 | 0.016* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Sr1 | 0.01028 (8) | 0.00692 (7) | 0.01035 (7) | −0.00003 (9) | 0.00486 (5) | −0.00059 (9) |
O1 | 0.0248 (8) | 0.0091 (9) | 0.0153 (7) | −0.0008 (7) | 0.0022 (6) | −0.0014 (6) |
O2 | 0.0113 (8) | 0.0183 (8) | 0.0243 (9) | 0.0027 (7) | 0.0060 (7) | 0.0035 (7) |
O11 | 0.0161 (8) | 0.0099 (7) | 0.0156 (7) | 0.0030 (6) | 0.0075 (6) | 0.0035 (6) |
O12 | 0.0107 (7) | 0.0156 (7) | 0.0109 (7) | 0.0025 (6) | 0.0056 (6) | 0.0002 (6) |
O13 | 0.0166 (8) | 0.0079 (7) | 0.0142 (7) | 0.0007 (6) | 0.0098 (6) | 0.0021 (6) |
O14 | 0.0118 (7) | 0.0089 (7) | 0.0142 (7) | 0.0011 (6) | 0.0072 (6) | 0.0042 (6) |
O15 | 0.0118 (7) | 0.0090 (7) | 0.0119 (7) | 0.0002 (6) | 0.0017 (6) | 0.0011 (6) |
O16 | 0.0108 (7) | 0.0184 (8) | 0.0134 (7) | −0.0035 (6) | 0.0016 (6) | 0.0033 (6) |
C14 | 0.0098 (9) | 0.0083 (9) | 0.0096 (9) | −0.0018 (8) | 0.0040 (7) | −0.0013 (7) |
C15 | 0.0096 (9) | 0.0105 (9) | 0.0096 (9) | −0.0003 (7) | 0.0051 (7) | −0.0001 (7) |
C16 | 0.0122 (9) | 0.0078 (9) | 0.0086 (9) | −0.0013 (8) | 0.0039 (7) | −0.0014 (7) |
C17 | 0.0110 (9) | 0.0060 (9) | 0.0117 (9) | 0.0003 (7) | 0.0036 (7) | 0.0027 (7) |
C18 | 0.0124 (10) | 0.0093 (9) | 0.0100 (9) | 0.0018 (8) | 0.0051 (8) | 0.0003 (7) |
C19 | 0.0153 (10) | 0.0156 (10) | 0.0109 (10) | −0.0027 (9) | 0.0063 (8) | 0.0004 (8) |
O21 | 0.0170 (8) | 0.0133 (8) | 0.0139 (8) | 0.0010 (6) | 0.0056 (6) | 0.0030 (6) |
O22 | 0.0158 (8) | 0.0088 (7) | 0.0167 (8) | −0.0003 (6) | 0.0114 (6) | −0.0028 (6) |
O23 | 0.0166 (9) | 0.0110 (8) | 0.0118 (7) | −0.0020 (6) | 0.0076 (6) | −0.0008 (6) |
O24 | 0.0190 (8) | 0.0107 (7) | 0.0104 (7) | 0.0018 (6) | 0.0072 (6) | 0.0014 (5) |
O25 | 0.0190 (8) | 0.0099 (7) | 0.0145 (8) | 0.0008 (6) | 0.0116 (7) | 0.0007 (6) |
O26 | 0.0189 (7) | 0.0089 (8) | 0.0187 (7) | −0.0028 (7) | 0.0107 (6) | −0.0022 (6) |
C24 | 0.0093 (10) | 0.0116 (10) | 0.0101 (10) | −0.0010 (8) | 0.0018 (8) | −0.0011 (8) |
C25 | 0.0084 (10) | 0.0100 (10) | 0.0109 (9) | 0.0009 (8) | 0.0047 (8) | 0.0018 (8) |
C26 | 0.0074 (10) | 0.0124 (10) | 0.0100 (9) | −0.0004 (8) | 0.0035 (8) | −0.0039 (7) |
C27 | 0.0137 (10) | 0.0070 (9) | 0.0101 (9) | −0.0007 (8) | 0.0057 (8) | 0.0002 (8) |
C28 | 0.0136 (10) | 0.0112 (9) | 0.0099 (9) | −0.0008 (8) | 0.0060 (8) | −0.0016 (7) |
C29 | 0.0159 (10) | 0.0143 (10) | 0.0111 (9) | 0.0033 (8) | 0.0054 (8) | 0.0001 (8) |
Geometric parameters (Å, º) top
Sr1—O11 | 2.5446 (16) | C17—C18 | 1.533 (3) |
Sr1—O13i | 2.5688 (15) | C17—H17 | 0.9800 |
Sr1—O16i | 2.5699 (16) | C18—C19 | 1.525 (3) |
Sr1—O2 | 2.5790 (17) | C18—H18 | 0.9800 |
Sr1—O1 | 2.6016 (16) | C19—H19A | 0.9700 |
Sr1—O26 | 2.6138 (15) | C19—H19B | 0.9700 |
Sr1—O25 | 2.6215 (16) | O21—C24 | 1.239 (3) |
Sr1—O15i | 2.6423 (16) | O22—C25 | 1.372 (3) |
O1—H1A | 0.829 (18) | O22—H22 | 0.782 (17) |
O1—H1B | 0.797 (17) | O23—C26 | 1.277 (3) |
O2—H2A | 0.820 (17) | O24—C24 | 1.365 (3) |
O2—H2B | 0.804 (17) | O24—C27 | 1.456 (3) |
O11—C14 | 1.232 (3) | O25—C28 | 1.442 (3) |
O12—C15 | 1.373 (3) | O25—H25 | 0.783 (17) |
O12—H12 | 0.821 (17) | O26—C29 | 1.430 (3) |
O13—C16 | 1.302 (2) | O26—H26 | 0.785 (17) |
O14—C14 | 1.383 (3) | C24—C25 | 1.432 (3) |
O14—C17 | 1.453 (2) | C25—C26 | 1.375 (3) |
O15—C18 | 1.445 (2) | C26—C27 | 1.525 (3) |
O15—H15 | 0.791 (17) | C27—C28 | 1.547 (3) |
O16—C19 | 1.437 (3) | C27—H27 | 0.9800 |
O16—H16 | 0.802 (18) | C28—C29 | 1.516 (3) |
C14—C15 | 1.427 (3) | C28—H28 | 0.9800 |
C15—C16 | 1.376 (3) | C29—H29A | 0.9700 |
C16—C17 | 1.528 (3) | C29—H29B | 0.9700 |
| | | |
H1A—O1—H1B | 110 (3) | H19A—C19—H19B | 108.2 |
H2A—O2—H2B | 101 (3) | C25—O22—H22 | 112 (2) |
C15—O12—H12 | 112 (2) | C24—O24—C27 | 108.30 (16) |
C14—O14—C17 | 108.08 (15) | C28—O25—H25 | 109 (2) |
C18—O15—H15 | 107 (2) | C29—O26—H26 | 105 (3) |
C19—O16—H16 | 113 (2) | O21—C24—O24 | 119.0 (2) |
O11—C14—O14 | 119.23 (18) | O21—C24—C25 | 130.3 (2) |
O11—C14—C15 | 130.2 (2) | O24—C24—C25 | 110.7 (2) |
O14—C14—C15 | 110.58 (17) | O22—C25—C26 | 130.5 (2) |
O12—C15—C16 | 130.59 (19) | O22—C25—C24 | 120.5 (2) |
O12—C15—C14 | 120.43 (18) | C26—C25—C24 | 108.9 (2) |
C16—C15—C14 | 108.97 (19) | O23—C26—C25 | 130.8 (2) |
O13—C16—C15 | 130.36 (19) | O23—C26—C27 | 122.3 (2) |
O13—C16—C17 | 122.10 (18) | C25—C26—C27 | 106.82 (19) |
C15—C16—C17 | 107.27 (17) | O24—C27—C26 | 104.65 (17) |
O14—C17—C16 | 104.74 (16) | O24—C27—C28 | 105.29 (17) |
O14—C17—C18 | 108.56 (15) | C26—C27—C28 | 112.24 (18) |
C16—C17—C18 | 120.17 (17) | O24—C27—H27 | 111.4 |
O14—C17—H17 | 107.6 | C26—C27—H27 | 111.4 |
C16—C17—H17 | 107.6 | C28—C27—H27 | 111.4 |
C18—C17—H17 | 107.6 | O25—C28—C29 | 105.96 (17) |
O15—C18—C19 | 107.10 (17) | O25—C28—C27 | 109.34 (17) |
O15—C18—C17 | 108.88 (16) | C29—C28—C27 | 115.30 (18) |
C19—C18—C17 | 115.30 (18) | O25—C28—H28 | 108.7 |
O15—C18—H18 | 108.5 | C29—C28—H28 | 108.7 |
C19—C18—H18 | 108.5 | C27—C28—H28 | 108.7 |
C17—C18—H18 | 108.5 | O26—C29—C28 | 110.87 (17) |
O16—C19—C18 | 109.59 (17) | O26—C29—H29A | 109.5 |
O16—C19—H19A | 109.8 | C28—C29—H29A | 109.5 |
C18—C19—H19A | 109.8 | O26—C29—H29B | 109.5 |
O16—C19—H19B | 109.8 | C28—C29—H29B | 109.5 |
C18—C19—H19B | 109.8 | H29A—C29—H29B | 108.1 |
Symmetry code: (i) −x, y+1/2, −z+2. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O23ii | 0.83 (2) | 1.88 (2) | 2.708 (2) | 177 (3) |
O1—H1B···O21iii | 0.80 (2) | 1.96 (2) | 2.736 (2) | 163 (3) |
O2—H2A···O12iv | 0.82 (2) | 2.10 (2) | 2.920 (2) | 175 (3) |
O2—H2B···O15v | 0.80 (2) | 2.25 (2) | 2.971 (2) | 150 (3) |
O12—H12···O23vi | 0.82 (2) | 1.76 (2) | 2.571 (2) | 172 (3) |
O15—H15···O22vii | 0.79 (2) | 1.98 (2) | 2.768 (2) | 177 (3) |
O16—H16···O21ii | 0.80 (2) | 2.00 (2) | 2.783 (2) | 167 (3) |
O22—H22···O13viii | 0.78 (2) | 1.86 (2) | 2.579 (2) | 154 (3) |
O25—H25···O14 | 0.78 (2) | 2.25 (2) | 2.893 (2) | 140 (3) |
O26—H26···O1iv | 0.79 (2) | 2.35 (2) | 3.100 (2) | 161 (4) |
Symmetry codes: (ii) x−1, y, z; (iii) −x, y+1/2, −z+1; (iv) x+1, y, z; (v) −x+1, y+1/2, −z+2; (vi) x−1, y, z+1; (vii) x, y, z+1; (viii) x+1, y, z−1. |
(IV) Poly[aqua-µ-2-oxidobenzoato-strontium(II)]
top
Crystal data top
[Sr(C7H4O3)(H2O)] | F(000) = 472 |
Mr = 241.74 | Dx = 2.101 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 4077 reflections |
a = 5.0993 (4) Å | θ = 3.2–30.4° |
b = 22.808 (2) Å | µ = 7.02 mm−1 |
c = 6.9811 (6) Å | T = 120 K |
β = 109.755 (2)° | Irregular, colorless |
V = 764.15 (11) Å3 | 0.14 × 0.10 × 0.02 mm |
Z = 4 | |
Data collection top
Bruker SMART APEX diffractometer | 2251 independent reflections |
Radiation source: fine-focus sealed tube | 1917 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
ω scan, frame data integration | θmax = 30.9°, θmin = 3.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | h = −7→7 |
Tmin = 0.440, Tmax = 0.872 | k = −32→32 |
10002 measured reflections | l = −9→10 |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.092 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0573P)2 + 0.1094P] where P = (Fo2 + 2Fc2)/3 |
2251 reflections | (Δ/σ)max < 0.001 |
115 parameters | Δρmax = 1.87 e Å−3 |
2 restraints | Δρmin = −1.00 e Å−3 |
Crystal data top
[Sr(C7H4O3)(H2O)] | V = 764.15 (11) Å3 |
Mr = 241.74 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 5.0993 (4) Å | µ = 7.02 mm−1 |
b = 22.808 (2) Å | T = 120 K |
c = 6.9811 (6) Å | 0.14 × 0.10 × 0.02 mm |
β = 109.755 (2)° | |
Data collection top
Bruker SMART APEX diffractometer | 2251 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | 1917 reflections with I > 2σ(I) |
Tmin = 0.440, Tmax = 0.872 | Rint = 0.040 |
10002 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.038 | 2 restraints |
wR(F2) = 0.092 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | Δρmax = 1.87 e Å−3 |
2251 reflections | Δρmin = −1.00 e Å−3 |
115 parameters | |
Special details top
Experimental. Oxford Cryosystem liquid nitrogen cryostream cooler |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Sr1 | 0.21082 (5) | 0.023582 (11) | 0.79827 (4) | 0.00859 (10) | |
O1 | 0.1711 (4) | 0.04870 (9) | 0.4455 (3) | 0.0124 (4) | |
O2 | 0.2722 (4) | 0.01515 (9) | 0.1812 (3) | 0.0116 (4) | |
O3 | 0.6267 (4) | 0.07957 (8) | 0.0468 (3) | 0.0110 (4) | |
C1 | 0.4460 (6) | 0.11029 (12) | 0.3122 (4) | 0.0101 (5) | |
C2 | 0.6007 (6) | 0.11929 (12) | 0.1780 (4) | 0.0103 (5) | |
C3 | 0.7369 (6) | 0.17410 (13) | 0.1914 (5) | 0.0156 (6) | |
H3 | 0.8377 | 0.1814 | 0.1050 | 0.019* | |
C4 | 0.7254 (7) | 0.21696 (14) | 0.3274 (5) | 0.0192 (7) | |
H4 | 0.8188 | 0.2522 | 0.3320 | 0.023* | |
C5 | 0.5744 (7) | 0.20779 (13) | 0.4587 (5) | 0.0162 (6) | |
H5 | 0.5679 | 0.2365 | 0.5517 | 0.019* | |
C6 | 0.4350 (6) | 0.15527 (13) | 0.4476 (5) | 0.0134 (6) | |
H6 | 0.3304 | 0.1494 | 0.5323 | 0.016* | |
C7 | 0.2914 (6) | 0.05545 (13) | 0.3132 (4) | 0.0107 (5) | |
O4 | −0.0506 (5) | 0.11408 (9) | 0.8271 (4) | 0.0169 (4) | |
H4A | −0.148 (7) | 0.1349 (16) | 0.734 (5) | 0.025* | |
H4B | −0.164 (7) | 0.1041 (17) | 0.881 (6) | 0.025* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Sr1 | 0.00914 (15) | 0.01337 (15) | 0.00278 (14) | −0.00060 (9) | 0.00138 (10) | 0.00005 (8) |
O1 | 0.0150 (10) | 0.0183 (10) | 0.0049 (9) | −0.0021 (8) | 0.0048 (8) | 0.0000 (8) |
O2 | 0.0127 (10) | 0.0143 (10) | 0.0070 (10) | −0.0019 (7) | 0.0024 (8) | −0.0025 (7) |
O3 | 0.0114 (10) | 0.0141 (9) | 0.0080 (10) | −0.0013 (7) | 0.0040 (8) | −0.0015 (7) |
C1 | 0.0100 (12) | 0.0135 (12) | 0.0061 (12) | −0.0003 (10) | 0.0017 (10) | −0.0003 (10) |
C2 | 0.0106 (12) | 0.0131 (12) | 0.0063 (12) | 0.0009 (10) | 0.0017 (10) | 0.0007 (10) |
C3 | 0.0159 (14) | 0.0154 (14) | 0.0189 (16) | −0.0031 (11) | 0.0102 (13) | −0.0013 (11) |
C4 | 0.0229 (16) | 0.0149 (14) | 0.0189 (16) | −0.0032 (11) | 0.0059 (14) | −0.0023 (12) |
C5 | 0.0177 (15) | 0.0154 (14) | 0.0142 (15) | 0.0030 (11) | 0.0039 (12) | −0.0029 (11) |
C6 | 0.0140 (13) | 0.0177 (14) | 0.0093 (13) | 0.0011 (10) | 0.0049 (11) | −0.0022 (10) |
C7 | 0.0091 (12) | 0.0162 (13) | 0.0055 (13) | 0.0015 (10) | 0.0007 (10) | 0.0033 (9) |
O4 | 0.0174 (11) | 0.0196 (11) | 0.0153 (11) | 0.0018 (9) | 0.0077 (9) | 0.0041 (9) |
Geometric parameters (Å, º) top
Sr1—O1 | 2.469 (2) | C1—C2 | 1.429 (4) |
Sr1—O4 | 2.502 (2) | C1—C7 | 1.480 (4) |
Sr1—O3i | 2.579 (2) | C2—C3 | 1.418 (4) |
Sr1—O2i | 2.591 (2) | C3—C4 | 1.378 (4) |
Sr1—O3ii | 2.605 (2) | C3—H3 | 0.9300 |
Sr1—O2iii | 2.666 (2) | C4—C5 | 1.398 (4) |
Sr1—O1iii | 2.677 (2) | C4—H4 | 0.9300 |
Sr1—O2ii | 2.738 (2) | C5—C6 | 1.382 (4) |
O1—C7 | 1.279 (3) | C5—H5 | 0.9300 |
O2—C7 | 1.282 (3) | C6—H6 | 0.9300 |
O3—C2 | 1.326 (3) | O4—H4A | 0.821 (19) |
C1—C6 | 1.409 (4) | O4—H4B | 0.823 (18) |
| | | |
C6—C1—C2 | 119.4 (3) | C5—C4—H4 | 119.8 |
C6—C1—C7 | 118.0 (2) | C6—C5—C4 | 118.7 (3) |
C2—C1—C7 | 122.5 (2) | C6—C5—H5 | 120.7 |
O3—C2—C3 | 119.1 (2) | C4—C5—H5 | 120.7 |
O3—C2—C1 | 124.1 (2) | C5—C6—C1 | 122.2 (3) |
C3—C2—C1 | 116.7 (3) | C5—C6—H6 | 118.9 |
C4—C3—C2 | 122.5 (3) | C1—C6—H6 | 118.9 |
C4—C3—H3 | 118.8 | O1—C7—O2 | 119.6 (3) |
C2—C3—H3 | 118.8 | O1—C7—C1 | 119.4 (3) |
C3—C4—C5 | 120.5 (3) | O2—C7—C1 | 120.9 (2) |
C3—C4—H4 | 119.8 | H4A—O4—H4B | 101 (4) |
Symmetry codes: (i) x, y, z+1; (ii) −x+1, −y, −z+1; (iii) −x, −y, −z+1. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4B···O3iv | 0.82 (2) | 1.90 (2) | 2.718 (3) | 170 (4) |
Symmetry code: (iv) x−1, y, z+1. |
Experimental details
| (I) | (II) | (III) | (IV) |
Crystal data |
Chemical formula | [Sr(C13H17O2)2(H2O)2] | [Sr2(C3H2O4)2(H2O)3] | [Sr(C6H7O6)2(H2O)2] | [Sr(C7H4O3)(H2O)] |
Mr | 534.18 | 433.38 | 473.88 | 241.74 |
Crystal system, space group | Triclinic, P1 | Monoclinic, C2/c | Monoclinic, P21 | Monoclinic, P21/n |
Temperature (K) | 120 | 120 | 120 | 120 |
a, b, c (Å) | 7.9116 (7), 10.487 (1), 18.2493 (17) | 14.3345 (9), 7.3458 (5), 11.5075 (7) | 6.4358 (5), 16.1040 (13), 8.3646 (7) | 5.0993 (4), 22.808 (2), 6.9811 (6) |
α, β, γ (°) | 86.088 (2), 79.784 (2), 70.605 (2) | 90, 106.710 (1), 90 | 90, 107.696 (1), 90 | 90, 109.755 (2), 90 |
V (Å3) | 1405.5 (2) | 1160.55 (13) | 825.90 (12) | 764.15 (11) |
Z | 2 | 4 | 2 | 4 |
Radiation type | Mo Kα | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 1.95 | 9.25 | 3.34 | 7.02 |
Crystal size (mm) | 0.35 × 0.06 × 0.03 | 0.33 × 0.30 × 0.08 | 0.28 × 0.05 × 0.04 | 0.14 × 0.10 × 0.02 |
|
Data collection |
Diffractometer | Bruker SMART APEX diffractometer | Bruker SMART APEX diffractometer | Bruker SMART APEX diffractometer | Bruker SMART APEX diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2002) | Multi-scan (SADABS; Sheldrick, 2002) | Multi-scan (SADABS; Sheldrick, 2002) | Multi-scan (SADABS; Sheldrick, 2002) |
Tmin, Tmax | 0.548, 0.944 | 0.06, 0.48 | 0.455, 0.878 | 0.440, 0.872 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19139, 8160, 5038 | 7363, 1708, 1630 | 10978, 4728, 4507 | 10002, 2251, 1917 |
Rint | 0.051 | 0.023 | 0.023 | 0.040 |
(sin θ/λ)max (Å−1) | 0.725 | 0.719 | 0.723 | 0.721 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.058, 0.145, 0.98 | 0.016, 0.041, 1.08 | 0.025, 0.057, 1.04 | 0.038, 0.092, 1.08 |
No. of reflections | 8160 | 1708 | 4728 | 2251 |
No. of parameters | 310 | 97 | 274 | 115 |
No. of restraints | 4 | 3 | 11 | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.79, −0.44 | 0.55, −0.49 | 0.73, −0.28 | 1.87, −1.00 |
Absolute structure | ? | ? | Flack (1983), 2035 Friedel pairs | ? |
Absolute structure parameter | ? | ? | −0.017 (4) | ? |
Selected bond lengths (Å) for (I) topSr1—O11i | 2.476 (2) | Sr1—O12 | 2.595 (2) |
Sr1—O31ii | 2.486 (2) | Sr1—O32 | 2.599 (3) |
Sr1—O3 | 2.563 (3) | Sr1—O31 | 2.728 (2) |
Sr1—O4 | 2.563 (3) | Sr1—O11 | 2.742 (2) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+2, −y+1, −z. |
Hydrogen-bond geometry (Å, º) for (I) top
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H31···O12ii | 0.804 (18) | 1.92 (2) | 2.706 (3) | 165 (4) |
O4—H41···O32i | 0.798 (19) | 1.91 (2) | 2.704 (3) | 171 (5) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+2, −y+1, −z. |
Selected bond lengths (Å) for (II) topSr1—O4 | 2.5386 (10) | Sr1—O1iii | 2.6850 (10) |
Sr1—O1 | 2.5801 (9) | Sr1—O5 | 2.6956 (9) |
Sr1—O6 | 2.5839 (10) | Sr1—O2iii | 2.8423 (10) |
Sr1—O3i | 2.5942 (9) | Sr1—O4i | 2.9836 (11) |
Sr1—O2ii | 2.6201 (10) | | |
Symmetry codes: (i) −x+3/2, −y+1/2, −z+1; (ii) x, −y, z+1/2; (iii) −x+1, y, −z+1/2. |
Hydrogen-bond geometry (Å, º) for (II) top
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5···O3iv | 0.824 (14) | 1.902 (14) | 2.7165 (12) | 169.7 (19) |
O6—H6A···O3v | 0.797 (15) | 2.179 (17) | 2.8662 (14) | 144.6 (19) |
O6—H6B···O2vi | 0.805 (15) | 2.150 (16) | 2.9328 (14) | 164.2 (19) |
Symmetry codes: (iv) −x+3/2, y−1/2, −z+1/2; (v) x−1/2, y+1/2, z; (vi) x, −y+1, z+1/2. |
Selected bond lengths (Å) for (III) topSr1—O11 | 2.5446 (16) | Sr1—O2 | 2.5790 (17) |
Sr1—O13i | 2.5688 (15) | Sr1—O1 | 2.6016 (16) |
Sr1—O16i | 2.5699 (16) | | |
Symmetry code: (i) −x, y+1/2, −z+2. |
Hydrogen-bond geometry (Å, º) for (III) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O23ii | 0.829 (18) | 1.879 (18) | 2.708 (2) | 177 (3) |
O1—H1B···O21iii | 0.797 (17) | 1.963 (19) | 2.736 (2) | 163 (3) |
O2—H2A···O12iv | 0.820 (17) | 2.104 (18) | 2.920 (2) | 175 (3) |
O2—H2B···O15v | 0.804 (17) | 2.25 (2) | 2.971 (2) | 150 (3) |
O12—H12···O23vi | 0.821 (17) | 1.756 (18) | 2.571 (2) | 172 (3) |
O15—H15···O22vii | 0.791 (17) | 1.978 (17) | 2.768 (2) | 177 (3) |
O16—H16···O21ii | 0.802 (18) | 1.997 (19) | 2.783 (2) | 167 (3) |
O22—H22···O13viii | 0.782 (17) | 1.86 (2) | 2.579 (2) | 154 (3) |
O25—H25···O14 | 0.783 (17) | 2.25 (2) | 2.893 (2) | 140 (3) |
O26—H26···O1iv | 0.785 (17) | 2.348 (19) | 3.100 (2) | 161 (4) |
Symmetry codes: (ii) x−1, y, z; (iii) −x, y+1/2, −z+1; (iv) x+1, y, z; (v) −x+1, y+1/2, −z+2; (vi) x−1, y, z+1; (vii) x, y, z+1; (viii) x+1, y, z−1. |
Selected bond lengths (Å) for (IV) topSr1—O1 | 2.469 (2) | Sr1—O3ii | 2.605 (2) |
Sr1—O4 | 2.502 (2) | Sr1—O2iii | 2.666 (2) |
Sr1—O3i | 2.579 (2) | Sr1—O1iii | 2.677 (2) |
Sr1—O2i | 2.591 (2) | Sr1—O2ii | 2.738 (2) |
Symmetry codes: (i) x, y, z+1; (ii) −x+1, −y, −z+1; (iii) −x, −y, −z+1. |
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4B···O3iv | 0.823 (18) | 1.90 (2) | 2.718 (3) | 170 (4) |
Symmetry code: (iv) x−1, y, z+1. |
Selected torsion angles in (I) (°) top | (I) | Ibuprofena |
C14—C20—C21—C22 | -174.1 (5) | -168.3 (5) |
C34—C40—C41—C42 | -176.9 (4) | 168.7 (5) |
C12—C11—C18—C19 | 104.8 (5) | 144.4 (4) |
C36—C31—C38—C39 | 101.9 (4) | 151.2 (4) |
C11—C18—C17—O11 | -59.6 (5) | -95.9 (4) |
C31—C38—C37—O31 | -58.0 (4) | -83.6 (4) |
Note: (a) Hansen et al. (2003). |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.
In recent years, it has been found that Sr has a significant influence on the development and growth of bone, and the effect of dose on bone structure has been investigated in great detail (Schrooten et al., 2003). These investigations have led to a growing interest in strontium(II) salts, their crystal structures and synthetic methods that may provide products of high yield and purity (Christgau et al., 2005). The present paper presents a structural investigation of four such new strontium(II) salts with organic acids.
In strontium diibuprofenate dihydrate, (I), the Sr atom is eight-coordinated in a distorted square antiprism by six O atoms from the asymmetric unit and two additional carboxylate O atoms from neighbouring ibuprofenates (O11* and O31* in Fig. 1). The ibuprofenate pair in an asymmetric unit shown in Fig. 1 have the same absolute configuration. The strontium polyhedra share edges to form chains in the a direction (Fig. 5). The chains are stacked in layers in the ab plane with the ibuprofenates protruding in the c direction. These layers are in turn stacked in the c direction, in both cases by van der Waals interactions only. Viewed in the a direction (Fig. 5), the strontium ibuprofenate complexes appear slightly tilted. This causes a difference in the packing of the two independent ibuprofenates. One ibuprofenate ion, (IA), extends further towards the next layer than the other, (IB), which is more confined to the space between the chains. This difference in packing may explain the observation of larger disorder of the terminal methyl groups of the (IA) ibuprofenate ion. The torsion angles of the isobutanyl and the propionate ends are very similar when comparing the two ibuprofenates (Table 9). Compared with the torsion angles of ibuprofen (Hansen et al., 2003), the differences in the isobutyl ends are minor, 6–8°, while the propionate ends show differences of 26–47° (Table 9). The ibuprofen conformations minimize the benzene–propionate interactions, while in (I) the coordination and packing requirements cause more strained conformations. Hydrogen bonding plays a minor role in the packing. Only one H atom of each water molecule is employed in hydrogen bonding (Table 2), and hydrogen bonding is, because of the bulkiness of the ibuprofenates, restricted to carboxylic O atoms in neighbouring strontium polyhedra within a polyhedral chain.
In strontium malonate sesquihydrate, (II), the Sr atom is nine-coordinated by all available malonate and water O atoms. The irregular polyhedra are connected by edge and face sharing into a three-dimensional framework structure. Atoms O3 and O6 are still unshared between polyhedra. The channel system thus created is occupied by the malonate carbon backbone (Fig. 6). All water H atoms are involved in hydrogen bonding to carboxylic O atoms (Table 4). By comparison, Sr malonate anhydrate (Briggman & Oskarsson, 1977) forms a similar three-dimensional polyhedral network, but all O atoms are shared between Sr polyhedra. This configuration results in a relatively dense packing, Dx = 2.78 Mg m−3, compared with 2.48 Mg m−3 in (II). The higher degree of interconnections and denser packing is the most probable cause of the irreversible dehydration of (II).
In strontium diascorbate dihydrate, (III), the Sr atom is eight-coordinated by ascorbate and water O atoms, forming isolated irregular polyhedra. The two independent ascorbate ions are coordinated differently. Ascorbate ion (IIIA) uses atoms O11, O13, O15 and O16 to coordinate two Sr ions, thus linking the Sr polyhedra into zigzagging chains in the b direction, while ascorbate ion (IIIB) has a one-sided coordination through atoms O25 and O26 (Fig. 7). The ascorbate polyhedral chains are further connected by a three-dimensional hydrogen-bonding network. The conformations of the independent ascorbate ions are different; the O14—C17—C18—C19 [for (IA)] and O24—C27—C28—C29 [for (IIIB)] torsion angles are −69.9 (2) and 176.4 (2)°, respectively. The O14—C17—C18—C19 (IIIA) torsion angle is similar to the corresponding torsion angles in ascorbic acid, −68.3 (3) and −55.5 (3)° for its two independent molecules (Hvoslef, 1968). The O15—C18—C18—O16 [(IIIA)] and O25—C28—C29—O26 [(IIIB)] torsion angles are 48.8 (2) and 50.4 (2)°, respectively, bringing them into almost eclipsed conformations and allowing for simultaneous Sr coordination of the O pairs. In ascorbic acid, the corresponding O—C—C—O torsion angles are 171.2 (3) and 171.4 (3)°, i.e. close to staggered conformations (Hvoslef, 1968). All H-atom donors are involved in hydrogen bonding, forming a three-dimensional network. It is interesting to note that the shortest hydrogen bonds (H···A < 2 Å) all involve uncoordinated O atoms from (IIIB) (Table 6), which may be explained by a higher packing/conformational flexibility of the one-sided Sr coordination of (IIIB).
In strontium 2-oxidobenzoate hydrate, (IV), the Sr atom is eight-coordinated in an approximately square antiprismatic cofiguration. The antiprisms are pair-wise connected through face-sharing, and these pairs are further connected by edge-sharing into layers in the ac plane (Fig. 8). The 2-oxidobenzoates protrude from the layers and connect them through van der Waals forces in the b direction. By comparison, the Sr disalicylate dihydrate (Debuyst et al. 1979) forms polyhedral chains, where the hydroxy group takes part in a three-dimensional hydrogen-bonding network connecting these chains. In (IV) only one of the water H-atom donors, H4B, participates in a conventional hydrogen bond. However, atom H4A points towards the center of a neighbouring benzene ring with a distance of 2.83 (3) Å to the ring center (A) and an O4—H4A···A angle of 154 (3)°.
Strontium(II) salts with organic acids are generally octa- to decacoordinated by O atoms, with coordination distances in the range 2.4–3.0 Å. The Sr polyhedra show various degrees of condensation depending on the number of available carboxylic and water O atoms, and the size of the organic group. The resulting structures are thus observed with isolated Sr polyhedra as in (III), polyhedra connected in chains as in (I), layers as in (IV) or three-dimensional networks as in (II). The average Sr—O distance is primarily determined by the coordination number as seen for (II), viz. 2.6803 (4) Å with nine-coordination, and 2.5940 (9), 2.5927 (6) and 2.6034 (7) Å for the eight-coordinated (I), (III) and (IV), respectively. An increasing degree of condensation cause a minor increase in the average Sr—O distances when comparing the eight-coordinated complexes [2.5927 (6) Å for (III), isolated; 2.5940 (9) Å for (I), chains; and 2.6034 (7) Å for (IV), layer]s.