Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The absolute configurations of three new enanti­omerically pure ferrocenylphosphole compounds, namely (2S,4S,SFc)-4-methoxy­methyl-2-[2-(9-thioxo-9[lambda]5-phosphafluoren-9-yl)­ferro­cenyl]-1,3-dioxane, [Fe(C5H5)(C23H22O3PS)], (III), (SFc)-[2-(9-thioxo-9[lambda]5-phosphafluoren-9-yl)ferrocenyl]methanol, [Fe(C5H5)(C18H14OPS)], (V), and (SFc)-diphenyl[2-(9-thioxo-9[lambda]5-phosphafluoren-9-yl]ferrocenylmethyl]phosphine, [Fe(C5H5)(C30H23P2)], (VIII), have been unambiguously established. All three ligands contain a planar chiral ferrocene group, bearing a dibenzo­phos­phole and either a dioxane, a methanol or a diphenyl­phosphino­methane group on the same cyclopentadienyl. In compound (V), the occurrence of O-H...S and C-H...S hydrogen bonds results in the formation of a two-dimensional network parallel to (001). The geometry of the ferrocene frameworks agrees with related reported structures.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106010833/sk3012sup1.cif
Contains datablocks global, III, V, VIII

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106010833/sk3012IIIsup2.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106010833/sk3012Vsup3.hkl
Contains datablock V

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106010833/sk3012VIIIsup4.hkl
Contains datablock VIII

CCDC references: 609398; 609399; 609400

Comment top

Considerable efforts have been devoted to the development of new chiral ligands owing to the growing importance of transition metal-catalysed asymmetric synthesis (Ojima, 2000; Jacobsen et al., 1999; Noyori, 1994). Among these chiral ligands, ferrocene-containing ligands are among the most interesting because of their stability, the easy introduction of planar chirality and the special electronic and stereoproperties of the ferrocene skeleton (Togni & Hayashi, 1995; Borman, 1996; Togni, 1996; Atkinson et al., 2004). Among the chiral ferrocene-based ligands, enantiopure 1,2-disubstituted ferrocene derivatives, especially ferrocenyldiphosphine ligands, have played a dominant role (Colacot, 2003; Tang et al., 2003; Barbaro et al., 2004). Typical examples are TRAP ligands (Sawamura et al., 1996; Kuwano et al., 1999, 2000), and the diphosphine Josiphos ligands (Blaser et al., 2002), in particular the industrially important Xyliphos (Blaser, 2002), Taniaphos (Lotz et al., 2002; Spindler et al., 2004) or Walphos-type ligands (Sturm et al., 2003). Common characteristics of these ligands include the ferrocenylethyl backbone and the presence of both planar and central chiralities. Little attention has been paid to ligands based on the ferrocenylmethyl backbone or, more generally, to ferrocenes possessing planar chirality as their only element of chirality. Thus, we have recently investigated the family of 1,2-disubstituted planar chiral ferrocenes by the introduction of a phosphole group, leading to planar chiral ferrocenyl phosphole amine ligands (Lopez Cortés et al., 2006). We report here the structural characterization of three enantiomerically pure ferrocenyl derivatives containing the dibenzophosphole moiety, (III), (V) and (VIII).

A molecular view of compound (III) is shown in Fig. 1. As expected, the phosphole ring is planar, with the largest deviation being 0.068 (2) Å for atom C112. Atom P1 deviates slightly by 0.204 (2) Å from the Cp ring to which it is attached, whereas atom S1 is endo with respect to this Cp ring by 1.026 (3) Å. The dibenzyl phosphole and the Cp rings are nearly perpendicular, making a dihedral angle of 88.21 (5)°. The dioxane ring is distorted and the puckering parameters (Cremer & Pople, 1975) show that its conformation is close to that of a chair: the θ and ϕ angles calculated for the atom sequence C21/O21/C22/C23/C24/O22 are 175.4 (2)° and 133 (2)°, respectively. Owing to steric hindrance, the dioxane ring is twisted with respect to the Cp ring, with C3—C2—C21—O21 and C3—C2—C21—O22 torsion angles of −5.0 (3) and 115.8 (2)°, respectively. The two Cp rings are nearly eclipsed, with a twisted angle of only 3.5°.

A molecular view of alcohol (V) is shown in Fig. 2. As previously noticed, the dibenzyl phosphole is roughly planar, with the largest deviation being 0.109 (2) Å for atom C14, and it makes a dihedral angle of 87.34 (7)° with the Cp ring to which it is attached. Atom P1 is nearly coplanar with the Cp ring, deviating by only 0.088 (2) Å. Atom S1 is endo by 1.333 (3) Å with respect to this Cp ring. An interesting feature is the occurrence of an O—H···S intermolecular hydrogen bond linking the molecules to form a chain developing parallel to the a axis. It is worth pointing out that, in the related compound (SFc)-[2-(3,4-dimethyl-1-thio-1H-1λ5-phosphol-1-yl)ferrocenyl]methanol (Mourgues et al., 2003), the O—H···S interaction is only intramolecular. Moreover, in (V) the chains are interconnected by weak C—H···S hydrogen bonds to form a two-dimensional network parallel to (001) (Table 1, Fig. 3). The two Cp rings are twisted with respect to each other by 13.9°. This larger value compared with compound (III) [Please check - was originally (I)] might be related to the occurrence of the hydrogen bond. The alcohol group is twisted with respect to the Cp plane, with a C3—C2—C21—O21 torsion angle of 103.1 (3)°. A similar conformation of the alcohol group has been found in the related compound rac-2-(diphenylthiophosphoryl)ferrocenylmethanol (Stepnicka & Císarová, 2002). However, the O—H···S hydrogen bonds in that compound resulted in the formation of pseudo dimer through an inversion centre.

A molecular view of complex (VIII) is shown in Fig. 4. As already observed in free phosphole ligands (Tissot et al., 2000; Ogasawara et al., 2001; Hydrio et al., 2002; Melaimi et al., 2002), the P atom is located slightly above the butadiene fragment [0.129 (5) Å]. Atom P1 is roughly in the plane of the Cp ring, with a deviation from the mean plane of 0.09 (1) Å. Atom P2 is oriented exo with respect to the Cp ring and is located 1.62 (1) Å above it. The two Cp rings are perfectly eclipsed, with a twist angle of 0.5°. The two phenyl rings make a dihedral angle of 65.7 (2)°. It is interesting to note that the lone pairs of the two P atoms are in the correct arrangement for chelating on a metal precursor.

In all three compounds, the geometry within the ferrocene frameworks is roughly identical (Table 2) and agrees with that of related compounds found in the Cambridge Structural Database (CSD; Version 5.27; Allen, 2002). For these three compounds, the refinement of the Flack parameter (Flack, 1983; Bernardinelli & Flack, 1985) allowed the determination of the absolute configuration.

Experimental top

Compounds (III), (V) and (VIII) were synthesized according to procedure reported by Lopez Cortés et al. (2006). The scheme gives an outline of the synthesis, with steps as follows. (i) t-BuLi, 195 K to room temperature; 1-cyanophosphole, 243 K; S8, CH2Cl2, room temperature. (ii) H+, H2O/CH2Cl2, reflux. (iii) NaBH4, room temperature. (iv) AcCl/NEt3, 273 K to room temperature, CH2Cl2. (v) R2PH, toluene, reflux, S8, CH2Cl2, room temperature. (vi) P(NMe2)3, toluene reflux. Intermediate products (IV), (VI) and (VII) were obtained as oils, whereas crystals of (III), (V) and (VIII) suitable for X-ray analyses were obtained by slow diffusion of pentane into dichloromethane solutions.

Refinement top

All H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H = 0.93 (Caromatic) or 0.96 Å (Cmethyl) and O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(Caromatic,O) or 1.5Ueq(Cmethyl).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2003) for (III); IPDS Software (Stoe & Cie, 2000) for (V), (VIII). Cell refinement: CrysAlis RED (Oxford Diffraction, 2003) for (III); IPDS Software for (V), (VIII). Data reduction: CrysAlis RED for (III); X-RED (Stoe & Cie, 1996) for (V), (VIII). For all compounds, program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) for (III), (VIII); ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003) for (V). For all compounds, software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (III), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The molecular structure of compound (V), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.
[Figure 3] Fig. 3. A packing view for compound (V), showing the O—H···S and C—H···S hydrogen-bonding interactions (dashed lines) resulting in the formation of a two-dimensional network parallel to (001). [Symmetry codes: (i) x − 1, y, z; (ii) −x + 2, y + 1/2, −z + 1.]
[Figure 4] Fig. 4. The molecular structure of compound (VIII), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.
(III) (2S,4S,SFc)-4-(methoxymethyl)-2-[(2-dibenzo-1-thio-1H-1λ5– phosphol-1-yl)ferrocenyl]-1,3-dioxane top
Crystal data top
[Fe(C5H5)(C23H22O3PS)]F(000) = 552
Mr = 530.38Dx = 1.470 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3139 reflections
a = 7.4885 (7) Åθ = 3.6–31.6°
b = 9.5175 (8) ŵ = 0.81 mm1
c = 16.8193 (13) ÅT = 180 K
β = 91.067 (7)°Prism, yellow
V = 1198.53 (18) Å30.36 × 0.28 × 0.22 mm
Z = 2
Data collection top
Oxford XCALIBUR
diffractometer
4045 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 28.3°, θmin = 3.2°
Detector resolution: 8.2632 pixels mm-1h = 99
ω and ϕ scansk = 1210
10617 measured reflectionsl = 2222
4383 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0401P)2 + 0.0522P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.002
4383 reflectionsΔρmax = 0.33 e Å3
308 parametersΔρmin = 0.33 e Å3
1 restraintAbsolute structure: Flack (1983), with 1249 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (1)
Crystal data top
[Fe(C5H5)(C23H22O3PS)]V = 1198.53 (18) Å3
Mr = 530.38Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.4885 (7) ŵ = 0.81 mm1
b = 9.5175 (8) ÅT = 180 K
c = 16.8193 (13) Å0.36 × 0.28 × 0.22 mm
β = 91.067 (7)°
Data collection top
Oxford XCALIBUR
diffractometer
4045 reflections with I > 2σ(I)
10617 measured reflectionsRint = 0.023
4383 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.066Δρmax = 0.33 e Å3
S = 1.07Δρmin = 0.33 e Å3
4383 reflectionsAbsolute structure: Flack (1983), with 1249 Friedel pairs
308 parametersAbsolute structure parameter: 0.00 (1)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.80570 (4)0.53939 (3)0.734270 (16)0.01884 (8)
P10.78732 (7)0.90456 (6)0.73444 (3)0.01810 (11)
S10.71485 (8)0.94431 (7)0.84217 (3)0.02705 (13)
O211.1755 (2)0.59496 (16)0.88366 (9)0.0248 (3)
O221.1587 (2)0.83298 (16)0.85032 (9)0.0207 (3)
O261.1561 (2)1.12476 (18)0.90846 (11)0.0324 (4)
C10.8935 (2)0.7384 (2)0.71717 (11)0.0175 (4)
C21.0154 (3)0.6636 (2)0.76842 (12)0.0186 (4)
C31.0785 (2)0.5440 (3)0.72635 (11)0.0212 (4)
H31.16030.47580.74640.025*
C40.9979 (3)0.5443 (3)0.64908 (11)0.0226 (4)
H41.01690.47650.60860.027*
C50.8842 (3)0.6633 (2)0.64289 (12)0.0211 (4)
H50.81400.68890.59750.025*
C60.5659 (3)0.5491 (3)0.79046 (14)0.0326 (5)
H60.50520.63170.80650.039*
C70.5457 (3)0.4804 (3)0.71572 (16)0.0326 (5)
H70.47040.50980.67280.039*
C80.6579 (3)0.3600 (3)0.71654 (17)0.0346 (6)
H80.67040.29460.67430.041*
C90.7475 (4)0.3546 (3)0.79086 (16)0.0364 (6)
H90.83040.28470.80770.044*
C100.6918 (4)0.4729 (3)0.83655 (15)0.0354 (6)
H100.73250.49610.88880.042*
C110.9308 (3)1.0287 (2)0.68432 (11)0.0217 (4)
C120.8615 (3)1.0586 (2)0.60804 (12)0.0264 (5)
C130.6847 (3)0.9947 (2)0.59147 (13)0.0283 (5)
C140.6202 (3)0.9148 (2)0.65512 (13)0.0254 (5)
C211.0668 (3)0.7033 (2)0.85227 (11)0.0198 (4)
H210.95700.71300.88480.024*
C221.2274 (3)0.6261 (3)0.96438 (13)0.0282 (5)
H22A1.31040.55270.98440.034*
H22B1.12050.62550.99820.034*
C231.3174 (3)0.7683 (3)0.96985 (13)0.0263 (5)
H23A1.43440.76450.94350.032*
H23B1.33850.79341.02640.032*
C241.1999 (3)0.8790 (2)0.92996 (13)0.0222 (4)
H241.08620.88690.95990.027*
C251.2861 (3)1.0227 (3)0.92612 (13)0.0246 (4)
H25A1.34521.04460.97780.029*
H25B1.37811.02320.88460.029*
C261.2296 (4)1.2612 (3)0.9035 (2)0.0498 (8)
H26A1.28271.28730.95510.075*
H26B1.13521.32830.88910.075*
H26C1.32191.26260.86300.075*
C1111.0897 (3)1.0856 (2)0.71198 (14)0.0271 (5)
H1111.13331.06520.76410.033*
C1121.1853 (4)1.1740 (3)0.66158 (15)0.0331 (5)
H1121.29471.21470.67940.040*
C1131.1200 (4)1.2021 (3)0.58569 (14)0.0365 (6)
H1131.18691.26080.55160.044*
C1140.9589 (4)1.1464 (3)0.55817 (14)0.0343 (6)
H1140.91551.16770.50610.041*
C4110.4531 (3)0.8537 (3)0.65205 (16)0.0325 (6)
H4110.41050.80160.69600.039*
C4120.3481 (4)0.8699 (3)0.58340 (18)0.0413 (7)
H4120.23170.83020.58060.050*
C4130.4137 (4)0.9439 (4)0.51907 (16)0.0450 (7)
H4130.34330.95080.47170.054*
C4140.5787 (4)1.0077 (3)0.52262 (15)0.0403 (7)
H4140.62021.06010.47860.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01991 (14)0.01598 (14)0.02068 (14)0.00138 (13)0.00213 (10)0.00135 (13)
P10.0208 (3)0.0151 (3)0.0183 (2)0.0016 (2)0.00039 (19)0.00107 (19)
S10.0278 (3)0.0289 (3)0.0247 (3)0.0030 (2)0.0073 (2)0.0050 (2)
O210.0307 (8)0.0182 (8)0.0252 (8)0.0048 (7)0.0057 (6)0.0007 (6)
O220.0221 (7)0.0180 (7)0.0217 (7)0.0021 (6)0.0017 (6)0.0016 (6)
O260.0296 (9)0.0194 (8)0.0483 (10)0.0000 (7)0.0029 (7)0.0039 (7)
C10.0169 (9)0.0171 (11)0.0187 (8)0.0016 (8)0.0025 (7)0.0015 (8)
C20.0166 (9)0.0172 (10)0.0221 (10)0.0018 (8)0.0028 (7)0.0002 (8)
C30.0176 (8)0.0195 (10)0.0267 (9)0.0021 (10)0.0043 (7)0.0002 (10)
C40.0242 (9)0.0201 (10)0.0239 (9)0.0008 (10)0.0073 (7)0.0048 (10)
C50.0261 (10)0.0199 (10)0.0175 (9)0.0003 (9)0.0030 (8)0.0019 (8)
C60.0284 (11)0.0276 (13)0.0425 (12)0.0055 (11)0.0195 (9)0.0065 (12)
C70.0218 (11)0.0338 (13)0.0421 (14)0.0064 (10)0.0012 (9)0.0016 (11)
C80.0321 (13)0.0232 (12)0.0486 (15)0.0115 (10)0.0062 (11)0.0104 (11)
C90.0381 (14)0.0244 (13)0.0468 (16)0.0074 (11)0.0065 (12)0.0121 (11)
C100.0418 (14)0.0384 (15)0.0263 (12)0.0125 (12)0.0120 (11)0.0043 (10)
C110.0297 (10)0.0133 (9)0.0223 (9)0.0034 (10)0.0074 (7)0.0028 (9)
C120.0376 (12)0.0188 (12)0.0230 (9)0.0095 (10)0.0056 (8)0.0005 (8)
C130.0376 (12)0.0222 (11)0.0251 (11)0.0147 (10)0.0025 (9)0.0043 (8)
C140.0278 (11)0.0201 (11)0.0283 (11)0.0096 (9)0.0032 (8)0.0043 (9)
C210.0185 (9)0.0192 (11)0.0217 (9)0.0002 (8)0.0004 (7)0.0011 (8)
C220.0368 (13)0.0234 (12)0.0243 (11)0.0014 (10)0.0058 (9)0.0026 (9)
C230.0292 (12)0.0272 (12)0.0224 (10)0.0022 (9)0.0046 (9)0.0040 (8)
C240.0212 (10)0.0213 (11)0.0240 (10)0.0007 (9)0.0005 (8)0.0031 (9)
C250.0227 (9)0.0237 (12)0.0272 (10)0.0002 (10)0.0017 (8)0.0046 (9)
C260.0553 (19)0.0220 (14)0.071 (2)0.0053 (12)0.0172 (15)0.0002 (13)
C1110.0338 (11)0.0186 (10)0.0291 (11)0.0012 (9)0.0051 (9)0.0014 (9)
C1120.0405 (14)0.0198 (11)0.0396 (13)0.0039 (10)0.0139 (11)0.0017 (10)
C1130.0539 (15)0.0185 (12)0.0379 (12)0.0003 (11)0.0230 (11)0.0029 (10)
C1140.0532 (16)0.0256 (13)0.0245 (11)0.0126 (12)0.0116 (11)0.0054 (9)
C4110.0273 (12)0.0275 (13)0.0422 (14)0.0073 (10)0.0073 (10)0.0072 (10)
C4120.0347 (14)0.0339 (14)0.0546 (18)0.0091 (11)0.0171 (12)0.0157 (13)
C4130.0492 (16)0.0455 (16)0.0394 (14)0.0234 (14)0.0210 (12)0.0128 (13)
C4140.0537 (16)0.0393 (18)0.0275 (12)0.0203 (13)0.0083 (11)0.0027 (11)
Geometric parameters (Å, º) top
Fe1—C12.028 (2)C9—H90.9500
Fe1—C52.033 (2)C10—H100.9500
Fe1—C102.035 (2)C11—C1111.380 (3)
Fe1—C22.039 (2)C11—C121.404 (3)
Fe1—C72.045 (2)C12—C1141.399 (3)
Fe1—C62.047 (2)C12—C131.479 (3)
Fe1—C42.0502 (19)C13—C4141.397 (3)
Fe1—C92.050 (2)C13—C141.406 (3)
Fe1—C32.0503 (19)C14—C4111.380 (3)
Fe1—C82.053 (2)C21—H211.0000
P1—C11.796 (2)C22—C231.514 (3)
P1—C141.815 (2)C22—H22A0.9900
P1—C111.815 (2)C22—H22B0.9900
P1—S11.9384 (7)C23—C241.521 (3)
O21—C211.410 (3)C23—H23A0.9900
O21—C221.436 (3)C23—H23B0.9900
O22—C211.414 (3)C24—C251.514 (3)
O22—C241.437 (3)C24—H241.0000
O26—C251.403 (3)C25—H25A0.9900
O26—C261.413 (3)C25—H25B0.9900
C1—C21.433 (3)C26—H26A0.9800
C1—C51.440 (3)C26—H26B0.9800
C2—C31.425 (3)C26—H26C0.9800
C2—C211.503 (3)C111—C1121.401 (3)
C3—C41.423 (3)C111—H1110.9500
C3—H30.9500C112—C1131.384 (4)
C4—C51.420 (3)C112—H1120.9500
C4—H40.9500C113—C1141.389 (4)
C5—H50.9500C113—H1130.9500
C6—C101.410 (4)C114—H1140.9500
C6—C71.423 (4)C411—C4121.394 (4)
C6—H60.9500C411—H4110.9500
C7—C81.421 (4)C412—C4131.389 (5)
C7—H70.9500C412—H4120.9500
C8—C91.409 (4)C413—C4141.377 (4)
C8—H80.9500C413—H4130.9500
C9—C101.430 (4)C414—H4140.9500
C1—Fe1—C541.55 (8)C8—C7—H7126.0
C1—Fe1—C10123.53 (10)C6—C7—H7126.0
C5—Fe1—C10162.01 (10)Fe1—C7—H7125.8
C1—Fe1—C241.28 (8)C9—C8—C7108.0 (2)
C5—Fe1—C269.20 (8)C9—C8—Fe169.80 (14)
C10—Fe1—C2105.94 (10)C7—C8—Fe169.39 (14)
C1—Fe1—C7123.04 (10)C9—C8—H8126.0
C5—Fe1—C7109.38 (10)C7—C8—H8126.0
C10—Fe1—C768.33 (11)Fe1—C8—H8126.4
C2—Fe1—C7158.15 (10)C8—C9—C10108.0 (2)
C1—Fe1—C6108.24 (10)C8—C9—Fe170.05 (14)
C5—Fe1—C6126.26 (10)C10—C9—Fe168.95 (14)
C10—Fe1—C640.42 (11)C8—C9—H9126.0
C2—Fe1—C6121.43 (9)C10—C9—H9126.0
C7—Fe1—C640.69 (10)Fe1—C9—H9126.6
C1—Fe1—C469.27 (9)C6—C10—C9107.9 (2)
C5—Fe1—C440.69 (9)C6—C10—Fe170.25 (13)
C10—Fe1—C4155.30 (11)C9—C10—Fe170.08 (13)
C2—Fe1—C468.71 (8)C6—C10—H10126.0
C7—Fe1—C4125.34 (9)C9—C10—H10126.0
C6—Fe1—C4162.74 (9)Fe1—C10—H10125.2
C1—Fe1—C9159.97 (10)C111—C11—C12122.0 (2)
C5—Fe1—C9156.28 (10)C111—C11—P1127.81 (17)
C10—Fe1—C940.97 (11)C12—C11—P1110.13 (16)
C2—Fe1—C9122.38 (10)C114—C12—C11118.7 (2)
C7—Fe1—C967.99 (11)C114—C12—C13127.5 (2)
C6—Fe1—C968.19 (12)C11—C12—C13113.77 (19)
C4—Fe1—C9120.13 (10)C414—C13—C14118.8 (2)
C1—Fe1—C369.19 (9)C414—C13—C12127.8 (2)
C5—Fe1—C368.66 (9)C14—C13—C12113.44 (19)
C10—Fe1—C3119.69 (10)C411—C14—C13121.5 (2)
C2—Fe1—C340.80 (9)C411—C14—P1128.12 (19)
C7—Fe1—C3160.58 (9)C13—C14—P1110.32 (17)
C6—Fe1—C3155.91 (9)O21—C21—O22111.66 (15)
C4—Fe1—C340.61 (8)O21—C21—C2107.65 (17)
C9—Fe1—C3105.61 (11)O22—C21—C2108.30 (16)
C1—Fe1—C8158.68 (10)O21—C21—H21109.7
C5—Fe1—C8122.35 (10)O22—C21—H21109.7
C10—Fe1—C868.36 (12)C2—C21—H21109.7
C2—Fe1—C8158.89 (10)O21—C22—C23110.73 (19)
C7—Fe1—C840.57 (11)O21—C22—H22A109.5
C6—Fe1—C868.25 (11)C23—C22—H22A109.5
C4—Fe1—C8107.50 (10)O21—C22—H22B109.5
C9—Fe1—C840.15 (12)C23—C22—H22B109.5
C3—Fe1—C8122.91 (10)H22A—C22—H22B108.1
C1—P1—C14103.27 (10)C22—C23—C24109.85 (18)
C1—P1—C11103.30 (9)C22—C23—H23A109.7
C14—P1—C1191.70 (10)C24—C23—H23A109.7
C1—P1—S1117.10 (7)C22—C23—H23B109.7
C14—P1—S1118.40 (8)C24—C23—H23B109.7
C11—P1—S1119.05 (7)H23A—C23—H23B108.2
C21—O21—C22110.34 (16)O22—C24—C25108.65 (18)
C21—O22—C24109.91 (16)O22—C24—C23108.21 (18)
C25—O26—C26112.30 (19)C25—C24—C23113.66 (18)
C2—C1—C5107.14 (18)O22—C24—H24108.7
C2—C1—P1128.27 (15)C25—C24—H24108.7
C5—C1—P1124.28 (16)C23—C24—H24108.7
C2—C1—Fe169.80 (12)O26—C25—C24109.88 (17)
C5—C1—Fe169.41 (12)O26—C25—H25A109.7
P1—C1—Fe1130.85 (10)C24—C25—H25A109.7
C3—C2—C1108.17 (17)O26—C25—H25B109.7
C3—C2—C21125.81 (19)C24—C25—H25B109.7
C1—C2—C21126.02 (19)H25A—C25—H25B108.2
C3—C2—Fe170.01 (12)O26—C26—H26A109.5
C1—C2—Fe168.92 (11)O26—C26—H26B109.5
C21—C2—Fe1126.31 (14)H26A—C26—H26B109.5
C4—C3—C2108.23 (19)O26—C26—H26C109.5
C4—C3—Fe169.69 (11)H26A—C26—H26C109.5
C2—C3—Fe169.19 (11)H26B—C26—H26C109.5
C4—C3—H3125.9C11—C111—C112118.6 (2)
C2—C3—H3125.9C11—C111—H111120.7
Fe1—C3—H3126.8C112—C111—H111120.7
C5—C4—C3108.20 (19)C113—C112—C111119.9 (3)
C5—C4—Fe168.99 (11)C113—C112—H112120.1
C3—C4—Fe169.70 (10)C111—C112—H112120.1
C5—C4—H4125.9C112—C113—C114121.5 (2)
C3—C4—H4125.9C112—C113—H113119.2
Fe1—C4—H4127.0C114—C113—H113119.2
C4—C5—C1108.27 (18)C113—C114—C12119.2 (2)
C4—C5—Fe170.32 (12)C113—C114—H114120.4
C1—C5—Fe169.04 (11)C12—C114—H114120.4
C4—C5—H5125.9C14—C411—C412118.8 (3)
C1—C5—H5125.9C14—C411—H411120.6
Fe1—C5—H5126.3C412—C411—H411120.6
C10—C6—C7108.0 (3)C413—C412—C411119.9 (3)
C10—C6—Fe169.33 (13)C413—C412—H412120.0
C7—C6—Fe169.57 (12)C411—C412—H412120.0
C10—C6—H6126.0C414—C413—C412121.3 (2)
C7—C6—H6126.0C414—C413—H413119.3
Fe1—C6—H6126.7C412—C413—H413119.3
C8—C7—C6108.0 (2)C413—C414—C13119.5 (3)
C8—C7—Fe170.04 (14)C413—C414—H414120.3
C6—C7—Fe169.74 (13)C13—C414—H414120.3
C3—C2—C21—O22115.8 (2)C3—C2—C21—O215.0 (3)
(V) (SFc)-[2-(2-dibenzo-1-thio-1H-1λ5-phosphol-1-yl)ferrocenyl]methanol top
Crystal data top
[Fe(C5H5)(C18H14OPS)]F(000) = 444
Mr = 430.26Dx = 1.539 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 8000 reflections
a = 7.1110 (13) Åθ = 2.6–26.1°
b = 12.862 (3) ŵ = 1.02 mm1
c = 10.223 (2) ÅT = 180 K
β = 96.73 (2)°Needle, yellow
V = 928.6 (3) Å30.48 × 0.13 × 0.12 mm
Z = 2
Data collection top
Stoe IPDS
diffractometer
3619 independent reflections
Radiation source: fine-focus sealed tube3380 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ϕ scansθmax = 26.1°, θmin = 2.6°
Absorption correction: multi-scan
(Blessing, 1995)
h = 88
Tmin = 0.598, Tmax = 0.873k = 1515
9253 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.0359P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
3619 reflectionsΔρmax = 0.36 e Å3
245 parametersΔρmin = 0.25 e Å3
1 restraintAbsolute structure: Flack (1983), with 1722 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.015 (12)
Crystal data top
[Fe(C5H5)(C18H14OPS)]V = 928.6 (3) Å3
Mr = 430.26Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.1110 (13) ŵ = 1.02 mm1
b = 12.862 (3) ÅT = 180 K
c = 10.223 (2) Å0.48 × 0.13 × 0.12 mm
β = 96.73 (2)°
Data collection top
Stoe IPDS
diffractometer
3619 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
3380 reflections with I > 2σ(I)
Tmin = 0.598, Tmax = 0.873Rint = 0.050
9253 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.061Δρmax = 0.36 e Å3
S = 0.98Δρmin = 0.25 e Å3
3619 reflectionsAbsolute structure: Flack (1983), with 1722 Friedel pairs
245 parametersAbsolute structure parameter: 0.015 (12)
1 restraint
Special details top

Experimental. The data were collected on a Stoe Imaging Plate Diffraction System (IPDS). The crystal-to-detector distance was 70 mm. 167 frames (3 min per frame) were obtained with 0 < ϕ < 250.5° and with the crystals rotated through 1.5° in ϕ. Coverage of the unique set was over 98.5% complete to at least 26.08°. Crystal decay was monitored by measuring 200 reflections per frame.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.95509 (4)0.27803 (2)1.10011 (3)0.01710 (9)
P10.98411 (8)0.25396 (4)0.76524 (6)0.01874 (13)
S11.10129 (9)0.11644 (5)0.76488 (7)0.02777 (15)
O210.5810 (3)0.08178 (15)0.8284 (2)0.0341 (4)
H210.48450.11610.83180.051*
C10.8638 (3)0.2824 (2)0.9048 (2)0.0186 (4)
C20.7467 (3)0.2122 (2)0.9715 (2)0.0210 (5)
C30.6672 (3)0.2727 (2)1.0687 (2)0.0256 (5)
H30.58690.24751.12690.031*
C40.7295 (3)0.3765 (2)1.0628 (3)0.0248 (5)
H40.69730.43091.11590.030*
C50.8502 (3)0.38368 (19)0.9617 (2)0.0207 (5)
H50.90990.44360.93680.025*
C61.2154 (4)0.2088 (2)1.1316 (3)0.0255 (5)
H61.27710.17431.06890.031*
C71.2297 (4)0.3160 (2)1.1619 (3)0.0244 (6)
H71.30250.36441.12280.029*
C81.1129 (3)0.3367 (2)1.2630 (3)0.0254 (5)
H81.09570.40101.30150.030*
C91.0276 (4)0.2419 (2)1.2943 (2)0.0260 (5)
H90.94450.23311.35720.031*
C101.0901 (4)0.1629 (2)1.2138 (3)0.0260 (5)
H101.05560.09321.21440.031*
C110.8150 (3)0.2916 (2)0.6268 (2)0.0207 (5)
C120.8729 (3)0.38479 (18)0.5721 (2)0.0206 (5)
C131.0609 (3)0.42100 (19)0.6312 (2)0.0205 (5)
C141.1390 (3)0.36087 (18)0.7384 (2)0.0201 (5)
C210.7096 (4)0.0997 (2)0.9451 (3)0.0295 (6)
H21A0.82860.06500.93610.035*
H21B0.65760.06921.01990.035*
C1110.6443 (3)0.24475 (19)0.5808 (2)0.0251 (5)
H1110.60800.18270.61720.030*
C1120.5291 (3)0.2923 (2)0.4797 (3)0.0299 (6)
H1120.41460.26160.44720.036*
C1130.5833 (4)0.3854 (2)0.4262 (3)0.0298 (6)
H1130.50430.41700.35880.036*
C1140.7537 (4)0.4316 (2)0.4726 (3)0.0272 (5)
H1140.78820.49420.43680.033*
C4111.3197 (3)0.3800 (2)0.8003 (3)0.0229 (5)
H4111.37140.33850.86980.027*
C4121.4224 (4)0.4626 (2)0.7562 (3)0.0273 (6)
H4121.54330.47710.79700.033*
C4131.3446 (4)0.5227 (2)0.6521 (3)0.0290 (6)
H4131.41410.57790.62410.035*
C4141.1655 (4)0.5031 (2)0.5879 (3)0.0252 (5)
H4141.11600.54400.51710.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01541 (14)0.02014 (16)0.01570 (15)0.00009 (13)0.00159 (11)0.00024 (14)
P10.0213 (3)0.0188 (3)0.0156 (3)0.0015 (2)0.0001 (2)0.0002 (2)
S10.0319 (3)0.0214 (3)0.0294 (3)0.0068 (3)0.0010 (3)0.0043 (3)
O210.0310 (10)0.0322 (10)0.0377 (11)0.0085 (8)0.0024 (8)0.0063 (9)
C10.0179 (9)0.0208 (10)0.0161 (10)0.0013 (10)0.0017 (8)0.0004 (11)
C20.0172 (11)0.0238 (13)0.0214 (12)0.0024 (10)0.0004 (9)0.0007 (10)
C30.0160 (9)0.0378 (13)0.0232 (11)0.0026 (12)0.0024 (8)0.0015 (13)
C40.0207 (11)0.0283 (13)0.0248 (13)0.0062 (10)0.0002 (10)0.0076 (11)
C50.0217 (11)0.0185 (11)0.0207 (12)0.0016 (9)0.0024 (10)0.0011 (10)
C60.0185 (12)0.0352 (15)0.0228 (13)0.0051 (11)0.0018 (10)0.0009 (12)
C70.0169 (11)0.0308 (13)0.0245 (14)0.0010 (9)0.0011 (10)0.0015 (11)
C80.0238 (13)0.0282 (13)0.0223 (13)0.0027 (10)0.0052 (10)0.0046 (11)
C90.0268 (12)0.0343 (14)0.0168 (11)0.0018 (10)0.0026 (9)0.0004 (10)
C100.0292 (13)0.0231 (13)0.0246 (13)0.0015 (10)0.0019 (11)0.0035 (11)
C110.0249 (10)0.0207 (12)0.0164 (10)0.0050 (10)0.0019 (8)0.0015 (10)
C120.0240 (11)0.0235 (11)0.0152 (11)0.0031 (9)0.0059 (9)0.0009 (10)
C130.0235 (11)0.0212 (11)0.0177 (12)0.0044 (10)0.0063 (9)0.0018 (10)
C140.0245 (12)0.0196 (12)0.0166 (12)0.0023 (9)0.0034 (9)0.0021 (9)
C210.0312 (13)0.0268 (14)0.0292 (14)0.0068 (11)0.0010 (11)0.0038 (11)
C1110.0300 (12)0.0246 (12)0.0205 (12)0.0021 (9)0.0013 (10)0.0036 (10)
C1120.0260 (11)0.0359 (15)0.0260 (12)0.0012 (11)0.0043 (10)0.0057 (12)
C1130.0270 (13)0.0381 (14)0.0225 (13)0.0059 (11)0.0048 (10)0.0016 (12)
C1140.0322 (13)0.0285 (13)0.0211 (13)0.0047 (11)0.0039 (10)0.0039 (11)
C4110.0212 (11)0.0268 (12)0.0199 (12)0.0021 (9)0.0009 (10)0.0005 (10)
C4120.0235 (12)0.0289 (12)0.0299 (15)0.0014 (10)0.0046 (11)0.0032 (12)
C4130.0313 (14)0.0252 (13)0.0324 (15)0.0032 (10)0.0127 (11)0.0003 (12)
C4140.0282 (13)0.0247 (12)0.0234 (14)0.0021 (10)0.0056 (10)0.0031 (10)
Geometric parameters (Å, º) top
Fe1—C12.027 (2)C7—H70.9300
Fe1—C32.036 (2)C8—C91.415 (4)
Fe1—C52.039 (2)C8—H80.9300
Fe1—C72.040 (3)C9—C101.412 (4)
Fe1—C82.040 (3)C9—H90.9300
Fe1—C42.044 (3)C10—H100.9300
Fe1—C92.045 (3)C11—C1111.387 (3)
Fe1—C62.045 (3)C11—C121.405 (3)
Fe1—C22.046 (2)C12—C1141.383 (4)
Fe1—C102.050 (3)C12—C131.476 (4)
P1—C11.785 (2)C13—C4141.393 (4)
P1—C141.803 (2)C13—C141.402 (3)
P1—C111.812 (2)C14—C4111.386 (4)
P1—S11.9555 (9)C21—H21A0.9700
O21—C211.434 (3)C21—H21B0.9700
O21—H210.8200C111—C1121.384 (4)
C1—C51.435 (4)C111—H1110.9300
C1—C21.452 (3)C112—C1131.390 (4)
C2—C31.430 (3)C112—H1120.9300
C2—C211.490 (4)C113—C1141.382 (4)
C3—C41.410 (4)C113—H1130.9300
C3—H30.9300C114—H1140.9300
C4—C51.421 (4)C411—C4121.394 (4)
C4—H40.9300C411—H4110.9300
C5—H50.9300C412—C4131.378 (4)
C6—C71.414 (4)C412—H4120.9300
C6—C101.422 (4)C413—C4141.386 (4)
C6—H60.9300C413—H4130.9300
C7—C81.425 (4)C414—H4140.9300
C1—Fe1—C369.24 (9)C4—C5—Fe169.84 (14)
C1—Fe1—C541.33 (10)C1—C5—Fe168.87 (13)
C3—Fe1—C568.49 (11)C4—C5—H5125.9
C1—Fe1—C7118.89 (10)C1—C5—H5125.9
C3—Fe1—C7164.85 (11)Fe1—C5—H5126.9
C5—Fe1—C7108.35 (11)C7—C6—C10108.0 (2)
C1—Fe1—C8151.15 (11)C7—C6—Fe169.53 (16)
C3—Fe1—C8125.99 (10)C10—C6—Fe169.87 (15)
C5—Fe1—C8116.19 (10)C7—C6—H6126.0
C7—Fe1—C840.88 (11)C10—C6—H6126.0
C1—Fe1—C469.23 (10)Fe1—C6—H6126.2
C3—Fe1—C440.44 (11)C6—C7—C8108.0 (2)
C5—Fe1—C440.73 (10)C6—C7—Fe169.96 (16)
C7—Fe1—C4127.67 (11)C8—C7—Fe169.58 (14)
C8—Fe1—C4105.51 (11)C6—C7—H7126.0
C1—Fe1—C9167.90 (11)C8—C7—H7126.0
C3—Fe1—C9106.26 (10)Fe1—C7—H7126.0
C5—Fe1—C9148.77 (10)C9—C8—C7107.7 (2)
C7—Fe1—C968.30 (11)C9—C8—Fe169.92 (15)
C8—Fe1—C940.52 (11)C7—C8—Fe169.54 (15)
C4—Fe1—C9115.15 (11)C9—C8—H8126.1
C1—Fe1—C6110.27 (10)C7—C8—H8126.1
C3—Fe1—C6152.25 (11)Fe1—C8—H8126.0
C5—Fe1—C6130.56 (11)C10—C9—C8108.4 (2)
C7—Fe1—C640.51 (11)C10—C9—Fe170.03 (15)
C8—Fe1—C668.39 (11)C8—C9—Fe169.56 (15)
C4—Fe1—C6167.15 (11)C10—C9—H9125.8
C9—Fe1—C668.15 (11)C8—C9—H9125.8
C1—Fe1—C241.76 (10)Fe1—C9—H9126.2
C3—Fe1—C241.01 (10)C9—C10—C6107.9 (2)
C5—Fe1—C269.59 (10)C9—C10—Fe169.63 (15)
C7—Fe1—C2153.28 (10)C6—C10—Fe169.49 (15)
C8—Fe1—C2164.83 (10)C9—C10—H10126.0
C4—Fe1—C269.09 (10)C6—C10—H10126.0
C9—Fe1—C2127.66 (10)Fe1—C10—H10126.4
C6—Fe1—C2119.66 (11)C111—C11—C12121.4 (2)
C1—Fe1—C10130.76 (11)C111—C11—P1128.54 (19)
C3—Fe1—C10117.44 (11)C12—C11—P1109.88 (18)
C5—Fe1—C10169.60 (10)C114—C12—C11118.7 (2)
C7—Fe1—C1068.25 (11)C114—C12—C13127.7 (2)
C8—Fe1—C1068.18 (11)C11—C12—C13113.6 (2)
C4—Fe1—C10149.14 (11)C414—C13—C14119.3 (2)
C9—Fe1—C1040.34 (10)C414—C13—C12126.9 (2)
C6—Fe1—C1040.63 (11)C14—C13—C12113.8 (2)
C2—Fe1—C10108.73 (11)C411—C14—C13121.3 (2)
C1—P1—C14108.90 (12)C411—C14—P1128.0 (2)
C1—P1—C11103.48 (10)C13—C14—P1110.28 (18)
C14—P1—C1192.23 (11)O21—C21—C2112.9 (2)
C1—P1—S1115.52 (9)O21—C21—H21A109.0
C14—P1—S1114.94 (8)C2—C21—H21A109.0
C11—P1—S1118.96 (9)O21—C21—H21B109.0
C21—O21—H21109.5C2—C21—H21B109.0
C5—C1—C2107.7 (2)H21A—C21—H21B107.8
C5—C1—P1124.86 (19)C112—C111—C11118.6 (2)
C2—C1—P1127.1 (2)C112—C111—H111120.7
C5—C1—Fe169.80 (13)C11—C111—H111120.7
C2—C1—Fe169.84 (13)C111—C112—C113120.5 (2)
P1—C1—Fe1130.82 (11)C111—C112—H112119.8
C3—C2—C1106.4 (2)C113—C112—H112119.8
C3—C2—C21125.4 (2)C114—C113—C112120.5 (2)
C1—C2—C21128.2 (2)C114—C113—H113119.7
C3—C2—Fe169.10 (13)C112—C113—H113119.7
C1—C2—Fe168.41 (12)C113—C114—C12120.2 (2)
C21—C2—Fe1128.15 (18)C113—C114—H114119.9
C4—C3—C2109.5 (2)C12—C114—H114119.9
C4—C3—Fe170.12 (14)C14—C411—C412118.7 (2)
C2—C3—Fe169.88 (13)C14—C411—H411120.6
C4—C3—H3125.2C412—C411—H411120.6
C2—C3—H3125.2C413—C412—C411120.0 (2)
Fe1—C3—H3126.3C413—C412—H412120.0
C3—C4—C5108.2 (2)C411—C412—H412120.0
C3—C4—Fe169.44 (14)C412—C413—C414121.8 (2)
C5—C4—Fe169.42 (14)C412—C413—H413119.1
C3—C4—H4125.9C414—C413—H413119.1
C5—C4—H4125.9C413—C414—C13118.9 (2)
Fe1—C4—H4126.8C413—C414—H414120.6
C4—C5—C1108.2 (2)C13—C414—H414120.6
C3—C2—C21—O21103.5 (3)C1—C2—C21—O2175.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O21—H21···S1i0.822.733.426 (2)144
C114—H114···S1ii0.932.783.633 (3)153
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1/2, z+1.
(VIII) (SFc)-diphenylphosphino-[2-(2-dibenzo-1H-1λ5-phospholyl)ferrocen-1- yl]methane top
Crystal data top
[Fe(C5H5)(C30H23P2)]F(000) = 1176
Mr = 566.36Dx = 1.369 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 8000 reflections
a = 10.9693 (10) Åθ = 2.1–26.1°
b = 11.0436 (10) ŵ = 0.69 mm1
c = 22.678 (2) ÅT = 180 K
V = 2747.2 (4) Å3Prism, yellow
Z = 40.2 × 0.12 × 0.1 mm
Data collection top
Stoe IPDS
diffractometer
5395 independent reflections
Radiation source: fine-focus sealed tube3205 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.145
ϕ scansθmax = 26.1°, θmin = 2.1°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1313
Tmin = 0.852, Tmax = 0.894k = 1313
22007 measured reflectionsl = 2727
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0476P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max = 0.004
5395 reflectionsΔρmax = 0.97 e Å3
343 parametersΔρmin = 0.47 e Å3
0 restraintsAbsolute structure: Flack (1983), with 2333 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (3)
Crystal data top
[Fe(C5H5)(C30H23P2)]V = 2747.2 (4) Å3
Mr = 566.36Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.9693 (10) ŵ = 0.69 mm1
b = 11.0436 (10) ÅT = 180 K
c = 22.678 (2) Å0.2 × 0.12 × 0.1 mm
Data collection top
Stoe IPDS
diffractometer
5395 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
3205 reflections with I > 2σ(I)
Tmin = 0.852, Tmax = 0.894Rint = 0.145
22007 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.126Δρmax = 0.97 e Å3
S = 0.93Δρmin = 0.47 e Å3
5395 reflectionsAbsolute structure: Flack (1983), with 2333 Friedel pairs
343 parametersAbsolute structure parameter: 0.01 (3)
0 restraints
Special details top

Experimental. The data were collected on a Stoe Imaging Plate Diffraction System (IPDS). The crystal-to-detector distance was 70 mm. 179 frames (5 min per frame) were obtained with 0 < ϕ < 250.6° and with the crystals oscillated through 1.4° in ϕ. Coverage of the unique set was over 99.4% complete to at least 26.06°. Crystal decay was monitored by measuring 200 reflections per frame.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.78911 (8)0.88531 (7)0.46301 (4)0.0263 (2)
P10.62209 (16)0.82877 (15)0.33563 (8)0.0348 (4)
P20.76292 (14)0.49338 (13)0.37331 (7)0.0314 (4)
C10.6596 (5)0.8045 (5)0.4121 (3)0.0278 (14)
C20.7485 (5)0.7162 (5)0.4324 (3)0.0267 (13)
C30.7465 (6)0.7179 (5)0.4958 (3)0.0319 (15)
H30.79380.66990.52050.038*
C40.6601 (6)0.8056 (5)0.5139 (3)0.0348 (16)
H40.64200.82560.55280.042*
C50.6055 (5)0.8581 (5)0.4633 (3)0.0323 (14)
H50.54500.91710.46340.039*
C60.9671 (6)0.9196 (5)0.4426 (3)0.0354 (16)
H61.02040.86640.42400.042*
C70.9487 (6)0.9291 (5)0.5036 (3)0.0368 (16)
H70.98800.88350.53240.044*
C80.8605 (6)1.0197 (6)0.5139 (3)0.0387 (16)
H80.83151.04420.55060.046*
C90.8234 (5)1.0671 (5)0.4582 (3)0.0349 (15)
H90.76591.12760.45190.042*
C100.8908 (5)1.0048 (5)0.4140 (3)0.0300 (14)
H100.88561.01770.37360.036*
C110.5585 (6)0.9812 (6)0.3312 (3)0.0360 (15)
C120.4327 (6)0.9794 (6)0.3202 (3)0.0388 (16)
C130.3809 (6)0.8549 (6)0.3212 (3)0.0359 (15)
C140.4690 (6)0.7654 (5)0.3307 (3)0.0346 (15)
C210.8310 (6)0.6416 (5)0.3945 (3)0.0331 (15)
H21A0.90660.62720.41550.040*
H21B0.85020.68680.35900.040*
C1110.6198 (7)1.0916 (5)0.3314 (3)0.0404 (15)
H1110.70351.09310.33800.048*
C1120.5581 (8)1.1986 (6)0.3222 (3)0.0452 (19)
H1120.59931.27210.32380.054*
C1130.4332 (8)1.1957 (7)0.3103 (3)0.049 (2)
H1130.39171.26770.30320.059*
C1140.3699 (7)1.0861 (6)0.3091 (3)0.0469 (18)
H1140.28681.08460.30100.056*
C2110.7625 (5)0.4160 (4)0.4447 (3)0.0298 (14)
C2120.6541 (5)0.3681 (5)0.4649 (3)0.0346 (14)
H2120.58550.37070.44080.041*
C2130.6454 (6)0.3158 (6)0.5208 (3)0.0417 (17)
H2130.57150.28450.53390.050*
C2140.7461 (7)0.3110 (6)0.5561 (3)0.0442 (18)
H2140.74060.27740.59360.053*
C2150.8568 (6)0.3561 (5)0.5361 (3)0.0404 (15)
H2150.92560.35140.55990.049*
C2160.8650 (6)0.4082 (5)0.4804 (3)0.0347 (15)
H2160.93940.43790.46710.042*
C2210.8944 (6)0.4230 (5)0.3373 (3)0.0281 (13)
C2220.9589 (6)0.4865 (6)0.2933 (3)0.0382 (16)
H2220.93730.56560.28400.046*
C2231.0547 (7)0.4309 (6)0.2639 (3)0.0424 (17)
H2231.09790.47430.23570.051*
C2241.0869 (6)0.3127 (6)0.2758 (3)0.0394 (16)
H2241.15060.27650.25530.047*
C2251.0245 (6)0.2485 (6)0.3181 (3)0.0417 (18)
H2251.04620.16910.32680.050*
C2260.9276 (6)0.3044 (5)0.3478 (3)0.0367 (16)
H2260.88420.26000.37570.044*
C4110.4343 (6)0.6449 (6)0.3326 (3)0.0419 (17)
H4110.49270.58500.33830.050*
C4120.3123 (7)0.6131 (7)0.3260 (3)0.0533 (19)
H4120.28850.53240.32790.064*
C4130.2263 (7)0.7043 (7)0.3164 (3)0.0531 (19)
H4130.14490.68320.31150.064*
C4140.2588 (6)0.8233 (7)0.3141 (3)0.0490 (18)
H4140.20020.88270.30790.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0289 (4)0.0225 (4)0.0276 (4)0.0013 (4)0.0009 (4)0.0000 (4)
P10.0337 (9)0.0381 (9)0.0327 (9)0.0017 (7)0.0058 (8)0.0026 (8)
P20.0344 (10)0.0249 (7)0.0351 (8)0.0005 (6)0.0047 (8)0.0015 (6)
C10.024 (3)0.024 (3)0.036 (4)0.005 (2)0.001 (3)0.001 (2)
C20.024 (3)0.031 (3)0.025 (3)0.004 (2)0.004 (3)0.001 (2)
C30.032 (4)0.029 (3)0.034 (4)0.005 (3)0.002 (3)0.008 (3)
C40.040 (4)0.037 (4)0.028 (3)0.008 (3)0.003 (3)0.003 (3)
C50.030 (3)0.034 (3)0.034 (3)0.003 (2)0.002 (3)0.003 (3)
C60.039 (4)0.026 (3)0.042 (4)0.005 (3)0.003 (3)0.003 (3)
C70.043 (4)0.035 (3)0.033 (4)0.000 (3)0.009 (3)0.004 (3)
C80.041 (4)0.039 (4)0.036 (4)0.001 (3)0.001 (3)0.006 (3)
C90.037 (4)0.025 (3)0.043 (4)0.001 (2)0.007 (3)0.001 (3)
C100.035 (4)0.022 (3)0.033 (3)0.002 (3)0.003 (3)0.001 (2)
C110.044 (4)0.046 (4)0.018 (3)0.001 (3)0.005 (3)0.004 (3)
C120.040 (4)0.049 (4)0.028 (4)0.007 (3)0.009 (3)0.004 (3)
C130.027 (3)0.051 (4)0.029 (4)0.000 (3)0.003 (3)0.001 (3)
C140.040 (4)0.037 (3)0.027 (3)0.002 (3)0.000 (3)0.002 (3)
C210.037 (4)0.024 (3)0.038 (4)0.003 (2)0.003 (3)0.001 (3)
C1110.042 (4)0.038 (4)0.041 (4)0.003 (3)0.005 (3)0.011 (3)
C1120.062 (5)0.042 (4)0.031 (4)0.001 (3)0.000 (4)0.012 (3)
C1130.068 (6)0.052 (5)0.028 (4)0.013 (4)0.004 (4)0.003 (3)
C1140.052 (4)0.058 (5)0.031 (4)0.016 (4)0.009 (4)0.004 (3)
C2110.030 (3)0.022 (3)0.038 (3)0.001 (2)0.005 (3)0.005 (2)
C2120.032 (3)0.032 (3)0.040 (3)0.002 (2)0.007 (3)0.004 (3)
C2130.040 (4)0.039 (4)0.046 (5)0.002 (3)0.015 (4)0.005 (3)
C2140.057 (5)0.042 (4)0.034 (4)0.003 (3)0.007 (3)0.003 (3)
C2150.044 (4)0.048 (4)0.030 (3)0.007 (3)0.005 (4)0.000 (3)
C2160.033 (3)0.032 (3)0.039 (4)0.003 (3)0.001 (3)0.003 (3)
C2210.042 (4)0.023 (3)0.020 (3)0.006 (2)0.007 (3)0.000 (2)
C2220.055 (4)0.029 (3)0.031 (4)0.003 (3)0.004 (3)0.005 (3)
C2230.053 (4)0.043 (4)0.032 (4)0.011 (3)0.012 (4)0.000 (3)
C2240.040 (4)0.045 (4)0.033 (4)0.004 (3)0.004 (3)0.008 (3)
C2250.047 (5)0.031 (3)0.047 (5)0.004 (3)0.000 (4)0.006 (3)
C2260.051 (4)0.020 (3)0.039 (4)0.007 (3)0.006 (3)0.002 (3)
C4110.038 (4)0.049 (4)0.039 (4)0.007 (3)0.011 (3)0.005 (3)
C4120.051 (5)0.067 (4)0.042 (4)0.023 (4)0.014 (4)0.004 (4)
C4130.041 (5)0.075 (5)0.043 (4)0.014 (4)0.006 (4)0.007 (4)
C4140.036 (4)0.066 (5)0.045 (4)0.002 (3)0.009 (3)0.001 (4)
Geometric parameters (Å, º) top
Fe1—C42.027 (6)C13—C141.400 (9)
Fe1—C12.036 (6)C14—C4111.384 (9)
Fe1—C52.036 (6)C21—H21A0.9700
Fe1—C72.037 (7)C21—H21B0.9700
Fe1—C82.037 (6)C111—C1121.378 (9)
Fe1—C22.042 (5)C111—H1110.9300
Fe1—C62.042 (7)C112—C1131.396 (10)
Fe1—C92.046 (5)C112—H1120.9300
Fe1—C32.046 (5)C113—C1141.396 (10)
Fe1—C102.054 (6)C113—H1130.9300
P1—C11.803 (6)C114—H1140.9300
P1—C141.823 (7)C211—C2121.380 (8)
P1—C111.825 (7)C211—C2161.388 (8)
P2—C2211.830 (6)C212—C2131.398 (9)
P2—C2111.831 (6)C212—H2120.9300
P2—C211.862 (6)C213—C2141.365 (9)
C1—C51.432 (9)C213—H2130.9300
C1—C21.454 (8)C214—C2151.389 (9)
C2—C31.437 (8)C214—H2140.9300
C2—C211.496 (8)C215—C2161.389 (9)
C3—C41.417 (8)C215—H2150.9300
C3—H30.9300C216—H2160.9300
C4—C51.417 (9)C221—C2261.381 (8)
C4—H40.9300C221—C2221.409 (8)
C5—H50.9300C222—C2231.387 (9)
C6—C71.403 (9)C222—H2220.9300
C6—C101.416 (8)C223—C2241.379 (9)
C6—H60.9300C223—H2230.9300
C7—C81.411 (9)C224—C2251.374 (9)
C7—H70.9300C224—H2240.9300
C8—C91.428 (9)C225—C2261.402 (9)
C8—H80.9300C225—H2250.9300
C9—C101.421 (9)C226—H2260.9300
C9—H90.9300C411—C4121.391 (9)
C10—H100.9300C411—H4110.9300
C11—C1111.392 (9)C412—C4131.396 (11)
C11—C121.402 (9)C412—H4120.9300
C12—C1141.388 (9)C413—C4141.363 (10)
C12—C131.488 (9)C413—H4130.9300
C13—C4141.393 (9)C414—H4140.9300
C4—Fe1—C169.2 (2)C9—C8—Fe169.9 (3)
C4—Fe1—C540.8 (3)C7—C8—H8126.0
C1—Fe1—C541.2 (2)C9—C8—H8126.0
C4—Fe1—C7116.5 (3)Fe1—C8—H8126.0
C1—Fe1—C7163.8 (2)C10—C9—C8107.3 (5)
C5—Fe1—C7152.1 (3)C10—C9—Fe170.0 (3)
C4—Fe1—C8105.2 (3)C8—C9—Fe169.2 (3)
C1—Fe1—C8155.3 (2)C10—C9—H9126.3
C5—Fe1—C8119.1 (3)C8—C9—H9126.3
C7—Fe1—C840.5 (2)Fe1—C9—H9126.0
C4—Fe1—C269.1 (2)C6—C10—C9107.9 (5)
C1—Fe1—C241.8 (2)C6—C10—Fe169.3 (4)
C5—Fe1—C269.5 (2)C9—C10—Fe169.4 (3)
C7—Fe1—C2124.0 (2)C6—C10—H10126.1
C8—Fe1—C2160.6 (2)C9—C10—H10126.1
C4—Fe1—C6151.3 (3)Fe1—C10—H10126.8
C1—Fe1—C6128.3 (2)C111—C11—C12119.2 (6)
C5—Fe1—C6166.9 (3)C111—C11—P1128.6 (5)
C7—Fe1—C640.2 (3)C12—C11—P1111.9 (5)
C8—Fe1—C668.0 (3)C114—C12—C11120.6 (7)
C2—Fe1—C6107.5 (2)C114—C12—C13126.7 (6)
C4—Fe1—C9125.8 (3)C11—C12—C13112.7 (6)
C1—Fe1—C9121.9 (2)C414—C13—C14120.3 (6)
C5—Fe1—C9109.1 (2)C414—C13—C12126.7 (6)
C7—Fe1—C968.5 (2)C14—C13—C12113.0 (6)
C8—Fe1—C940.9 (3)C411—C14—C13119.5 (6)
C2—Fe1—C9156.9 (3)C411—C14—P1128.4 (5)
C6—Fe1—C968.3 (2)C13—C14—P1112.0 (5)
C4—Fe1—C340.7 (2)C2—C21—P2112.9 (4)
C1—Fe1—C369.6 (2)C2—C21—H21A109.0
C5—Fe1—C368.9 (2)P2—C21—H21A109.0
C7—Fe1—C3104.3 (2)C2—C21—H21B109.0
C8—Fe1—C3122.7 (3)P2—C21—H21B109.0
C2—Fe1—C341.2 (2)H21A—C21—H21B107.8
C6—Fe1—C3117.9 (2)C112—C111—C11120.9 (7)
C9—Fe1—C3161.5 (3)C112—C111—H111119.6
C4—Fe1—C10165.0 (2)C11—C111—H111119.6
C1—Fe1—C10110.7 (2)C111—C112—C113119.5 (7)
C5—Fe1—C10129.3 (2)C111—C112—H112120.3
C7—Fe1—C1068.0 (3)C113—C112—H112120.3
C8—Fe1—C1068.3 (2)C112—C113—C114120.8 (7)
C2—Fe1—C10121.5 (2)C112—C113—H113119.6
C6—Fe1—C1040.5 (2)C114—C113—H113119.6
C9—Fe1—C1040.6 (2)C12—C114—C113119.0 (7)
C3—Fe1—C10154.3 (2)C12—C114—H114120.5
C1—P1—C14102.2 (3)C113—C114—H114120.5
C1—P1—C11106.1 (3)C212—C211—C216118.7 (6)
C14—P1—C1189.9 (3)C212—C211—P2118.3 (5)
C221—P2—C211101.4 (3)C216—C211—P2122.9 (5)
C221—P2—C2199.9 (3)C211—C212—C213121.2 (6)
C211—P2—C21100.6 (3)C211—C212—H212119.4
C5—C1—C2107.4 (5)C213—C212—H212119.4
C5—C1—P1128.7 (4)C214—C213—C212119.5 (6)
C2—C1—P1123.8 (4)C214—C213—H213120.3
C5—C1—Fe169.4 (3)C212—C213—H213120.3
C2—C1—Fe169.3 (3)C213—C214—C215120.2 (6)
P1—C1—Fe1129.8 (3)C213—C214—H214119.9
C3—C2—C1107.3 (5)C215—C214—H214119.9
C3—C2—C21126.2 (5)C214—C215—C216120.1 (6)
C1—C2—C21126.4 (5)C214—C215—H215119.9
C3—C2—Fe169.6 (3)C216—C215—H215119.9
C1—C2—Fe168.9 (3)C211—C216—C215120.2 (6)
C21—C2—Fe1124.5 (4)C211—C216—H216119.9
C4—C3—C2108.0 (6)C215—C216—H216119.9
C4—C3—Fe168.9 (3)C226—C221—C222117.5 (6)
C2—C3—Fe169.2 (3)C226—C221—P2122.2 (5)
C4—C3—H3126.0C222—C221—P2120.0 (4)
C2—C3—H3126.0C223—C222—C221120.1 (6)
Fe1—C3—H3127.4C223—C222—H222120.0
C3—C4—C5109.1 (6)C221—C222—H222120.0
C3—C4—Fe170.4 (3)C224—C223—C222121.2 (6)
C5—C4—Fe169.9 (4)C224—C223—H223119.4
C3—C4—H4125.4C222—C223—H223119.4
C5—C4—H4125.4C225—C224—C223119.8 (6)
Fe1—C4—H4125.8C225—C224—H224120.1
C4—C5—C1108.2 (5)C223—C224—H224120.1
C4—C5—Fe169.2 (3)C224—C225—C226119.1 (6)
C1—C5—Fe169.4 (3)C224—C225—H225120.4
C4—C5—H5125.9C226—C225—H225120.4
C1—C5—H5125.9C221—C226—C225122.3 (6)
Fe1—C5—H5127.0C221—C226—H226118.9
C7—C6—C10108.5 (6)C225—C226—H226118.9
C7—C6—Fe169.7 (4)C14—C411—C412120.3 (7)
C10—C6—Fe170.2 (4)C14—C411—H411119.9
C7—C6—H6125.8C412—C411—H411119.9
C10—C6—H6125.8C411—C412—C413119.0 (7)
Fe1—C6—H6125.9C411—C412—H412120.5
C6—C7—C8108.3 (6)C413—C412—H412120.5
C6—C7—Fe170.1 (4)C414—C413—C412121.6 (7)
C8—C7—Fe169.7 (4)C414—C413—H413119.2
C6—C7—H7125.8C412—C413—H413119.2
C8—C7—H7125.8C413—C414—C13119.3 (7)
Fe1—C7—H7125.9C413—C414—H414120.4
C7—C8—C9108.0 (6)C13—C414—H414120.4
C7—C8—Fe169.7 (4)

Experimental details

(III)(V)(VIII)
Crystal data
Chemical formula[Fe(C5H5)(C23H22O3PS)][Fe(C5H5)(C18H14OPS)][Fe(C5H5)(C30H23P2)]
Mr530.38430.26566.36
Crystal system, space groupMonoclinic, P21Monoclinic, P21Orthorhombic, P212121
Temperature (K)180180180
a, b, c (Å)7.4885 (7), 9.5175 (8), 16.8193 (13)7.1110 (13), 12.862 (3), 10.223 (2)10.9693 (10), 11.0436 (10), 22.678 (2)
α, β, γ (°)90, 91.067 (7), 9090, 96.73 (2), 9090, 90, 90
V3)1198.53 (18)928.6 (3)2747.2 (4)
Z224
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.811.020.69
Crystal size (mm)0.36 × 0.28 × 0.220.48 × 0.13 × 0.120.2 × 0.12 × 0.1
Data collection
DiffractometerOxford XCALIBUR
diffractometer
Stoe IPDS
diffractometer
Stoe IPDS
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Multi-scan
(Blessing, 1995)
Tmin, Tmax0.598, 0.8730.852, 0.894
No. of measured, independent and
observed [I > 2σ(I)] reflections
10617, 4383, 4045 9253, 3619, 3380 22007, 5395, 3205
Rint0.0230.0500.145
(sin θ/λ)max1)0.6670.6190.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.066, 1.07 0.026, 0.061, 0.98 0.057, 0.126, 0.93
No. of reflections438336195395
No. of parameters308245343
No. of restraints110
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.330.36, 0.250.97, 0.47
Absolute structureFlack (1983), with 1249 Friedel pairsFlack (1983), with 1722 Friedel pairsFlack (1983), with 2333 Friedel pairs
Absolute structure parameter0.00 (1)0.015 (12)0.01 (3)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2003), IPDS Software (Stoe & Cie, 2000), CrysAlis RED (Oxford Diffraction, 2003), IPDS Software, CrysAlis RED, X-RED (Stoe & Cie, 1996), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) for (V) top
D—H···AD—HH···AD···AD—H···A
O21—H21···S1i0.822.733.426 (2)144
C114—H114···S1ii0.932.783.633 (3)153
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1/2, z+1.
Selected distances (Å) within the three title compounds top
CompoundFe1-Cg1Fe1-Cg2C1-P1P1-S1C2-C21
(III)1.639 (5)1.653 (5)1.796 (2)1.9384 (7)1.503 (3)
c1.645 (9)1.660 (10)1.790 (3)1.9487 (11)1.504 (4)
(V)1.636 (2)1.651 (2)1.785 (2)1.9555 (9)1.490 (4)
c1.636 (8)1.646 (8)1.7901 (18)1.9677 (6)1.505 (3)
d1.633 (2)1.652 (2)1.7885 (14)1.9645 (6)1.489 (2)
(VIII)1.6337 (8)1.6503 (8)1.803 (6)1.496 (8)
c1.6392 (4)1.6588 (4)1.809 (3)1.515 (5)
a1.6375 (8)1.656 (1)1.790 (2)1.9567 (6)1.485 (2)
b1.6443 (7)1.6596 (7)1.795 (3)1.9561 (5)1.505 (2)
References: (a) Stepnicka & Císarová (2002). (b) Stepnicka & Císarová (2003). (c) Lopez Cortés et al. (2006). (d) Mourgues et al. (2003).
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds