Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229615016393/sk3600sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229615016393/sk3600LaLi3Bi2sup2.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229615016393/sk3600CeLi3Bi2sup3.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229615016393/sk3600PrLi3Bi2sup4.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229615016393/sk3600NdLi3Bi2sup5.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229615016393/sk3600SmLi3Bi2sup6.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229615016393/sk3600GdLi3Bi2sup7.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229615016393/sk3600TbLi3Bi2sup8.hkl |
CCDC references: 1421999; 1421998; 1421997; 1421996; 1421995; 1421994; 1421993
Zintl phases are a class of compounds that provokes the interest of a number of solid-state chemists around the globe. They are renowned for their diverse crystal structures with rich structural chemistry (McNeil et al., 1973; Schäfer et al., 1973; Sevov, 2002; Kauzlarich et al., 2007), but recently they have captured the attention of the thermoelectric community due to some remarkable heat- and charge-transport properties found within their realm. For example, Yb14MnSb11, a Zintl phase with a very complicated structure, has become known as the best thermoelectric p-type material for high-temperature applications (Kauzlarich et al., 2007; Brown et al., 2006). The promise of this class of compounds as new thermoelectric materials has renewed the interest in exploratory studies for new Zintl phases with complex crystal structures, suitable electrical conductivity, and low thermal conductivity (Kauzlarich et al., 2007).
In the classical description, a Zintl phase contains electropositive alkali or alkaline-earth metals, and the main-group elements from groups 13–15. In such compounds, the electropositive metals donate their electrons to the more electronegative atoms, resulting in the formation of cations and (poly)anions, so that each element achieves complete octet of electrons in their valence shells (Schäfer et al., 1973; Sevov, 2002). The classical Zintl phases are therefore diamagnetic (or exhibit temperature-independent paramagnetism), and valence-precise insulators/semiconductors, by nature (Schäfer et al., 1973; Sevov, 2002).
In recent years, however, there have been numerous examples of compounds that do not completely follow the traditional Zintl ideas, yet, can be still rationalized as consisting of anions of heavier elements (from groups 13–15) and counter-cations for group 1, 2, or 3. Such `borderline' Zintl phases have a wide range of electrical properties ranging from narrow-band-gap semiconductors (e.g. Yb5In2Sb6 and Yb5Ga2Sb6; Kim et al., 2000; Subbarao et al., 2013), metals [e.g. Ba3Sn4As6 (Lam & Mar, 2001), Ca14MnSb11 (Rehr et al., 1994), etc.], and even superconductors such as BaSn3 (TC = 4.3 K; Schäfer et al., 2011) and SrSn3 (TC = 5.4 K) (Fässler & Hoffmann, 2000).
Inspired from these discoveries, over the last decade, our research group has been actively involved in the field of new solid-state materials, Zintl phases, and polar intermetallics more specifically. We have identified several new compounds in the last two years alone (Makongo et al., 2014; Liu et al., 2015; Wang et al., 2015; Zhang et al., 2015). Over the course of the work, our efforts to alter the structures and fine-tune the electronic properties of rare-earth metals germanides we had worked on previously provided some unexpected results. We had hypothesized that by substitution of the very small lithium ions at rare-earth metal positions (RE hereafter), magnetic interactions could be modulated. Instead, we discovered a wealth of new compounds revealing the dual role of Li, as both a cation (electron-donor) and a partner in the covalent bonding. Examples of such compounds include RELiGe2 (RE = La–Nd, Sm, and Eu; Bobev et al., 2012), RE2Li2Ge3 and RE3Li4Ge4 (Guo et al. (Guo, You & Bobev, 2012), and RE7Li8Ge10 and RE11Li12Ge16 (RE = La–Nd, Sm; Guo, You, Jung & Bobev, 2012).
Expanding on the same ideas, we have turned our focus recently to Li-bearing pnictides for thermoelectric applications. During our early exploratory studies of the ternary RE–Li–Pn (Pn = Pnictogen = group 15) systems, we encountered a number of new phases. Some were surprisingly simple, such as RELi3Sb2 (RE = Ce–Nd, Sm, Gd–Ho; Schäfer et al., 2013). Some of the members of the family had been recognized before, but had been structurally misrepresented. Our work showed that they all crystallize in the LaLi3Sb2 structure type (Grund et al., 1984). As we noted earlier, some of the compounds we dealt with had been synthesized by Schuster and co-workers, but were originally reported with the formulae RELi2Sb2 (CaAl2Si2 type, space group P3m1, Pearson symbol hP5) (Schuster & Fischer, 1979; Fischer & Schuster, 1980, 1982; Zwiener et al., 1981; Grund et al., 1984). Subsequent neutron diffraction studies revealed that these structures actually contain an additional Li atom (per formula, augmenting the compositions to RELi3Pn2, which unlike the electron deficient RELi2Pn2 (RE3+)(Li1+)2(Pn3-)2 can be charge-balanced as (RE3+)(Li1+)3 (Pn3-)2 (Grund et al., 1984).
In this report, we present the structural aspects of the isotypic bismuthides. We detail the crystal structures of all seven RELi3Bi2 (RE = La, Ce, Pr, Nd, Sm, Gd, and Tb) compounds, established from single-crystal X-ray diffraction work. The title compounds are isostructural and isoelectronic, and crystallize in the same structure as their Sb-based counterparts, namely, the LaLi3Sb2 structure type (Grund et al., 1984).
The RELi3Bi2 (RE = La–Sm, Gd, and Tb) compounds were obtained by high-temperature solid-state reactions of the respective elements in sealed niobium ampoules. The following reactants were used for the syntheses: Li, La, Ce, Pr, Nd, Sm, Gd, and Bi. The metals were purchased from Alfa or Sigma–Aldrich with stated purity higher than 99.9 wt%.
All chemical manipulations were performed either inside an argon-filled dry glove-box or under vacuum. The surface of the lithium and the rare-earth metals were first shaved to remove any oxidized layer prior to use. The reactants were weighed in stoichiometric ratios with a total mass of approximately 0.35 to 0.6 g and transferred into Nb tubes, which were then subsequently welded under an argon atmosphere. Further, these Nb ampoules were encapsulated inside fused silica tubes and sealed under vacuum (ca 10 -4 Torr; 1 Torr = 133.322 Pa) to avoid oxidation during the heat treatment. These silica tubes were then placed inside temperature-controlled furnaces. The optimized synthetic procedure involves heating the mixtures to 1173 K at a rate of 100 K h-1, equilibration for 24 h before cooling to 1073 K with a rate of 5 K h-1. The reaction mixtures were annealed at 1073 K for 96 h and finally cooled to 373 K with a cooling rate of 10 K h-1.
The products were irregularly shaped small crystals with a silver tinge. The products were not homogeneous and the targeted single crystals were selected manually using an optical microscope (based on appearance and confirmed by subsequent single-crystal X-ray diffraction work). The side products are as yet unidentified.
All the compounds in this series were found to be air and moisture sensitive.
Energy-dispersive X-ray (EDX) analyses were carried out on a Jeol 7400 F electron microscope, equipped with an INCA-OXFORD energy-dispersive spectrometer. The chemical compositions could not be reliably established because the EDX method is not sensitive enough to allow quantitative determination for Li, especially in the presence of very heavy elements.
Powder patterns were taken at room temperature on a Rigaku MiniFlex powder diffractometer using filtered Cu Kα radiation (λ = 1.54056 Å). The data were used for phase-dentification only. Irrespective of the method of synthesis, single-phase product was never obtained.
Crystal data, data collection and structure refinement details are summarized in Table 1. Due to the air sensitivity, the single crystals were selected inside the argon-filled glove-box under an optical microscope. The crystals were cut with a scalpel to suitable (smaller) sizes. The X-ray absorption coefficients are very high; therefore we tried to minimize these effects by working with crystals in the range of 0.050–0.060 mm or smaller. Inspection and cutting were carried out in a drop of Paratone oil. The selected specimens were scooped up with micro-loops (obtained from MiTeGen) and transferred immediately to the single-crystal X-ray diffractometer. A stream of cold nitrogen was used to protect the crystals from the ambient air.
After the quality of the crystals was confirmed by rapid scans, full spheres of intensity data were collected for all seven compounds. The raw data were integrated using the APEX2 software package (Bruker, 2007). The centrosymmetric trigonal space group P3m1 (No. 164) was chosen based on the (absence of) systematic absences and intensity statistics. All crystal structures were solved in a straightforward manner using direct methods, which provided the positions of the Bi and rare-earth metal atoms at the crystallographic sites 2d and 1a, respectively. Subsequent full-matrix least-squares/difference Fourier cycles were performed to locate the remaining two Li atoms from the Fourier maps. The isotropic refinement converged smoothly to satisfactory residuals for all refinements. The isotropic displacement parameters for the Li atoms (especially for atom Li2 in an octahedral coordination) were larger. A small disorder of the small Li atom in an octahedral hole, formed by hexagonal close packing of Bi atoms, can be proposed, but could not be reliably established. Hence, the isotropic displacement parameters of the Li2 atoms were constrained to those of the Li1 atoms using the EADP command. In the final least-squares cycles, the Bi and rare-earth metal atoms were refined anisotropically.
The final difference Fourier maps were generally flat. The small residual peaks are located at (2/3, 1/3, 0.37) for LaLi3Bi2 (1.23 e- Å-3), which is ca 0.16 Å from Li1; at (2/3, 1/3, 0.36) for CeLi3Bi2 (1.29 e- Å-3), which is ca 0.1 Å from Li1; at (2/3, 1/3, 0.98) for PrLi3Bi2 (1.62 e- Å-3), which is ca 1.7 Å from Bi1; at (0.82, 0.41, 0.70) for NdLi3Bi2 (1.80 e- Å-3), which is ca 0.7 Å from Bi1; at (0.19, 0.19, 0) for SmLi3Bi2 (1.10 e- Å-3), which is ca 0.9 Å from Sm1; at (2/3, 1/3, 0.86) for GdLi3Bi2 (2.57 e- Å-3) which is ca 0.8 Å from Bi1; at (0.56, 0.11, 0.74) for TbLi3Bi2 (1.17 e- Å-3) which is ca 0.9 Å from Bi1. The deepest holes (1–3 e- Å-3) were almost always in the proximity of lithium, attesting to the difficulty of refining light atoms in the presence of nearby very heavy elements.
The site-occupancy factors (sof) of the RE and Bi atoms were refined by freeing the occupancy of each individual site, while the remaining ones [sites?]were kept fixed. These trial refinements did not indicate any vacancies.
Before preparing the material for publication, for uniformity, all atomic coordinates were standardized using the program STRUCTURE TIDY (Gelato & Parthé, 1987).
At the outset, we point out that the syntheses and the structural determinations of NdLi3Bi2 and TbLi3Bi2 are being reported for the very first time. The other compounds in the series have been mentioned in various papers (Winter & Pöttgen, 2014; Grund et al., 1984) and can be found in the structural databases, but only their unit-cell parameters have been deduced from the respective powder X-ray diffraction patterns, i.e. the structures have never been refined. We also note here that our single-crystal unit-cell parameters are in excellent agreement with the literature.
A representation of this trigonal structure is shown in Fig. 1. The space group is P3m1 and the structure bears the Pearson symbol hP6. The asymmetric unit of the structure contains four atoms: one RE atom (site symmetry 3m.), two Li atoms [Li1 (3m.) and Li2 (3m.)], and one Bi atom (3m.). The unit-cell parameters (a and c constants) gradually decrease on moving from LaLi3Bi2 to TbLi3Bi2, as expected, following the lanthanide contraction and the diminishing size of the rare-earth metal atoms.
The crystal structure of these compounds can be visualized as a close-packed hexagonal array of Bi atoms in which Li1 atoms fill half of the available tetrahedral voids, whereas the RE and Li2 atoms occupy the octahedral voids. The resulting structure is two-dimensional in nature, consisting of [Li12Bi2]4- layers separated by RE3+ cations (Fig. 2). The Li1 atoms in these layers are bonded to four Bi atoms in a slightly distorted tetrahedral geometry. These two-dimensional layers are composed of edge-shared Li1Bi4 units. The Li2 atoms, which had been previously missed in the early structural studies are at the center of [Bi6] octahedral units within the [Li12Bi2]4- layers, as shown in Fig. 2. They are essential, as the valence-electron count would be unbalanced had Li2 been missing – the RELi3Bi2 family are Zintl phases, whose formula can be represented as (RE3+)(Li1+)3(Bi3-)2. This notion was confirmed by the electronic band structure calculations for LaLi3Sb2, published by us (Schäfer et al., 2013).
The three Li1—Bi bond lengths in the ab plane are the shortest, 2.779 (7) Å, for the Tb compound (smallest unit cell) and the largest, 2.813 (6) Å, for the La compound (largest unit cell). The fourth Li1—Bi bond length is longer in all compounds, and consistently follows the same trend, rooted in the lanthanide contraction: the Li1—Bi bond lengths range from 2.95 (2) to 2.89 (4) Å when moving across the RELi3Bi2 (RE = La–Nd, Sm, Gd, and Tb) series. These values are consistent with those found in LaLiBi2 [2.878 (1) Å; Pan et al., 2006] and the Li atoms in a tetrahedral coordination in the newly discovered Eu4Li7Bi6 [2.82 (3)–2.93 (3) Å; Schäfer et al., 2014].
Li2—Bi interactions are systematically weaker than Li1—Bi and the distances are understandably longer – ranging from 3.2804 (3) to 3.2515 (6) Å on moving from LaLi3Bi2 to GdLi3Bi2. For the Tb compound, a very subtle increase in the Li2—Bi distance [3.2527 (5) Å] is observed. There are only a few other examples of bismuthides which show similarly long Li—Bi bonds, for example, AuBi [3.325 (1) Å] and Li2AgBi [3.368 (1) Å] (Pauly et al., 1968a), and Li2MgBi [3.378 (1) Å; Pauly et al., 1968b]; the Li atoms in these structures are also octahedrally connected to six Bi atoms. The same holds true for the Li atoms in an octahedral coordination in Eu4Li7Bi6, with Li—Bi distances in the range 3.2832 (7)–3.3427 (5) Å (Schäfer et al., 2014)
The lengths of the RE—Bi contacts also decrease on moving from LaLi3Bi2 [3.2107 (5) Å] to TbLi3Bi2 [3.3299 (3) Å], reflecting the contraction of the unit cells. These distances are in good agreement when compared with the corresponding distances in compounds such as LaBi [3.305 (1) Å; Abdusalyamova et al., 1988], and SmBi [3.179 (1) Å] and GbBi [3.155 (1) Å] (Yoshihara et al., 1975), where all RE atoms are also coordinated to six Bi atoms in an octahedral fashion. In our earlier study on a related isostructural compound, viz. LaLi3Sb2, we found that the electronic band structure of this antimonide shows overlapping of La 5d and Sb 5p bands, thus, indicating some extent of covalent bonding between La and Sb (Schäfer et al., 2013). Based on the RE—Bi distances, we can argue that the notion of some degree of covalency of the bonding between La and Bi can be also extended in the title bismuthides.
Lastly, we would also like to briefly note the closely related crystal structure of well known CaAl2Si2 (same space group, one fewer atom). The relation between the two structures is shown in Fig. 1. The two structures are topologically very similar, and RELi3Bi2 can be obtained by filling the vacant octahedral sites in the `parent' CaAl2Si2 structure (the Li2 atoms). Hence, as also noted in other papers, the structure of the pnictides RELi3Pn2 can also be referred as the stuffed version of the CaAl2Si2 structure. Winter & Pöttgen (2014) also pointed out isopointal hydride–halide phases of the alkaline-earth metals with compositions AE2H3X (AE = Ca, Sr, Ba; X = Cl, Br, I). Along these lines, we recall that the CaAl2Si2 structure is isopointal with La2SO2, which is an ordered ternary variant of the La2O3 structure.
For all compounds, data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2007); software used to prepare material for publication: publCIF (Westrip, 2010).
LaLi3Bi2 | Dx = 6.645 Mg m−3 |
Mr = 577.69 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, P3m1 | Cell parameters from 1334 reflections |
a = 4.7010 (3) Å | θ = 2.7–30.4° |
c = 7.5431 (11) Å | µ = 67.89 mm−1 |
V = 144.36 (2) Å3 | T = 200 K |
Z = 1 | Irregular, silver |
F(000) = 232 | 0.05 × 0.04 × 0.04 mm |
Bruker APEXII CCD diffractometer | 202 independent reflections |
Radiation source: fine-focus sealed tube | 197 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
φ and ω scans | θmax = 30.4°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) | h = −6→6 |
Tmin = 0.118, Tmax = 0.182 | k = −6→6 |
2231 measured reflections | l = −10→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.013 | w = 1/[σ2(Fo2) + (0.0079P)2 + 0.5698P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.026 | (Δ/σ)max < 0.001 |
S = 1.16 | Δρmax = 1.23 e Å−3 |
202 reflections | Δρmin = −1.21 e Å−3 |
9 parameters | Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0161 (9) |
LaLi3Bi2 | Z = 1 |
Mr = 577.69 | Mo Kα radiation |
Trigonal, P3m1 | µ = 67.89 mm−1 |
a = 4.7010 (3) Å | T = 200 K |
c = 7.5431 (11) Å | 0.05 × 0.04 × 0.04 mm |
V = 144.36 (2) Å3 |
Bruker APEXII CCD diffractometer | 202 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) | 197 reflections with I > 2σ(I) |
Tmin = 0.118, Tmax = 0.182 | Rint = 0.032 |
2231 measured reflections |
R[F2 > 2σ(F2)] = 0.013 | 9 parameters |
wR(F2) = 0.026 | 0 restraints |
S = 1.16 | Δρmax = 1.23 e Å−3 |
202 reflections | Δρmin = −1.21 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Li1 | 0.3333 | 0.6667 | 0.646 (3) | 0.028 (3)* | |
Li2 | 0.0000 | 0.0000 | 0.5000 | 0.028 (3)* | |
La1 | 0.0000 | 0.0000 | 0.0000 | 0.00639 (15) | |
Bi1 | 0.3333 | 0.6667 | 0.25575 (4) | 0.00720 (13) |
U11 | U22 | U33 | U12 | U13 | U23 | |
La1 | 0.00649 (19) | 0.00649 (19) | 0.0062 (3) | 0.00324 (10) | 0.000 | 0.000 |
Bi1 | 0.00683 (14) | 0.00683 (14) | 0.00794 (17) | 0.00342 (7) | 0.000 | 0.000 |
Li1—Bi1i | 2.813 (6) | Li2—Bi1iii | 3.2804 (3) |
Li1—Bi1ii | 2.813 (6) | Li2—Bi1x | 3.2804 (3) |
Li1—Bi1iii | 2.813 (6) | La1—Bi1xi | 3.3298 (3) |
Li1—Li2iv | 2.930 (8) | La1—Bi1xii | 3.3298 (3) |
Li1—Li2 | 2.930 (8) | La1—Bi1ix | 3.3298 (3) |
Li1—Li2v | 2.930 (8) | La1—Bi1 | 3.3299 (3) |
Li1—Bi1 | 2.95 (2) | La1—Bi1xiii | 3.3299 (3) |
Li1—Li1i | 3.50 (3) | La1—Bi1x | 3.3299 (3) |
Li1—Li1iii | 3.50 (3) | La1—Li2xiv | 3.7715 (5) |
Li1—Li1ii | 3.50 (3) | La1—Li1xv | 3.806 (15) |
Li1—La1vi | 3.806 (15) | La1—Li1i | 3.806 (15) |
Li1—La1vii | 3.806 (15) | La1—Li1xiv | 3.806 (15) |
Li2—Li1viii | 2.930 (8) | La1—Li1viii | 3.806 (15) |
Li2—Li1i | 2.930 (8) | Bi1—Li1i | 2.813 (6) |
Li2—Li1ix | 2.930 (8) | Bi1—Li1ii | 2.813 (6) |
Li2—Li1iii | 2.930 (8) | Bi1—Li1iii | 2.813 (6) |
Li2—Li1x | 2.930 (8) | Bi1—Li2iv | 3.2804 (3) |
Li2—Bi1i | 3.2804 (3) | Bi1—Li2v | 3.2804 (3) |
Li2—Bi1ix | 3.2804 (3) | Bi1—La1iv | 3.3299 (3) |
Li2—Bi1viii | 3.2804 (3) | Bi1—La1v | 3.3299 (3) |
Li2—Bi1 | 3.2804 (3) | ||
Bi1i—Li1—Bi1ii | 113.4 (4) | Li1i—Li2—Bi1x | 53.50 (18) |
Bi1i—Li1—Bi1iii | 113.4 (4) | Li1ix—Li2—Bi1x | 126.50 (18) |
Bi1ii—Li1—Bi1iii | 113.4 (4) | Li1—Li2—Bi1x | 126.50 (18) |
Bi1i—Li1—Li2iv | 173.1 (8) | Li1iii—Li2—Bi1x | 123.7 (4) |
Bi1ii—Li1—Li2iv | 69.64 (4) | Li1x—Li2—Bi1x | 56.3 (4) |
Bi1iii—Li1—Li2iv | 69.64 (4) | Bi1i—Li2—Bi1x | 88.463 (8) |
Bi1i—Li1—Li2 | 69.64 (4) | Bi1ix—Li2—Bi1x | 91.537 (8) |
Bi1ii—Li1—Li2 | 173.1 (8) | Bi1viii—Li2—Bi1x | 88.463 (8) |
Bi1iii—Li1—Li2 | 69.64 (4) | Bi1—Li2—Bi1x | 91.537 (8) |
Li2iv—Li1—Li2 | 106.7 (4) | Bi1iii—Li2—Bi1x | 180.0 |
Bi1i—Li1—Li2v | 69.64 (4) | Bi1xi—La1—Bi1xii | 89.803 (9) |
Bi1ii—Li1—Li2v | 69.64 (4) | Bi1xi—La1—Bi1ix | 90.197 (8) |
Bi1iii—Li1—Li2v | 173.1 (8) | Bi1xii—La1—Bi1ix | 180.0 |
Li2iv—Li1—Li2v | 106.7 (4) | Bi1xi—La1—Bi1 | 180.000 (9) |
Li2—Li1—Li2v | 106.7 (4) | Bi1xii—La1—Bi1 | 90.197 (9) |
Bi1i—Li1—Bi1 | 105.2 (4) | Bi1ix—La1—Bi1 | 89.803 (9) |
Bi1ii—Li1—Bi1 | 105.2 (4) | Bi1xi—La1—Bi1xiii | 89.802 (9) |
Bi1iii—Li1—Bi1 | 105.2 (4) | Bi1xii—La1—Bi1xiii | 89.802 (8) |
Li2iv—Li1—Bi1 | 67.9 (4) | Bi1ix—La1—Bi1xiii | 90.198 (8) |
Li2—Li1—Bi1 | 67.9 (4) | Bi1—La1—Bi1xiii | 90.197 (8) |
Li2v—Li1—Bi1 | 67.9 (4) | Bi1xi—La1—Bi1x | 90.198 (9) |
Bi1i—Li1—Li1i | 54.35 (13) | Bi1xii—La1—Bi1x | 90.198 (8) |
Bi1ii—Li1—Li1i | 122.7 (3) | Bi1ix—La1—Bi1x | 89.802 (8) |
Bi1iii—Li1—Li1i | 122.7 (3) | Bi1—La1—Bi1x | 89.803 (8) |
Li2iv—Li1—Li1i | 118.7 (10) | Bi1xiii—La1—Bi1x | 180.0 |
Li2—Li1—Li1i | 53.3 (2) | Bi1xi—La1—Li2 | 125.404 (6) |
Li2v—Li1—Li1i | 53.3 (2) | Bi1xii—La1—Li2 | 125.404 (6) |
Bi1—Li1—Li1i | 50.9 (6) | Bi1ix—La1—Li2 | 54.596 (6) |
Bi1i—Li1—Li1iii | 122.7 (3) | Bi1—La1—Li2 | 54.596 (6) |
Bi1ii—Li1—Li1iii | 122.7 (3) | Bi1xiii—La1—Li2 | 125.404 (6) |
Bi1iii—Li1—Li1iii | 54.35 (13) | Bi1x—La1—Li2 | 54.596 (6) |
Li2iv—Li1—Li1iii | 53.3 (2) | Bi1xi—La1—Li2xiv | 54.596 (6) |
Li2—Li1—Li1iii | 53.3 (2) | Bi1xii—La1—Li2xiv | 54.596 (6) |
Li2v—Li1—Li1iii | 118.7 (10) | Bi1ix—La1—Li2xiv | 125.404 (6) |
Bi1—Li1—Li1iii | 50.9 (6) | Bi1—La1—Li2xiv | 125.404 (6) |
Li1i—Li1—Li1iii | 84.4 (8) | Bi1xiii—La1—Li2xiv | 54.596 (6) |
Bi1i—Li1—Li1ii | 122.7 (3) | Bi1x—La1—Li2xiv | 125.404 (6) |
Bi1ii—Li1—Li1ii | 54.35 (13) | Li2—La1—Li2xiv | 180.0 |
Bi1iii—Li1—Li1ii | 122.7 (3) | Bi1xi—La1—Li1xv | 45.83 (4) |
Li2iv—Li1—Li1ii | 53.3 (2) | Bi1xii—La1—Li1xv | 100.1 (2) |
Li2—Li1—Li1ii | 118.7 (10) | Bi1ix—La1—Li1xv | 79.9 (2) |
Li2v—Li1—Li1ii | 53.3 (2) | Bi1—La1—Li1xv | 134.17 (4) |
Bi1—Li1—Li1ii | 50.9 (6) | Bi1xiii—La1—Li1xv | 45.83 (4) |
Li1i—Li1—Li1ii | 84.4 (8) | Bi1x—La1—Li1xv | 134.17 (4) |
Li1iii—Li1—Li1ii | 84.4 (8) | Li2—La1—Li1xv | 134.5 (2) |
Bi1i—Li1—La1vi | 58.1 (3) | Li2xiv—La1—Li1xv | 45.5 (2) |
Bi1ii—Li1—La1vi | 58.1 (3) | Bi1xi—La1—Li1i | 134.17 (4) |
Bi1iii—Li1—La1vi | 120.3 (7) | Bi1xii—La1—Li1i | 79.9 (2) |
Li2iv—Li1—La1vi | 126.5 (3) | Bi1ix—La1—Li1i | 100.1 (2) |
Li2—Li1—La1vi | 126.5 (3) | Bi1—La1—Li1i | 45.83 (4) |
Li2v—Li1—La1vi | 66.64 (16) | Bi1xiii—La1—Li1i | 134.17 (4) |
Bi1—Li1—La1vi | 134.5 (2) | Bi1x—La1—Li1i | 45.83 (4) |
Li1i—Li1—La1vi | 99.5 (3) | Li2—La1—Li1i | 45.5 (2) |
Li1iii—Li1—La1vi | 174.6 (8) | Li2xiv—La1—Li1i | 134.5 (2) |
Li1ii—Li1—La1vi | 99.5 (3) | Li1xv—La1—Li1i | 180.000 (1) |
Bi1i—Li1—La1vii | 120.3 (7) | Bi1xi—La1—Li1xiv | 100.1 (2) |
Bi1ii—Li1—La1vii | 58.1 (3) | Bi1xii—La1—Li1xiv | 45.83 (4) |
Bi1iii—Li1—La1vii | 58.1 (3) | Bi1ix—La1—Li1xiv | 134.17 (4) |
Li2iv—Li1—La1vii | 66.64 (16) | Bi1—La1—Li1xiv | 79.9 (2) |
Li2—Li1—La1vii | 126.5 (3) | Bi1xiii—La1—Li1xiv | 45.83 (4) |
Li2v—Li1—La1vii | 126.5 (3) | Bi1x—La1—Li1xiv | 134.17 (4) |
Bi1—Li1—La1vii | 134.5 (2) | Li2—La1—Li1xiv | 134.5 (2) |
Li1i—Li1—La1vii | 174.6 (8) | Li2xiv—La1—Li1xiv | 45.5 (2) |
Li1iii—Li1—La1vii | 99.5 (3) | Li1xv—La1—Li1xiv | 76.3 (4) |
Li1ii—Li1—La1vii | 99.5 (3) | Li1i—La1—Li1xiv | 103.7 (4) |
La1vi—Li1—La1vii | 76.3 (4) | Bi1xi—La1—Li1viii | 79.9 (2) |
Li1viii—Li2—Li1i | 106.7 (4) | Bi1xii—La1—Li1viii | 134.17 (4) |
Li1viii—Li2—Li1ix | 73.3 (4) | Bi1ix—La1—Li1viii | 45.83 (4) |
Li1i—Li2—Li1ix | 180.000 (1) | Bi1—La1—Li1viii | 100.1 (2) |
Li1viii—Li2—Li1 | 180.000 (1) | Bi1xiii—La1—Li1viii | 134.17 (4) |
Li1i—Li2—Li1 | 73.3 (4) | Bi1x—La1—Li1viii | 45.83 (4) |
Li1ix—Li2—Li1 | 106.7 (4) | Li2—La1—Li1viii | 45.5 (2) |
Li1viii—Li2—Li1iii | 106.7 (4) | Li2xiv—La1—Li1viii | 134.5 (2) |
Li1i—Li2—Li1iii | 106.7 (4) | Li1xv—La1—Li1viii | 103.7 (4) |
Li1ix—Li2—Li1iii | 73.3 (4) | Li1i—La1—Li1viii | 76.3 (4) |
Li1—Li2—Li1iii | 73.3 (4) | Li1xiv—La1—Li1viii | 180.0 |
Li1viii—Li2—Li1x | 73.3 (4) | Li1i—Bi1—Li1ii | 113.4 (4) |
Li1i—Li2—Li1x | 73.3 (4) | Li1i—Bi1—Li1iii | 113.4 (4) |
Li1ix—Li2—Li1x | 106.7 (4) | Li1ii—Bi1—Li1iii | 113.4 (4) |
Li1—Li2—Li1x | 106.7 (4) | Li1i—Bi1—Li1 | 74.8 (4) |
Li1iii—Li2—Li1x | 180.0 (8) | Li1ii—Bi1—Li1 | 74.8 (4) |
Li1viii—Li2—Bi1i | 126.50 (18) | Li1iii—Bi1—Li1 | 74.8 (4) |
Li1i—Li2—Bi1i | 56.3 (4) | Li1i—Bi1—Li2iv | 130.6 (4) |
Li1ix—Li2—Bi1i | 123.7 (4) | Li1ii—Bi1—Li2iv | 56.9 (2) |
Li1—Li2—Bi1i | 53.50 (18) | Li1iii—Bi1—Li2iv | 56.9 (2) |
Li1iii—Li2—Bi1i | 126.50 (18) | Li1—Bi1—Li2iv | 55.830 (6) |
Li1x—Li2—Bi1i | 53.50 (18) | Li1i—Bi1—Li2v | 56.9 (2) |
Li1viii—Li2—Bi1ix | 53.50 (18) | Li1ii—Bi1—Li2v | 56.9 (2) |
Li1i—Li2—Bi1ix | 123.7 (4) | Li1iii—Bi1—Li2v | 130.6 (4) |
Li1ix—Li2—Bi1ix | 56.3 (4) | Li1—Bi1—Li2v | 55.830 (7) |
Li1—Li2—Bi1ix | 126.50 (18) | Li2iv—Bi1—Li2v | 91.537 (8) |
Li1iii—Li2—Bi1ix | 53.50 (18) | Li1i—Bi1—Li2 | 56.9 (2) |
Li1x—Li2—Bi1ix | 126.50 (18) | Li1ii—Bi1—Li2 | 130.6 (4) |
Bi1i—Li2—Bi1ix | 180.0 | Li1iii—Bi1—Li2 | 56.9 (2) |
Li1viii—Li2—Bi1viii | 56.3 (4) | Li1—Bi1—Li2 | 55.830 (6) |
Li1i—Li2—Bi1viii | 126.50 (18) | Li2iv—Bi1—Li2 | 91.537 (9) |
Li1ix—Li2—Bi1viii | 53.50 (18) | Li2v—Bi1—Li2 | 91.537 (9) |
Li1—Li2—Bi1viii | 123.7 (4) | Li1i—Bi1—La1iv | 159.8 (4) |
Li1iii—Li2—Bi1viii | 126.50 (18) | Li1ii—Bi1—La1iv | 76.0 (3) |
Li1x—Li2—Bi1viii | 53.50 (18) | Li1iii—Bi1—La1iv | 76.0 (3) |
Bi1i—Li2—Bi1viii | 91.537 (9) | Li1—Bi1—La1iv | 125.404 (6) |
Bi1ix—Li2—Bi1viii | 88.463 (9) | Li2iv—Bi1—La1iv | 69.574 (9) |
Li1viii—Li2—Bi1 | 123.7 (4) | Li2v—Bi1—La1iv | 131.497 (3) |
Li1i—Li2—Bi1 | 53.50 (18) | Li2—Bi1—La1iv | 131.497 (3) |
Li1ix—Li2—Bi1 | 126.50 (18) | Li1i—Bi1—La1 | 76.0 (3) |
Li1—Li2—Bi1 | 56.3 (4) | Li1ii—Bi1—La1 | 159.8 (4) |
Li1iii—Li2—Bi1 | 53.50 (18) | Li1iii—Bi1—La1 | 76.0 (3) |
Li1x—Li2—Bi1 | 126.50 (18) | Li1—Bi1—La1 | 125.404 (6) |
Bi1i—Li2—Bi1 | 88.463 (9) | Li2iv—Bi1—La1 | 131.497 (3) |
Bi1ix—Li2—Bi1 | 91.537 (8) | Li2v—Bi1—La1 | 131.497 (2) |
Bi1viii—Li2—Bi1 | 180.0 | Li2—Bi1—La1 | 69.574 (9) |
Li1viii—Li2—Bi1iii | 126.50 (18) | La1iv—Bi1—La1 | 89.802 (8) |
Li1i—Li2—Bi1iii | 126.50 (18) | Li1i—Bi1—La1v | 76.0 (3) |
Li1ix—Li2—Bi1iii | 53.50 (18) | Li1ii—Bi1—La1v | 76.0 (3) |
Li1—Li2—Bi1iii | 53.50 (18) | Li1iii—Bi1—La1v | 159.8 (4) |
Li1iii—Li2—Bi1iii | 56.3 (4) | Li1—Bi1—La1v | 125.404 (6) |
Li1x—Li2—Bi1iii | 123.7 (4) | Li2iv—Bi1—La1v | 131.497 (3) |
Bi1i—Li2—Bi1iii | 91.537 (8) | Li2v—Bi1—La1v | 69.574 (9) |
Bi1ix—Li2—Bi1iii | 88.463 (8) | Li2—Bi1—La1v | 131.497 (3) |
Bi1viii—Li2—Bi1iii | 91.537 (8) | La1iv—Bi1—La1v | 89.802 (9) |
Bi1—Li2—Bi1iii | 88.463 (8) | La1—Bi1—La1v | 89.802 (9) |
Li1viii—Li2—Bi1x | 53.50 (18) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+2, −z+1; (iii) −x, −y+1, −z+1; (iv) x, y+1, z; (v) x+1, y+1, z; (vi) x+1, y+1, z+1; (vii) x, y+1, z+1; (viii) −x, −y, −z+1; (ix) x−1, y−1, z; (x) x, y−1, z; (xi) −x, −y, −z; (xii) −x+1, −y+1, −z; (xiii) −x, −y+1, −z; (xiv) x, y, z−1; (xv) x−1, y−1, z−1. |
CeLi3Bi2 | Dx = 6.780 Mg m−3 |
Mr = 578.90 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, P3m1 | Cell parameters from 1270 reflections |
a = 4.6790 (6) Å | θ = 2.7–30.6° |
c = 7.4776 (17) Å | µ = 69.62 mm−1 |
V = 141.77 (4) Å3 | T = 200 K |
Z = 1 | Irregular, silver |
F(000) = 233 | 0.05 × 0.05 × 0.04 mm |
Bruker APEXII CCD diffractometer | 201 independent reflections |
Radiation source: fine-focus sealed tube | 196 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
φ and ω scans | θmax = 30.6°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) | h = −6→6 |
Tmin = 0.123, Tmax = 0.177 | k = −6→6 |
2135 measured reflections | l = −10→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.013 | w = 1/[σ2(Fo2) + (0.0088P)2 + 0.6243P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.026 | (Δ/σ)max < 0.001 |
S = 1.17 | Δρmax = 1.29 e Å−3 |
201 reflections | Δρmin = −2.18 e Å−3 |
9 parameters | Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0051 (6) |
CeLi3Bi2 | Z = 1 |
Mr = 578.90 | Mo Kα radiation |
Trigonal, P3m1 | µ = 69.62 mm−1 |
a = 4.6790 (6) Å | T = 200 K |
c = 7.4776 (17) Å | 0.05 × 0.05 × 0.04 mm |
V = 141.77 (4) Å3 |
Bruker APEXII CCD diffractometer | 201 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) | 196 reflections with I > 2σ(I) |
Tmin = 0.123, Tmax = 0.177 | Rint = 0.028 |
2135 measured reflections |
R[F2 > 2σ(F2)] = 0.013 | 9 parameters |
wR(F2) = 0.026 | 0 restraints |
S = 1.17 | Δρmax = 1.29 e Å−3 |
201 reflections | Δρmin = −2.18 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Li1 | 0.3333 | 0.6667 | 0.647 (3) | 0.030 (4)* | |
Li2 | 0.0000 | 0.0000 | 0.5000 | 0.030 (4)* | |
Ce1 | 0.0000 | 0.0000 | 0.0000 | 0.00637 (15) | |
Bi1 | 0.3333 | 0.6667 | 0.25328 (4) | 0.00727 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ce1 | 0.00696 (19) | 0.00696 (19) | 0.0052 (3) | 0.00348 (10) | 0.000 | 0.000 |
Bi1 | 0.00748 (13) | 0.00748 (13) | 0.00684 (17) | 0.00374 (7) | 0.000 | 0.000 |
Li1—Bi1i | 2.802 (6) | Li2—Bi1iii | 3.2713 (4) |
Li1—Bi1ii | 2.802 (6) | Li2—Bi1x | 3.2713 (4) |
Li1—Bi1iii | 2.802 (6) | Ce1—Bi1xi | 3.2992 (4) |
Li1—Li2iv | 2.918 (8) | Ce1—Bi1xii | 3.2992 (4) |
Li1—Li2 | 2.918 (8) | Ce1—Bi1ix | 3.2992 (4) |
Li1—Li2v | 2.918 (8) | Ce1—Bi1 | 3.2992 (4) |
Li1—Bi1 | 2.95 (2) | Ce1—Bi1xiii | 3.2992 (4) |
Li1—Li1i | 3.49 (3) | Ce1—Bi1x | 3.2992 (4) |
Li1—Li1iii | 3.49 (3) | Ce1—Li2xiv | 3.7388 (9) |
Li1—Li1ii | 3.49 (3) | Ce1—Li1xv | 3.775 (15) |
Li1—Ce1vi | 3.775 (15) | Ce1—Li1i | 3.775 (15) |
Li1—Ce1vii | 3.775 (15) | Ce1—Li1xiv | 3.775 (15) |
Li2—Li1viii | 2.918 (8) | Ce1—Li1viii | 3.775 (15) |
Li2—Li1i | 2.918 (8) | Bi1—Li1i | 2.802 (6) |
Li2—Li1ix | 2.918 (8) | Bi1—Li1ii | 2.802 (6) |
Li2—Li1iii | 2.918 (8) | Bi1—Li1iii | 2.802 (6) |
Li2—Li1x | 2.918 (8) | Bi1—Li2v | 3.2713 (4) |
Li2—Bi1i | 3.2713 (4) | Bi1—Li2iv | 3.2713 (4) |
Li2—Bi1ix | 3.2713 (4) | Bi1—Ce1iv | 3.2992 (4) |
Li2—Bi1viii | 3.2713 (4) | Bi1—Ce1v | 3.2992 (4) |
Li2—Bi1 | 3.2713 (4) | ||
Bi1i—Li1—Bi1ii | 113.2 (4) | Li1—Li2—Bi1x | 126.54 (18) |
Bi1i—Li1—Bi1iii | 113.2 (4) | Li1i—Li2—Bi1x | 53.46 (18) |
Bi1ii—Li1—Bi1iii | 113.2 (4) | Li1ix—Li2—Bi1x | 126.54 (18) |
Bi1i—Li1—Li2iv | 173.2 (8) | Li1iii—Li2—Bi1x | 123.5 (4) |
Bi1ii—Li1—Li2iv | 69.74 (4) | Li1x—Li2—Bi1x | 56.5 (4) |
Bi1iii—Li1—Li2iv | 69.74 (4) | Bi1i—Li2—Bi1x | 88.687 (12) |
Bi1i—Li1—Li2 | 69.74 (4) | Bi1ix—Li2—Bi1x | 91.313 (12) |
Bi1ii—Li1—Li2 | 173.2 (8) | Bi1viii—Li2—Bi1x | 88.687 (11) |
Bi1iii—Li1—Li2 | 69.74 (4) | Bi1—Li2—Bi1x | 91.314 (12) |
Li2iv—Li1—Li2 | 106.6 (4) | Bi1iii—Li2—Bi1x | 180.0 |
Bi1i—Li1—Li2v | 69.74 (4) | Bi1xi—Ce1—Bi1xii | 90.326 (12) |
Bi1ii—Li1—Li2v | 69.74 (4) | Bi1xi—Ce1—Bi1ix | 89.674 (12) |
Bi1iii—Li1—Li2v | 173.2 (8) | Bi1xii—Ce1—Bi1ix | 180.0 |
Li2iv—Li1—Li2v | 106.6 (4) | Bi1xi—Ce1—Bi1 | 180.0 |
Li2—Li1—Li2v | 106.6 (4) | Bi1xii—Ce1—Bi1 | 89.674 (12) |
Bi1i—Li1—Bi1 | 105.4 (4) | Bi1ix—Ce1—Bi1 | 90.326 (12) |
Bi1ii—Li1—Bi1 | 105.4 (4) | Bi1xi—Ce1—Bi1xiii | 90.326 (12) |
Bi1iii—Li1—Bi1 | 105.4 (4) | Bi1xii—Ce1—Bi1xiii | 90.326 (12) |
Li2iv—Li1—Bi1 | 67.8 (4) | Bi1ix—Ce1—Bi1xiii | 89.674 (12) |
Li2—Li1—Bi1 | 67.8 (4) | Bi1—Ce1—Bi1xiii | 89.674 (12) |
Li2v—Li1—Bi1 | 67.8 (4) | Bi1xi—Ce1—Bi1x | 89.674 (12) |
Bi1i—Li1—Li1i | 54.59 (13) | Bi1xii—Ce1—Bi1x | 89.674 (12) |
Bi1ii—Li1—Li1i | 122.8 (3) | Bi1ix—Ce1—Bi1x | 90.326 (12) |
Bi1iii—Li1—Li1i | 122.8 (3) | Bi1—Ce1—Bi1x | 90.326 (12) |
Li2iv—Li1—Li1i | 118.6 (10) | Bi1xiii—Ce1—Bi1x | 180.0 |
Li2—Li1—Li1i | 53.3 (2) | Bi1xi—Ce1—Li2 | 125.034 (8) |
Li2v—Li1—Li1i | 53.3 (2) | Bi1xii—Ce1—Li2 | 125.034 (8) |
Bi1—Li1—Li1i | 50.8 (6) | Bi1ix—Ce1—Li2 | 54.966 (8) |
Bi1i—Li1—Li1iii | 122.8 (3) | Bi1—Ce1—Li2 | 54.966 (8) |
Bi1ii—Li1—Li1iii | 122.8 (3) | Bi1xiii—Ce1—Li2 | 125.034 (8) |
Bi1iii—Li1—Li1iii | 54.59 (13) | Bi1x—Ce1—Li2 | 54.966 (8) |
Li2iv—Li1—Li1iii | 53.3 (2) | Bi1xi—Ce1—Li2xiv | 54.966 (8) |
Li2—Li1—Li1iii | 53.3 (2) | Bi1xii—Ce1—Li2xiv | 54.966 (8) |
Li2v—Li1—Li1iii | 118.6 (10) | Bi1ix—Ce1—Li2xiv | 125.034 (8) |
Bi1—Li1—Li1iii | 50.8 (6) | Bi1—Ce1—Li2xiv | 125.034 (9) |
Li1i—Li1—Li1iii | 84.3 (8) | Bi1xiii—Ce1—Li2xiv | 54.966 (8) |
Bi1i—Li1—Li1ii | 122.8 (3) | Bi1x—Ce1—Li2xiv | 125.034 (8) |
Bi1ii—Li1—Li1ii | 54.59 (13) | Li2—Ce1—Li2xiv | 180.0 |
Bi1iii—Li1—Li1ii | 122.8 (3) | Bi1xi—Ce1—Li1xv | 46.06 (4) |
Li2iv—Li1—Li1ii | 53.3 (2) | Bi1xii—Ce1—Li1xv | 100.7 (2) |
Li2—Li1—Li1ii | 118.6 (10) | Bi1ix—Ce1—Li1xv | 79.3 (2) |
Li2v—Li1—Li1ii | 53.3 (2) | Bi1—Ce1—Li1xv | 133.94 (4) |
Bi1—Li1—Li1ii | 50.8 (6) | Bi1xiii—Ce1—Li1xv | 46.06 (4) |
Li1i—Li1—Li1ii | 84.3 (8) | Bi1x—Ce1—Li1xv | 133.94 (4) |
Li1iii—Li1—Li1ii | 84.3 (8) | Li2—Ce1—Li1xv | 134.3 (2) |
Bi1i—Li1—Ce1vi | 58.0 (3) | Li2xiv—Ce1—Li1xv | 45.7 (2) |
Bi1ii—Li1—Ce1vi | 58.0 (3) | Bi1xi—Ce1—Li1i | 133.94 (4) |
Bi1iii—Li1—Ce1vi | 120.3 (7) | Bi1xii—Ce1—Li1i | 79.3 (2) |
Li2iv—Li1—Ce1vi | 126.5 (3) | Bi1ix—Ce1—Li1i | 100.7 (2) |
Li2—Li1—Ce1vi | 126.5 (3) | Bi1—Ce1—Li1i | 46.06 (4) |
Li2v—Li1—Ce1vi | 66.50 (16) | Bi1xiii—Ce1—Li1i | 133.94 (4) |
Bi1—Li1—Ce1vi | 134.3 (2) | Bi1x—Ce1—Li1i | 46.06 (4) |
Li1i—Li1—Ce1vi | 99.5 (3) | Li2—Ce1—Li1i | 45.7 (2) |
Li1iii—Li1—Ce1vi | 174.9 (8) | Li2xiv—Ce1—Li1i | 134.3 (2) |
Li1ii—Li1—Ce1vi | 99.5 (3) | Li1xv—Ce1—Li1i | 180.000 (1) |
Bi1i—Li1—Ce1vii | 120.3 (7) | Bi1xi—Ce1—Li1xiv | 100.7 (2) |
Bi1ii—Li1—Ce1vii | 58.0 (3) | Bi1xii—Ce1—Li1xiv | 46.06 (4) |
Bi1iii—Li1—Ce1vii | 58.0 (3) | Bi1ix—Ce1—Li1xiv | 133.94 (4) |
Li2iv—Li1—Ce1vii | 66.50 (16) | Bi1—Ce1—Li1xiv | 79.3 (2) |
Li2—Li1—Ce1vii | 126.5 (3) | Bi1xiii—Ce1—Li1xiv | 46.06 (4) |
Li2v—Li1—Ce1vii | 126.5 (3) | Bi1x—Ce1—Li1xiv | 133.94 (4) |
Bi1—Li1—Ce1vii | 134.3 (2) | Li2—Ce1—Li1xiv | 134.3 (2) |
Li1i—Li1—Ce1vii | 174.9 (8) | Li2xiv—Ce1—Li1xiv | 45.7 (2) |
Li1iii—Li1—Ce1vii | 99.5 (3) | Li1xv—Ce1—Li1xiv | 76.6 (4) |
Li1ii—Li1—Ce1vii | 99.5 (3) | Li1i—Ce1—Li1xiv | 103.4 (4) |
Ce1vi—Li1—Ce1vii | 76.6 (4) | Bi1xi—Ce1—Li1viii | 79.3 (2) |
Li1viii—Li2—Li1 | 179.999 (1) | Bi1xii—Ce1—Li1viii | 133.94 (4) |
Li1viii—Li2—Li1i | 106.6 (4) | Bi1ix—Ce1—Li1viii | 46.06 (4) |
Li1—Li2—Li1i | 73.4 (4) | Bi1—Ce1—Li1viii | 100.7 (2) |
Li1viii—Li2—Li1ix | 73.4 (4) | Bi1xiii—Ce1—Li1viii | 133.94 (4) |
Li1—Li2—Li1ix | 106.6 (4) | Bi1x—Ce1—Li1viii | 46.06 (4) |
Li1i—Li2—Li1ix | 180.0 | Li2—Ce1—Li1viii | 45.7 (2) |
Li1viii—Li2—Li1iii | 106.6 (4) | Li2xiv—Ce1—Li1viii | 134.3 (2) |
Li1—Li2—Li1iii | 73.4 (4) | Li1xv—Ce1—Li1viii | 103.4 (4) |
Li1i—Li2—Li1iii | 106.6 (4) | Li1i—Ce1—Li1viii | 76.6 (4) |
Li1ix—Li2—Li1iii | 73.4 (4) | Li1xiv—Ce1—Li1viii | 180.0 |
Li1viii—Li2—Li1x | 73.4 (4) | Li1i—Bi1—Li1ii | 113.2 (4) |
Li1—Li2—Li1x | 106.6 (4) | Li1i—Bi1—Li1iii | 113.2 (4) |
Li1i—Li2—Li1x | 73.4 (4) | Li1ii—Bi1—Li1iii | 113.2 (4) |
Li1ix—Li2—Li1x | 106.6 (4) | Li1i—Bi1—Li1 | 74.6 (4) |
Li1iii—Li2—Li1x | 180.0 | Li1ii—Bi1—Li1 | 74.6 (4) |
Li1viii—Li2—Bi1i | 126.54 (18) | Li1iii—Bi1—Li1 | 74.6 (4) |
Li1—Li2—Bi1i | 53.46 (18) | Li1i—Bi1—Li2v | 56.8 (2) |
Li1i—Li2—Bi1i | 56.5 (4) | Li1ii—Bi1—Li2v | 56.8 (2) |
Li1ix—Li2—Bi1i | 123.5 (4) | Li1iii—Bi1—Li2v | 130.3 (4) |
Li1iii—Li2—Bi1i | 126.54 (18) | Li1—Bi1—Li2v | 55.670 (8) |
Li1x—Li2—Bi1i | 53.46 (18) | Li1i—Bi1—Li2iv | 130.3 (4) |
Li1viii—Li2—Bi1ix | 53.46 (18) | Li1ii—Bi1—Li2iv | 56.8 (2) |
Li1—Li2—Bi1ix | 126.54 (18) | Li1iii—Bi1—Li2iv | 56.8 (2) |
Li1i—Li2—Bi1ix | 123.5 (4) | Li1—Bi1—Li2iv | 55.670 (8) |
Li1ix—Li2—Bi1ix | 56.5 (4) | Li2v—Bi1—Li2iv | 91.313 (12) |
Li1iii—Li2—Bi1ix | 53.46 (18) | Li1i—Bi1—Li2 | 56.8 (2) |
Li1x—Li2—Bi1ix | 126.54 (18) | Li1ii—Bi1—Li2 | 130.3 (4) |
Bi1i—Li2—Bi1ix | 180.0 | Li1iii—Bi1—Li2 | 56.8 (2) |
Li1viii—Li2—Bi1viii | 56.5 (4) | Li1—Bi1—Li2 | 55.670 (9) |
Li1—Li2—Bi1viii | 123.5 (4) | Li2v—Bi1—Li2 | 91.313 (12) |
Li1i—Li2—Bi1viii | 126.54 (18) | Li2iv—Bi1—Li2 | 91.313 (12) |
Li1ix—Li2—Bi1viii | 53.46 (18) | Li1i—Bi1—Ce1iv | 160.3 (4) |
Li1iii—Li2—Bi1viii | 126.54 (18) | Li1ii—Bi1—Ce1iv | 76.0 (3) |
Li1x—Li2—Bi1viii | 53.46 (18) | Li1iii—Bi1—Ce1iv | 76.0 (3) |
Bi1i—Li2—Bi1viii | 91.314 (11) | Li1—Bi1—Ce1iv | 125.034 (8) |
Bi1ix—Li2—Bi1viii | 88.686 (12) | Li2v—Bi1—Ce1iv | 131.440 (4) |
Li1viii—Li2—Bi1 | 123.5 (4) | Li2iv—Bi1—Ce1iv | 69.364 (14) |
Li1—Li2—Bi1 | 56.5 (4) | Li2—Bi1—Ce1iv | 131.440 (4) |
Li1i—Li2—Bi1 | 53.46 (18) | Li1i—Bi1—Ce1 | 76.0 (3) |
Li1ix—Li2—Bi1 | 126.54 (18) | Li1ii—Bi1—Ce1 | 160.3 (4) |
Li1iii—Li2—Bi1 | 53.46 (18) | Li1iii—Bi1—Ce1 | 76.0 (3) |
Li1x—Li2—Bi1 | 126.54 (18) | Li1—Bi1—Ce1 | 125.034 (9) |
Bi1i—Li2—Bi1 | 88.686 (11) | Li2v—Bi1—Ce1 | 131.440 (4) |
Bi1ix—Li2—Bi1 | 91.314 (11) | Li2iv—Bi1—Ce1 | 131.440 (4) |
Bi1viii—Li2—Bi1 | 180.0 | Li2—Bi1—Ce1 | 69.364 (14) |
Li1viii—Li2—Bi1iii | 126.54 (18) | Ce1iv—Bi1—Ce1 | 90.326 (11) |
Li1—Li2—Bi1iii | 53.46 (18) | Li1i—Bi1—Ce1v | 76.0 (3) |
Li1i—Li2—Bi1iii | 126.54 (18) | Li1ii—Bi1—Ce1v | 76.0 (3) |
Li1ix—Li2—Bi1iii | 53.46 (18) | Li1iii—Bi1—Ce1v | 160.3 (4) |
Li1iii—Li2—Bi1iii | 56.5 (4) | Li1—Bi1—Ce1v | 125.034 (8) |
Li1x—Li2—Bi1iii | 123.5 (4) | Li2v—Bi1—Ce1v | 69.364 (14) |
Bi1i—Li2—Bi1iii | 91.313 (12) | Li2iv—Bi1—Ce1v | 131.440 (4) |
Bi1ix—Li2—Bi1iii | 88.687 (12) | Li2—Bi1—Ce1v | 131.440 (4) |
Bi1viii—Li2—Bi1iii | 91.313 (11) | Ce1iv—Bi1—Ce1v | 90.326 (12) |
Bi1—Li2—Bi1iii | 88.686 (12) | Ce1—Bi1—Ce1v | 90.326 (12) |
Li1viii—Li2—Bi1x | 53.46 (18) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+2, −z+1; (iii) −x, −y+1, −z+1; (iv) x, y+1, z; (v) x+1, y+1, z; (vi) x+1, y+1, z+1; (vii) x, y+1, z+1; (viii) −x, −y, −z+1; (ix) x−1, y−1, z; (x) x, y−1, z; (xi) −x, −y, −z; (xii) −x+1, −y+1, −z; (xiii) −x, −y+1, −z; (xiv) x, y, z−1; (xv) x−1, y−1, z−1. |
PrLi3Bi2 | Dx = 6.863 Mg m−3 |
Mr = 579.69 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, P3m1 | Cell parameters from 1110 reflections |
a = 4.6672 (7) Å | θ = 2.7–30.0° |
c = 7.435 (2) Å | µ = 70.94 mm−1 |
V = 140.26 (5) Å3 | T = 200 K |
Z = 1 | Irregular, silver |
F(000) = 234 | 0.04 × 0.04 × 0.04 mm |
Bruker APEXII CCD diffractometer | 198 independent reflections |
Radiation source: fine-focus sealed tube | 193 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
φ and ω scans | θmax = 30.7°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) | h = −6→6 |
Tmin = 0.155, Tmax = 0.184 | k = −6→6 |
2042 measured reflections | l = −10→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.015 | w = 1/[σ2(Fo2) + (0.0069P)2 + 0.7531P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.027 | (Δ/σ)max < 0.001 |
S = 1.22 | Δρmax = 1.62 e Å−3 |
198 reflections | Δρmin = −2.50 e Å−3 |
9 parameters | Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0016 (5) |
PrLi3Bi2 | Z = 1 |
Mr = 579.69 | Mo Kα radiation |
Trigonal, P3m1 | µ = 70.94 mm−1 |
a = 4.6672 (7) Å | T = 200 K |
c = 7.435 (2) Å | 0.04 × 0.04 × 0.04 mm |
V = 140.26 (5) Å3 |
Bruker APEXII CCD diffractometer | 198 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) | 193 reflections with I > 2σ(I) |
Tmin = 0.155, Tmax = 0.184 | Rint = 0.029 |
2042 measured reflections |
R[F2 > 2σ(F2)] = 0.015 | 9 parameters |
wR(F2) = 0.027 | 0 restraints |
S = 1.22 | Δρmax = 1.62 e Å−3 |
198 reflections | Δρmin = −2.50 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Li1 | 0.3333 | 0.6667 | 0.644 (3) | 0.030 (4)* | |
Li2 | 0.0000 | 0.0000 | 0.5000 | 0.030 (4)* | |
Pr1 | 0.0000 | 0.0000 | 0.0000 | 0.00744 (16) | |
Bi1 | 0.3333 | 0.6667 | 0.25219 (5) | 0.00778 (13) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pr1 | 0.0072 (2) | 0.0072 (2) | 0.0080 (3) | 0.00358 (10) | 0.000 | 0.000 |
Bi1 | 0.00705 (14) | 0.00705 (14) | 0.00923 (19) | 0.00353 (7) | 0.000 | 0.000 |
Li1—Bi1i | 2.802 (6) | Li2—Bi1iii | 3.2644 (5) |
Li1—Bi1ii | 2.802 (6) | Li2—Bi1x | 3.2644 (5) |
Li1—Bi1iii | 2.802 (6) | Pr1—Bi1xi | 3.2828 (5) |
Li1—Li2iv | 2.901 (9) | Pr1—Bi1 | 3.2828 (5) |
Li1—Li2 | 2.901 (9) | Pr1—Bi1xii | 3.2828 (5) |
Li1—Li2v | 2.901 (9) | Pr1—Bi1ix | 3.2828 (5) |
Li1—Bi1 | 2.92 (2) | Pr1—Bi1xiii | 3.2828 (5) |
Li1—Li1i | 3.45 (3) | Pr1—Bi1x | 3.2828 (5) |
Li1—Li1iii | 3.45 (3) | Pr1—Li2xiv | 3.7177 (10) |
Li1—Li1ii | 3.45 (3) | Pr1—Li1xv | 3.775 (16) |
Li1—Pr1vi | 3.775 (16) | Pr1—Li1i | 3.775 (16) |
Li1—Pr1vii | 3.775 (16) | Pr1—Li1xiv | 3.775 (16) |
Li2—Li1viii | 2.901 (9) | Pr1—Li1viii | 3.775 (16) |
Li2—Li1i | 2.901 (9) | Bi1—Li1i | 2.802 (6) |
Li2—Li1ix | 2.901 (9) | Bi1—Li1ii | 2.802 (6) |
Li2—Li1iii | 2.901 (9) | Bi1—Li1iii | 2.802 (6) |
Li2—Li1x | 2.901 (9) | Bi1—Li2v | 3.2643 (5) |
Li2—Bi1i | 3.2643 (5) | Bi1—Li2iv | 3.2643 (5) |
Li2—Bi1ix | 3.2643 (5) | Bi1—Pr1iv | 3.2828 (5) |
Li2—Bi1viii | 3.2643 (5) | Bi1—Pr1v | 3.2828 (5) |
Li2—Bi1 | 3.2643 (5) | ||
Bi1i—Li1—Bi1ii | 112.8 (4) | Li1i—Li2—Bi1x | 53.7 (2) |
Bi1i—Li1—Bi1iii | 112.8 (4) | Li1ix—Li2—Bi1x | 126.3 (2) |
Bi1ii—Li1—Bi1iii | 112.8 (4) | Li1—Li2—Bi1x | 126.3 (2) |
Bi1i—Li1—Li2iv | 174.2 (9) | Li1iii—Li2—Bi1x | 123.9 (4) |
Bi1ii—Li1—Li2iv | 69.81 (4) | Li1x—Li2—Bi1x | 56.1 (4) |
Bi1iii—Li1—Li2iv | 69.81 (4) | Bi1i—Li2—Bi1x | 88.734 (13) |
Bi1i—Li1—Li2 | 69.81 (4) | Bi1ix—Li2—Bi1x | 91.266 (14) |
Bi1ii—Li1—Li2 | 174.2 (9) | Bi1viii—Li2—Bi1x | 88.734 (13) |
Bi1iii—Li1—Li2 | 69.81 (4) | Bi1—Li2—Bi1x | 91.266 (13) |
Li2iv—Li1—Li2 | 107.1 (5) | Bi1iii—Li2—Bi1x | 180.0 |
Bi1i—Li1—Li2v | 69.81 (4) | Bi1xi—Pr1—Bi1 | 180.0 |
Bi1ii—Li1—Li2v | 69.81 (4) | Bi1xi—Pr1—Bi1xii | 90.609 (14) |
Bi1iii—Li1—Li2v | 174.2 (9) | Bi1—Pr1—Bi1xii | 89.391 (13) |
Li2iv—Li1—Li2v | 107.1 (5) | Bi1xi—Pr1—Bi1ix | 89.391 (14) |
Li2—Li1—Li2v | 107.1 (5) | Bi1—Pr1—Bi1ix | 90.609 (13) |
Bi1i—Li1—Bi1 | 105.9 (5) | Bi1xii—Pr1—Bi1ix | 180.0 |
Bi1ii—Li1—Bi1 | 105.9 (5) | Bi1xi—Pr1—Bi1xiii | 90.608 (13) |
Bi1iii—Li1—Bi1 | 105.9 (5) | Bi1—Pr1—Bi1xiii | 89.391 (14) |
Li2iv—Li1—Bi1 | 68.3 (4) | Bi1xii—Pr1—Bi1xiii | 90.608 (13) |
Li2—Li1—Bi1 | 68.3 (4) | Bi1ix—Pr1—Bi1xiii | 89.392 (13) |
Li2v—Li1—Bi1 | 68.3 (4) | Bi1xi—Pr1—Bi1x | 89.392 (13) |
Bi1i—Li1—Li1i | 54.48 (15) | Bi1—Pr1—Bi1x | 90.609 (14) |
Bi1ii—Li1—Li1i | 123.2 (3) | Bi1xii—Pr1—Bi1x | 89.392 (13) |
Bi1iii—Li1—Li1i | 123.2 (3) | Bi1ix—Pr1—Bi1x | 90.608 (13) |
Li2iv—Li1—Li1i | 119.7 (10) | Bi1xiii—Pr1—Bi1x | 180.0 |
Li2—Li1—Li1i | 53.6 (2) | Bi1xi—Pr1—Li2 | 124.833 (10) |
Li2v—Li1—Li1i | 53.6 (2) | Bi1—Pr1—Li2 | 55.167 (10) |
Bi1—Li1—Li1i | 51.4 (6) | Bi1xii—Pr1—Li2 | 124.833 (9) |
Bi1i—Li1—Li1iii | 123.2 (3) | Bi1ix—Pr1—Li2 | 55.167 (9) |
Bi1ii—Li1—Li1iii | 123.2 (3) | Bi1xiii—Pr1—Li2 | 124.833 (9) |
Bi1iii—Li1—Li1iii | 54.48 (15) | Bi1x—Pr1—Li2 | 55.167 (10) |
Li2iv—Li1—Li1iii | 53.6 (2) | Bi1xi—Pr1—Li2xiv | 55.167 (10) |
Li2—Li1—Li1iii | 53.6 (2) | Bi1—Pr1—Li2xiv | 124.833 (10) |
Li2v—Li1—Li1iii | 119.7 (10) | Bi1xii—Pr1—Li2xiv | 55.167 (9) |
Bi1—Li1—Li1iii | 51.4 (6) | Bi1ix—Pr1—Li2xiv | 124.833 (9) |
Li1i—Li1—Li1iii | 85.3 (9) | Bi1xiii—Pr1—Li2xiv | 55.167 (10) |
Bi1i—Li1—Li1ii | 123.2 (3) | Bi1x—Pr1—Li2xiv | 124.833 (9) |
Bi1ii—Li1—Li1ii | 54.48 (15) | Li2—Pr1—Li2xiv | 180.0 |
Bi1iii—Li1—Li1ii | 123.2 (3) | Bi1xi—Pr1—Li1xv | 46.13 (4) |
Li2iv—Li1—Li1ii | 53.6 (2) | Bi1—Pr1—Li1xv | 133.87 (4) |
Li2—Li1—Li1ii | 119.7 (10) | Bi1xii—Pr1—Li1xv | 100.7 (3) |
Li2v—Li1—Li1ii | 53.6 (2) | Bi1ix—Pr1—Li1xv | 79.3 (3) |
Bi1—Li1—Li1ii | 51.4 (6) | Bi1xiii—Pr1—Li1xv | 46.13 (4) |
Li1i—Li1—Li1ii | 85.3 (9) | Bi1x—Pr1—Li1xv | 133.87 (4) |
Li1iii—Li1—Li1ii | 85.3 (9) | Li2—Pr1—Li1xv | 134.5 (3) |
Bi1i—Li1—Pr1vi | 57.6 (3) | Li2xiv—Pr1—Li1xv | 45.5 (3) |
Bi1ii—Li1—Pr1vi | 57.6 (3) | Bi1xi—Pr1—Li1i | 133.87 (4) |
Bi1iii—Li1—Pr1vi | 119.6 (7) | Bi1—Pr1—Li1i | 46.13 (4) |
Li2iv—Li1—Pr1vi | 126.2 (3) | Bi1xii—Pr1—Li1i | 79.3 (3) |
Li2—Li1—Pr1vi | 126.2 (3) | Bi1ix—Pr1—Li1i | 100.7 (3) |
Li2v—Li1—Pr1vi | 66.18 (18) | Bi1xiii—Pr1—Li1i | 133.87 (4) |
Bi1—Li1—Pr1vi | 134.5 (3) | Bi1x—Pr1—Li1i | 46.13 (4) |
Li1i—Li1—Pr1vi | 99.1 (3) | Li2—Pr1—Li1i | 45.5 (3) |
Li1iii—Li1—Pr1vi | 174.1 (9) | Li2xiv—Pr1—Li1i | 134.5 (3) |
Li1ii—Li1—Pr1vi | 99.1 (3) | Li1xv—Pr1—Li1i | 180.000 (1) |
Bi1i—Li1—Pr1vii | 119.6 (7) | Bi1xi—Pr1—Li1xiv | 100.7 (3) |
Bi1ii—Li1—Pr1vii | 57.6 (3) | Bi1—Pr1—Li1xiv | 79.3 (3) |
Bi1iii—Li1—Pr1vii | 57.6 (3) | Bi1xii—Pr1—Li1xiv | 46.13 (4) |
Li2iv—Li1—Pr1vii | 66.18 (18) | Bi1ix—Pr1—Li1xiv | 133.87 (4) |
Li2—Li1—Pr1vii | 126.2 (3) | Bi1xiii—Pr1—Li1xiv | 46.13 (4) |
Li2v—Li1—Pr1vii | 126.2 (3) | Bi1x—Pr1—Li1xiv | 133.87 (4) |
Bi1—Li1—Pr1vii | 134.5 (3) | Li2—Pr1—Li1xiv | 134.5 (3) |
Li1i—Li1—Pr1vii | 174.1 (9) | Li2xiv—Pr1—Li1xiv | 45.5 (3) |
Li1iii—Li1—Pr1vii | 99.1 (3) | Li1xv—Pr1—Li1xiv | 76.4 (4) |
Li1ii—Li1—Pr1vii | 99.1 (3) | Li1i—Pr1—Li1xiv | 103.6 (4) |
Pr1vi—Li1—Pr1vii | 76.4 (4) | Bi1xi—Pr1—Li1viii | 79.3 (3) |
Li1viii—Li2—Li1i | 107.1 (5) | Bi1—Pr1—Li1viii | 100.7 (3) |
Li1viii—Li2—Li1ix | 72.9 (5) | Bi1xii—Pr1—Li1viii | 133.87 (4) |
Li1i—Li2—Li1ix | 180.000 (1) | Bi1ix—Pr1—Li1viii | 46.13 (4) |
Li1viii—Li2—Li1 | 180.000 (2) | Bi1xiii—Pr1—Li1viii | 133.87 (4) |
Li1i—Li2—Li1 | 72.9 (5) | Bi1x—Pr1—Li1viii | 46.13 (4) |
Li1ix—Li2—Li1 | 107.1 (5) | Li2—Pr1—Li1viii | 45.5 (3) |
Li1viii—Li2—Li1iii | 107.1 (5) | Li2xiv—Pr1—Li1viii | 134.5 (3) |
Li1i—Li2—Li1iii | 107.1 (5) | Li1xv—Pr1—Li1viii | 103.6 (4) |
Li1ix—Li2—Li1iii | 72.9 (5) | Li1i—Pr1—Li1viii | 76.4 (4) |
Li1—Li2—Li1iii | 72.9 (5) | Li1xiv—Pr1—Li1viii | 180.0 |
Li1viii—Li2—Li1x | 72.9 (5) | Li1i—Bi1—Li1ii | 112.8 (4) |
Li1i—Li2—Li1x | 72.9 (5) | Li1i—Bi1—Li1iii | 112.8 (4) |
Li1ix—Li2—Li1x | 107.1 (5) | Li1ii—Bi1—Li1iii | 112.8 (4) |
Li1—Li2—Li1x | 107.1 (5) | Li1i—Bi1—Li1 | 74.1 (5) |
Li1iii—Li2—Li1x | 180.0 | Li1ii—Bi1—Li1 | 74.1 (5) |
Li1viii—Li2—Bi1i | 126.3 (2) | Li1iii—Bi1—Li1 | 74.1 (5) |
Li1i—Li2—Bi1i | 56.1 (4) | Li1i—Bi1—Li2v | 56.5 (2) |
Li1ix—Li2—Bi1i | 123.9 (4) | Li1ii—Bi1—Li2v | 56.5 (2) |
Li1—Li2—Bi1i | 53.7 (2) | Li1iii—Bi1—Li2v | 129.7 (5) |
Li1iii—Li2—Bi1i | 126.3 (2) | Li1—Bi1—Li2v | 55.636 (10) |
Li1x—Li2—Bi1i | 53.7 (2) | Li1i—Bi1—Li2iv | 129.7 (5) |
Li1viii—Li2—Bi1ix | 53.7 (2) | Li1ii—Bi1—Li2iv | 56.5 (2) |
Li1i—Li2—Bi1ix | 123.9 (4) | Li1iii—Bi1—Li2iv | 56.5 (2) |
Li1ix—Li2—Bi1ix | 56.1 (4) | Li1—Bi1—Li2iv | 55.636 (10) |
Li1—Li2—Bi1ix | 126.3 (2) | Li2v—Bi1—Li2iv | 91.266 (14) |
Li1iii—Li2—Bi1ix | 53.7 (2) | Li1i—Bi1—Li2 | 56.5 (2) |
Li1x—Li2—Bi1ix | 126.3 (2) | Li1ii—Bi1—Li2 | 129.7 (5) |
Bi1i—Li2—Bi1ix | 180.0 | Li1iii—Bi1—Li2 | 56.5 (2) |
Li1viii—Li2—Bi1viii | 56.1 (4) | Li1—Bi1—Li2 | 55.636 (9) |
Li1i—Li2—Bi1viii | 126.3 (2) | Li2v—Bi1—Li2 | 91.266 (13) |
Li1ix—Li2—Bi1viii | 53.7 (2) | Li2iv—Bi1—Li2 | 91.266 (13) |
Li1—Li2—Bi1viii | 123.9 (4) | Li1i—Bi1—Pr1iv | 161.1 (5) |
Li1iii—Li2—Bi1viii | 126.3 (2) | Li1ii—Bi1—Pr1iv | 76.2 (3) |
Li1x—Li2—Bi1viii | 53.7 (2) | Li1iii—Bi1—Pr1iv | 76.2 (3) |
Bi1i—Li2—Bi1viii | 91.267 (13) | Li1—Bi1—Pr1iv | 124.833 (10) |
Bi1ix—Li2—Bi1viii | 88.733 (13) | Li2v—Bi1—Pr1iv | 131.390 (5) |
Li1viii—Li2—Bi1 | 123.9 (4) | Li2iv—Bi1—Pr1iv | 69.197 (17) |
Li1i—Li2—Bi1 | 53.7 (2) | Li2—Bi1—Pr1iv | 131.390 (5) |
Li1ix—Li2—Bi1 | 126.3 (2) | Li1i—Bi1—Pr1 | 76.2 (3) |
Li1—Li2—Bi1 | 56.1 (4) | Li1ii—Bi1—Pr1 | 161.1 (5) |
Li1iii—Li2—Bi1 | 53.7 (2) | Li1iii—Bi1—Pr1 | 76.2 (3) |
Li1x—Li2—Bi1 | 126.3 (2) | Li1—Bi1—Pr1 | 124.833 (10) |
Bi1i—Li2—Bi1 | 88.734 (13) | Li2v—Bi1—Pr1 | 131.390 (5) |
Bi1ix—Li2—Bi1 | 91.266 (13) | Li2iv—Bi1—Pr1 | 131.390 (5) |
Bi1viii—Li2—Bi1 | 180.000 (10) | Li2—Bi1—Pr1 | 69.197 (17) |
Li1viii—Li2—Bi1iii | 126.3 (2) | Pr1iv—Bi1—Pr1 | 90.609 (14) |
Li1i—Li2—Bi1iii | 126.3 (2) | Li1i—Bi1—Pr1v | 76.2 (3) |
Li1ix—Li2—Bi1iii | 53.7 (2) | Li1ii—Bi1—Pr1v | 76.2 (3) |
Li1—Li2—Bi1iii | 53.7 (2) | Li1iii—Bi1—Pr1v | 161.1 (5) |
Li1iii—Li2—Bi1iii | 56.1 (4) | Li1—Bi1—Pr1v | 124.833 (9) |
Li1x—Li2—Bi1iii | 123.9 (4) | Li2v—Bi1—Pr1v | 69.197 (17) |
Bi1i—Li2—Bi1iii | 91.266 (13) | Li2iv—Bi1—Pr1v | 131.390 (5) |
Bi1ix—Li2—Bi1iii | 88.734 (13) | Li2—Bi1—Pr1v | 131.390 (5) |
Bi1viii—Li2—Bi1iii | 91.266 (13) | Pr1iv—Bi1—Pr1v | 90.609 (14) |
Bi1—Li2—Bi1iii | 88.734 (13) | Pr1—Bi1—Pr1v | 90.609 (14) |
Li1viii—Li2—Bi1x | 53.7 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+2, −z+1; (iii) −x, −y+1, −z+1; (iv) x, y+1, z; (v) x+1, y+1, z; (vi) x+1, y+1, z+1; (vii) x, y+1, z+1; (viii) −x, −y, −z+1; (ix) x−1, y−1, z; (x) x, y−1, z; (xi) −x, −y, −z; (xii) −x+1, −y+1, −z; (xiii) −x, −y+1, −z; (xiv) x, y, z−1; (xv) x−1, y−1, z−1. |
NdLi3Bi2 | Dx = 6.937 Mg m−3 |
Mr = 583.02 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, P3m1 | Cell parameters from 643 reflections |
a = 4.6596 (8) Å | θ = 2.7–25.2° |
c = 7.422 (2) Å | µ = 71.88 mm−1 |
V = 139.55 (6) Å3 | T = 200 K |
Z = 1 | Irregular, silver |
F(000) = 235 | 0.04 × 0.03 × 0.02 mm |
Bruker APEXII CCD diffractometer | 191 independent reflections |
Radiation source: fine-focus sealed tube | 179 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.065 |
φ and ω scans | θmax = 30.3°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) | h = −6→6 |
Tmin = 0.166, Tmax = 0.392 | k = −6→6 |
2078 measured reflections | l = −10→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.022 | w = 1/[σ2(Fo2) + (0.0162P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.042 | (Δ/σ)max < 0.001 |
S = 1.13 | Δρmax = 1.80 e Å−3 |
191 reflections | Δρmin = −1.74 e Å−3 |
9 parameters | Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0125 (12) |
NdLi3Bi2 | Z = 1 |
Mr = 583.02 | Mo Kα radiation |
Trigonal, P3m1 | µ = 71.88 mm−1 |
a = 4.6596 (8) Å | T = 200 K |
c = 7.422 (2) Å | 0.04 × 0.03 × 0.02 mm |
V = 139.55 (6) Å3 |
Bruker APEXII CCD diffractometer | 191 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) | 179 reflections with I > 2σ(I) |
Tmin = 0.166, Tmax = 0.392 | Rint = 0.065 |
2078 measured reflections |
R[F2 > 2σ(F2)] = 0.022 | 9 parameters |
wR(F2) = 0.042 | 0 restraints |
S = 1.13 | Δρmax = 1.80 e Å−3 |
191 reflections | Δρmin = −1.74 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Li1 | 0.3333 | 0.6667 | 0.641 (5) | 0.036 (7)* | |
Li2 | 0.0000 | 0.0000 | 0.5000 | 0.036 (7)* | |
Nd1 | 0.0000 | 0.0000 | 0.0000 | 0.0097 (3) | |
Bi1 | 0.3333 | 0.6667 | 0.25062 (7) | 0.0104 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Nd1 | 0.0100 (4) | 0.0100 (4) | 0.0092 (5) | 0.00500 (18) | 0.000 | 0.000 |
Bi1 | 0.0104 (3) | 0.0104 (3) | 0.0105 (3) | 0.00518 (13) | 0.000 | 0.000 |
Li1—Bi1i | 2.809 (11) | Li2—Bi1iii | 3.2654 (6) |
Li1—Bi1ii | 2.809 (11) | Li2—Bi1x | 3.2654 (6) |
Li1—Bi1iii | 2.809 (11) | Nd1—Bi1xi | 3.2706 (6) |
Li1—Li2iv | 2.885 (14) | Nd1—Bi1xii | 3.2706 (6) |
Li1—Li2 | 2.885 (14) | Nd1—Bi1ix | 3.2706 (6) |
Li1—Li2v | 2.885 (14) | Nd1—Bi1 | 3.2706 (6) |
Li1—Bi1 | 2.89 (4) | Nd1—Bi1xiii | 3.2706 (6) |
Li1—Li1i | 3.40 (5) | Nd1—Bi1x | 3.2706 (6) |
Li1—Li1iii | 3.40 (5) | Nd1—Li2xiv | 3.7109 (12) |
Li1—Li1ii | 3.40 (5) | Nd1—Li1xv | 3.79 (3) |
Li1—Nd1vi | 3.79 (3) | Nd1—Li1i | 3.79 (3) |
Li1—Nd1vii | 3.79 (3) | Nd1—Li1xiv | 3.79 (3) |
Li2—Li1viii | 2.885 (14) | Nd1—Li1viii | 3.79 (3) |
Li2—Li1i | 2.885 (14) | Bi1—Li1i | 2.809 (11) |
Li2—Li1ix | 2.885 (14) | Bi1—Li1ii | 2.809 (11) |
Li2—Li1iii | 2.885 (14) | Bi1—Li1iii | 2.809 (11) |
Li2—Li1x | 2.885 (14) | Bi1—Li2v | 3.2654 (6) |
Li2—Bi1i | 3.2654 (6) | Bi1—Li2iv | 3.2654 (6) |
Li2—Bi1ix | 3.2654 (6) | Bi1—Nd1iv | 3.2706 (6) |
Li2—Bi1viii | 3.2654 (6) | Bi1—Nd1v | 3.2706 (6) |
Li2—Bi1 | 3.2654 (6) | ||
Bi1i—Li1—Bi1ii | 112.1 (7) | Li1i—Li2—Bi1x | 53.9 (3) |
Bi1i—Li1—Bi1iii | 112.1 (7) | Li1ix—Li2—Bi1x | 126.1 (3) |
Bi1ii—Li1—Bi1iii | 112.1 (7) | Li1—Li2—Bi1x | 126.1 (3) |
Bi1i—Li1—Li2iv | 175.5 (14) | Li1iii—Li2—Bi1x | 124.3 (7) |
Bi1ii—Li1—Li2iv | 69.97 (5) | Li1x—Li2—Bi1x | 55.7 (7) |
Bi1iii—Li1—Li2iv | 69.97 (5) | Bi1i—Li2—Bi1x | 88.963 (18) |
Bi1i—Li1—Li2 | 69.97 (5) | Bi1ix—Li2—Bi1x | 91.037 (18) |
Bi1ii—Li1—Li2 | 175.5 (14) | Bi1viii—Li2—Bi1x | 88.963 (18) |
Bi1iii—Li1—Li2 | 69.97 (5) | Bi1—Li2—Bi1x | 91.037 (18) |
Li2iv—Li1—Li2 | 107.7 (7) | Bi1iii—Li2—Bi1x | 180.0 |
Bi1i—Li1—Li2v | 69.97 (5) | Bi1xi—Nd1—Bi1xii | 90.852 (18) |
Bi1ii—Li1—Li2v | 69.97 (5) | Bi1xi—Nd1—Bi1ix | 89.148 (18) |
Bi1iii—Li1—Li2v | 175.5 (14) | Bi1xii—Nd1—Bi1ix | 180.0 |
Li2iv—Li1—Li2v | 107.7 (7) | Bi1xi—Nd1—Bi1 | 180.0 |
Li2—Li1—Li2v | 107.7 (7) | Bi1xii—Nd1—Bi1 | 89.148 (18) |
Bi1i—Li1—Bi1 | 106.7 (7) | Bi1ix—Nd1—Bi1 | 90.852 (18) |
Bi1ii—Li1—Bi1 | 106.7 (7) | Bi1xi—Nd1—Bi1xiii | 90.852 (18) |
Bi1iii—Li1—Bi1 | 106.7 (7) | Bi1xii—Nd1—Bi1xiii | 90.852 (18) |
Li2iv—Li1—Bi1 | 68.8 (7) | Bi1ix—Nd1—Bi1xiii | 89.148 (18) |
Li2—Li1—Bi1 | 68.8 (7) | Bi1—Nd1—Bi1xiii | 89.148 (18) |
Li2v—Li1—Bi1 | 68.8 (7) | Bi1xi—Nd1—Bi1x | 89.148 (18) |
Bi1i—Li1—Li1i | 54.5 (3) | Bi1xii—Nd1—Bi1x | 89.148 (18) |
Bi1ii—Li1—Li1i | 123.7 (5) | Bi1ix—Nd1—Bi1x | 90.852 (18) |
Bi1iii—Li1—Li1i | 123.7 (5) | Bi1—Nd1—Bi1x | 90.852 (18) |
Li2iv—Li1—Li1i | 121.0 (17) | Bi1xiii—Nd1—Bi1x | 180.0 |
Li2—Li1—Li1i | 53.8 (4) | Bi1xi—Nd1—Li2 | 124.660 (12) |
Li2v—Li1—Li1i | 53.8 (4) | Bi1xii—Nd1—Li2 | 124.660 (13) |
Bi1—Li1—Li1i | 52.2 (10) | Bi1ix—Nd1—Li2 | 55.340 (13) |
Bi1i—Li1—Li1iii | 123.7 (5) | Bi1—Nd1—Li2 | 55.340 (13) |
Bi1ii—Li1—Li1iii | 123.7 (5) | Bi1xiii—Nd1—Li2 | 124.660 (12) |
Bi1iii—Li1—Li1iii | 54.5 (3) | Bi1x—Nd1—Li2 | 55.340 (12) |
Li2iv—Li1—Li1iii | 53.8 (4) | Bi1xi—Nd1—Li2xiv | 55.340 (12) |
Li2—Li1—Li1iii | 53.8 (4) | Bi1xii—Nd1—Li2xiv | 55.340 (13) |
Li2v—Li1—Li1iii | 121.0 (17) | Bi1ix—Nd1—Li2xiv | 124.660 (13) |
Bi1—Li1—Li1iii | 52.2 (10) | Bi1—Nd1—Li2xiv | 124.660 (13) |
Li1i—Li1—Li1iii | 86.4 (15) | Bi1xiii—Nd1—Li2xiv | 55.340 (12) |
Bi1i—Li1—Li1ii | 123.7 (5) | Bi1x—Nd1—Li2xiv | 124.660 (12) |
Bi1ii—Li1—Li1ii | 54.5 (3) | Li2—Nd1—Li2xiv | 180.0 |
Bi1iii—Li1—Li1ii | 123.7 (5) | Bi1xi—Nd1—Li1xv | 46.17 (7) |
Li2iv—Li1—Li1ii | 53.8 (4) | Bi1xii—Nd1—Li1xv | 100.6 (4) |
Li2—Li1—Li1ii | 121.0 (17) | Bi1ix—Nd1—Li1xv | 79.4 (4) |
Li2v—Li1—Li1ii | 53.8 (4) | Bi1—Nd1—Li1xv | 133.83 (6) |
Bi1—Li1—Li1ii | 52.2 (10) | Bi1xiii—Nd1—Li1xv | 46.17 (7) |
Li1i—Li1—Li1ii | 86.4 (15) | Bi1x—Nd1—Li1xv | 133.83 (7) |
Li1iii—Li1—Li1ii | 86.4 (15) | Li2—Nd1—Li1xv | 134.8 (4) |
Bi1i—Li1—Nd1vi | 57.1 (4) | Li2xiv—Nd1—Li1xv | 45.2 (4) |
Bi1ii—Li1—Nd1vi | 57.1 (4) | Bi1xi—Nd1—Li1i | 133.83 (7) |
Bi1iii—Li1—Nd1vi | 118.5 (11) | Bi1xii—Nd1—Li1i | 79.4 (4) |
Li2iv—Li1—Nd1vi | 125.8 (5) | Bi1ix—Nd1—Li1i | 100.6 (4) |
Li2—Li1—Nd1vi | 125.8 (5) | Bi1—Nd1—Li1i | 46.17 (6) |
Li2v—Li1—Nd1vi | 66.0 (3) | Bi1xiii—Nd1—Li1i | 133.83 (7) |
Bi1—Li1—Nd1vi | 134.8 (4) | Bi1x—Nd1—Li1i | 46.17 (7) |
Li1i—Li1—Nd1vi | 98.7 (5) | Li2—Nd1—Li1i | 45.2 (4) |
Li1iii—Li1—Nd1vi | 173.0 (14) | Li2xiv—Nd1—Li1i | 134.8 (4) |
Li1ii—Li1—Nd1vi | 98.7 (5) | Li1xv—Nd1—Li1i | 180.000 (1) |
Bi1i—Li1—Nd1vii | 118.5 (11) | Bi1xi—Nd1—Li1xiv | 100.6 (4) |
Bi1ii—Li1—Nd1vii | 57.1 (4) | Bi1xii—Nd1—Li1xiv | 46.17 (7) |
Bi1iii—Li1—Nd1vii | 57.1 (4) | Bi1ix—Nd1—Li1xiv | 133.83 (7) |
Li2iv—Li1—Nd1vii | 66.0 (3) | Bi1—Nd1—Li1xiv | 79.4 (4) |
Li2—Li1—Nd1vii | 125.8 (5) | Bi1xiii—Nd1—Li1xiv | 46.17 (7) |
Li2v—Li1—Nd1vii | 125.8 (5) | Bi1x—Nd1—Li1xiv | 133.83 (7) |
Bi1—Li1—Nd1vii | 134.8 (4) | Li2—Nd1—Li1xiv | 134.8 (4) |
Li1i—Li1—Nd1vii | 173.0 (14) | Li2xiv—Nd1—Li1xiv | 45.2 (4) |
Li1iii—Li1—Nd1vii | 98.7 (5) | Li1xv—Nd1—Li1xiv | 75.9 (6) |
Li1ii—Li1—Nd1vii | 98.7 (5) | Li1i—Nd1—Li1xiv | 104.1 (6) |
Nd1vi—Li1—Nd1vii | 75.9 (6) | Bi1xi—Nd1—Li1viii | 79.4 (4) |
Li1viii—Li2—Li1i | 107.7 (7) | Bi1xii—Nd1—Li1viii | 133.83 (7) |
Li1viii—Li2—Li1ix | 72.3 (7) | Bi1ix—Nd1—Li1viii | 46.17 (7) |
Li1i—Li2—Li1ix | 180.000 (1) | Bi1—Nd1—Li1viii | 100.6 (4) |
Li1viii—Li2—Li1 | 180.000 (1) | Bi1xiii—Nd1—Li1viii | 133.83 (7) |
Li1i—Li2—Li1 | 72.3 (7) | Bi1x—Nd1—Li1viii | 46.17 (7) |
Li1ix—Li2—Li1 | 107.7 (7) | Li2—Nd1—Li1viii | 45.2 (4) |
Li1viii—Li2—Li1iii | 107.7 (7) | Li2xiv—Nd1—Li1viii | 134.8 (4) |
Li1i—Li2—Li1iii | 107.7 (7) | Li1xv—Nd1—Li1viii | 104.1 (6) |
Li1ix—Li2—Li1iii | 72.3 (7) | Li1i—Nd1—Li1viii | 75.9 (6) |
Li1—Li2—Li1iii | 72.3 (7) | Li1xiv—Nd1—Li1viii | 180.0 (8) |
Li1viii—Li2—Li1x | 72.3 (7) | Li1i—Bi1—Li1ii | 112.1 (7) |
Li1i—Li2—Li1x | 72.3 (7) | Li1i—Bi1—Li1iii | 112.1 (7) |
Li1ix—Li2—Li1x | 107.7 (7) | Li1ii—Bi1—Li1iii | 112.1 (7) |
Li1—Li2—Li1x | 107.7 (7) | Li1i—Bi1—Li1 | 73.3 (7) |
Li1iii—Li2—Li1x | 180.0 (14) | Li1ii—Bi1—Li1 | 73.3 (7) |
Li1viii—Li2—Bi1i | 126.1 (3) | Li1iii—Bi1—Li1 | 73.3 (7) |
Li1i—Li2—Bi1i | 55.7 (7) | Li1i—Bi1—Li2v | 56.1 (4) |
Li1ix—Li2—Bi1i | 124.3 (7) | Li1ii—Bi1—Li2v | 56.1 (4) |
Li1—Li2—Bi1i | 53.9 (3) | Li1iii—Bi1—Li2v | 128.8 (7) |
Li1iii—Li2—Bi1i | 126.1 (3) | Li1—Bi1—Li2v | 55.472 (13) |
Li1x—Li2—Bi1i | 53.9 (3) | Li1i—Bi1—Li2iv | 128.8 (7) |
Li1viii—Li2—Bi1ix | 53.9 (3) | Li1ii—Bi1—Li2iv | 56.1 (4) |
Li1i—Li2—Bi1ix | 124.3 (7) | Li1iii—Bi1—Li2iv | 56.1 (4) |
Li1ix—Li2—Bi1ix | 55.7 (7) | Li1—Bi1—Li2iv | 55.472 (13) |
Li1—Li2—Bi1ix | 126.1 (3) | Li2v—Bi1—Li2iv | 91.037 (18) |
Li1iii—Li2—Bi1ix | 53.9 (3) | Li1i—Bi1—Li2 | 56.1 (4) |
Li1x—Li2—Bi1ix | 126.1 (3) | Li1ii—Bi1—Li2 | 128.8 (7) |
Bi1i—Li2—Bi1ix | 180.0 | Li1iii—Bi1—Li2 | 56.1 (4) |
Li1viii—Li2—Bi1viii | 55.7 (7) | Li1—Bi1—Li2 | 55.472 (13) |
Li1i—Li2—Bi1viii | 126.1 (3) | Li2v—Bi1—Li2 | 91.037 (18) |
Li1ix—Li2—Bi1viii | 53.9 (3) | Li2iv—Bi1—Li2 | 91.037 (18) |
Li1—Li2—Bi1viii | 124.3 (7) | Li1i—Bi1—Nd1 | 76.7 (5) |
Li1iii—Li2—Bi1viii | 126.1 (3) | Li1ii—Bi1—Nd1 | 162.1 (7) |
Li1x—Li2—Bi1viii | 53.9 (3) | Li1iii—Bi1—Nd1 | 76.7 (5) |
Bi1i—Li2—Bi1viii | 91.038 (18) | Li1—Bi1—Nd1 | 124.660 (13) |
Bi1ix—Li2—Bi1viii | 88.962 (18) | Li2v—Bi1—Nd1 | 131.389 (6) |
Li1viii—Li2—Bi1 | 124.3 (7) | Li2iv—Bi1—Nd1 | 131.389 (6) |
Li1i—Li2—Bi1 | 53.9 (3) | Li2—Bi1—Nd1 | 69.187 (19) |
Li1ix—Li2—Bi1 | 126.1 (3) | Li1i—Bi1—Nd1iv | 162.1 (7) |
Li1—Li2—Bi1 | 55.7 (7) | Li1ii—Bi1—Nd1iv | 76.7 (5) |
Li1iii—Li2—Bi1 | 53.9 (3) | Li1iii—Bi1—Nd1iv | 76.7 (5) |
Li1x—Li2—Bi1 | 126.1 (3) | Li1—Bi1—Nd1iv | 124.660 (13) |
Bi1i—Li2—Bi1 | 88.963 (18) | Li2v—Bi1—Nd1iv | 131.389 (6) |
Bi1ix—Li2—Bi1 | 91.037 (18) | Li2iv—Bi1—Nd1iv | 69.19 (2) |
Bi1viii—Li2—Bi1 | 180.0 | Li2—Bi1—Nd1iv | 131.389 (6) |
Li1viii—Li2—Bi1iii | 126.1 (3) | Nd1—Bi1—Nd1iv | 90.852 (18) |
Li1i—Li2—Bi1iii | 126.1 (3) | Li1i—Bi1—Nd1v | 76.7 (5) |
Li1ix—Li2—Bi1iii | 53.9 (3) | Li1ii—Bi1—Nd1v | 76.7 (5) |
Li1—Li2—Bi1iii | 53.9 (3) | Li1iii—Bi1—Nd1v | 162.1 (7) |
Li1iii—Li2—Bi1iii | 55.7 (7) | Li1—Bi1—Nd1v | 124.660 (13) |
Li1x—Li2—Bi1iii | 124.3 (7) | Li2v—Bi1—Nd1v | 69.187 (19) |
Bi1i—Li2—Bi1iii | 91.037 (18) | Li2iv—Bi1—Nd1v | 131.389 (6) |
Bi1ix—Li2—Bi1iii | 88.963 (18) | Li2—Bi1—Nd1v | 131.389 (6) |
Bi1viii—Li2—Bi1iii | 91.037 (18) | Nd1—Bi1—Nd1v | 90.852 (18) |
Bi1—Li2—Bi1iii | 88.963 (18) | Nd1iv—Bi1—Nd1v | 90.852 (18) |
Li1viii—Li2—Bi1x | 53.9 (3) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+2, −z+1; (iii) −x, −y+1, −z+1; (iv) x, y+1, z; (v) x+1, y+1, z; (vi) x+1, y+1, z+1; (vii) x, y+1, z+1; (viii) −x, −y, −z+1; (ix) x−1, y−1, z; (x) x, y−1, z; (xi) −x, −y, −z; (xii) −x+1, −y+1, −z; (xiii) −x, −y+1, −z; (xiv) x, y, z−1; (xv) x−1, y−1, z−1. |
SmLi3Bi2 | Dx = 7.127 Mg m−3 |
Mr = 589.13 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, P3m1 | Cell parameters from 1075 reflections |
a = 4.6398 (5) Å | θ = 2.8–30.8° |
c = 7.3624 (16) Å | µ = 74.32 mm−1 |
V = 137.26 (4) Å3 | T = 200 K |
Z = 1 | Irregular, silver |
F(000) = 237 | 0.07 × 0.06 × 0.04 mm |
Bruker APEXII CCD diffractometer | 192 independent reflections |
Radiation source: fine-focus sealed tube | 187 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
φ and ω scans | θmax = 30.4°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) | h = −6→6 |
Tmin = 0.083, Tmax = 0.160 | k = −6→6 |
2112 measured reflections | l = −10→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.015 | w = 1/[σ2(Fo2) + (0.0139P)2 + 0.7111P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.034 | (Δ/σ)max < 0.001 |
S = 1.17 | Δρmax = 1.11 e Å−3 |
192 reflections | Δρmin = −1.88 e Å−3 |
9 parameters | Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0159 (12) |
SmLi3Bi2 | Z = 1 |
Mr = 589.13 | Mo Kα radiation |
Trigonal, P3m1 | µ = 74.32 mm−1 |
a = 4.6398 (5) Å | T = 200 K |
c = 7.3624 (16) Å | 0.07 × 0.06 × 0.04 mm |
V = 137.26 (4) Å3 |
Bruker APEXII CCD diffractometer | 192 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) | 187 reflections with I > 2σ(I) |
Tmin = 0.083, Tmax = 0.160 | Rint = 0.037 |
2112 measured reflections |
R[F2 > 2σ(F2)] = 0.015 | 9 parameters |
wR(F2) = 0.034 | 0 restraints |
S = 1.17 | Δρmax = 1.11 e Å−3 |
192 reflections | Δρmin = −1.88 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Li1 | 0.3333 | 0.6667 | 0.648 (3) | 0.028 (4)* | |
Li2 | 0.0000 | 0.0000 | 0.5000 | 0.028 (4)* | |
Sm1 | 0.0000 | 0.0000 | 0.0000 | 0.00680 (18) | |
Bi1 | 0.3333 | 0.6667 | 0.24792 (5) | 0.00736 (16) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sm1 | 0.0071 (2) | 0.0071 (2) | 0.0062 (3) | 0.00355 (12) | 0.000 | 0.000 |
Bi1 | 0.00720 (18) | 0.00720 (18) | 0.0077 (2) | 0.00360 (9) | 0.000 | 0.000 |
Li1—Bi1i | 2.787 (7) | Li2—Bi1iii | 3.2589 (4) |
Li1—Bi1ii | 2.787 (7) | Li2—Bi1x | 3.2589 (4) |
Li1—Bi1iii | 2.787 (7) | Sm1—Bi1xi | 3.2415 (4) |
Li1—Li2iv | 2.891 (10) | Sm1—Bi1xii | 3.2415 (4) |
Li1—Li2 | 2.891 (10) | Sm1—Bi1ix | 3.2415 (4) |
Li1—Li2v | 2.891 (10) | Sm1—Bi1 | 3.2415 (4) |
Li1—Bi1 | 2.94 (3) | Sm1—Bi1xiii | 3.2415 (4) |
Li1—Li1i | 3.45 (3) | Sm1—Bi1x | 3.2415 (4) |
Li1—Li1iii | 3.45 (3) | Sm1—Li2xiv | 3.6812 (8) |
Li1—Li1ii | 3.45 (3) | Sm1—Li1xv | 3.728 (18) |
Li1—Sm1vi | 3.728 (18) | Sm1—Li1i | 3.728 (18) |
Li1—Sm1vii | 3.728 (18) | Sm1—Li1xiv | 3.728 (18) |
Li2—Li1viii | 2.891 (10) | Sm1—Li1viii | 3.728 (18) |
Li2—Li1i | 2.891 (10) | Bi1—Li1i | 2.787 (7) |
Li2—Li1ix | 2.891 (10) | Bi1—Li1ii | 2.787 (7) |
Li2—Li1iii | 2.891 (10) | Bi1—Li1iii | 2.787 (7) |
Li2—Li1x | 2.891 (10) | Bi1—Sm1iv | 3.2415 (4) |
Li2—Bi1i | 3.2589 (4) | Bi1—Sm1v | 3.2415 (4) |
Li2—Bi1ix | 3.2589 (4) | Bi1—Li2iv | 3.2589 (4) |
Li2—Bi1viii | 3.2589 (4) | Bi1—Li2v | 3.2589 (4) |
Li2—Bi1 | 3.2589 (4) | ||
Bi1i—Li1—Bi1ii | 112.7 (4) | Li1i—Li2—Bi1x | 53.5 (2) |
Bi1i—Li1—Bi1iii | 112.7 (4) | Li1ix—Li2—Bi1x | 126.5 (2) |
Bi1ii—Li1—Bi1iii | 112.7 (4) | Li1—Li2—Bi1x | 126.5 (2) |
Bi1i—Li1—Li2iv | 173.9 (10) | Li1iii—Li2—Bi1x | 123.2 (5) |
Bi1ii—Li1—Li2iv | 70.02 (5) | Li1x—Li2—Bi1x | 56.8 (5) |
Bi1iii—Li1—Li2iv | 70.02 (5) | Bi1i—Li2—Bi1x | 89.226 (12) |
Bi1i—Li1—Li2 | 70.02 (5) | Bi1ix—Li2—Bi1x | 90.774 (12) |
Bi1ii—Li1—Li2 | 173.9 (10) | Bi1viii—Li2—Bi1x | 89.226 (12) |
Bi1iii—Li1—Li2 | 70.02 (5) | Bi1—Li2—Bi1x | 90.774 (12) |
Li2iv—Li1—Li2 | 106.7 (5) | Bi1iii—Li2—Bi1x | 180.0 |
Bi1i—Li1—Li2v | 70.02 (5) | Bi1xi—Sm1—Bi1xii | 91.398 (12) |
Bi1ii—Li1—Li2v | 70.02 (5) | Bi1xi—Sm1—Bi1ix | 88.602 (12) |
Bi1iii—Li1—Li2v | 173.9 (10) | Bi1xii—Sm1—Bi1ix | 180.0 |
Li2iv—Li1—Li2v | 106.7 (5) | Bi1xi—Sm1—Bi1 | 180.0 |
Li2—Li1—Li2v | 106.7 (5) | Bi1xii—Sm1—Bi1 | 88.602 (12) |
Bi1i—Li1—Bi1 | 106.0 (5) | Bi1ix—Sm1—Bi1 | 91.398 (12) |
Bi1ii—Li1—Bi1 | 106.0 (5) | Bi1xi—Sm1—Bi1xiii | 91.398 (12) |
Bi1iii—Li1—Bi1 | 106.0 (5) | Bi1xii—Sm1—Bi1xiii | 91.398 (12) |
Li2iv—Li1—Bi1 | 67.9 (5) | Bi1ix—Sm1—Bi1xiii | 88.602 (12) |
Li2—Li1—Bi1 | 67.9 (5) | Bi1—Sm1—Bi1xiii | 88.602 (12) |
Li2v—Li1—Bi1 | 67.9 (5) | Bi1xi—Sm1—Bi1x | 88.602 (12) |
Bi1i—Li1—Li1i | 55.08 (15) | Bi1xii—Sm1—Bi1x | 88.602 (12) |
Bi1ii—Li1—Li1i | 123.1 (4) | Bi1ix—Sm1—Bi1x | 91.398 (12) |
Bi1iii—Li1—Li1i | 123.1 (4) | Bi1—Sm1—Bi1x | 91.398 (12) |
Li2iv—Li1—Li1i | 118.8 (11) | Bi1xiii—Sm1—Bi1x | 180.0 |
Li2—Li1—Li1i | 53.4 (3) | Bi1xi—Sm1—Li2 | 124.270 (9) |
Li2v—Li1—Li1i | 53.4 (3) | Bi1xii—Sm1—Li2 | 124.270 (9) |
Bi1—Li1—Li1i | 50.9 (7) | Bi1ix—Sm1—Li2 | 55.730 (9) |
Bi1i—Li1—Li1iii | 123.1 (4) | Bi1—Sm1—Li2 | 55.730 (9) |
Bi1ii—Li1—Li1iii | 123.1 (4) | Bi1xiii—Sm1—Li2 | 124.269 (9) |
Bi1iii—Li1—Li1iii | 55.08 (16) | Bi1x—Sm1—Li2 | 55.731 (9) |
Li2iv—Li1—Li1iii | 53.4 (3) | Bi1xi—Sm1—Li2xiv | 55.730 (8) |
Li2—Li1—Li1iii | 53.4 (3) | Bi1xii—Sm1—Li2xiv | 55.730 (9) |
Li2v—Li1—Li1iii | 118.8 (11) | Bi1ix—Sm1—Li2xiv | 124.270 (9) |
Bi1—Li1—Li1iii | 50.9 (7) | Bi1—Sm1—Li2xiv | 124.270 (9) |
Li1i—Li1—Li1iii | 84.5 (10) | Bi1xiii—Sm1—Li2xiv | 55.731 (9) |
Bi1i—Li1—Li1ii | 123.1 (4) | Bi1x—Sm1—Li2xiv | 124.269 (9) |
Bi1ii—Li1—Li1ii | 55.08 (15) | Li2—Sm1—Li2xiv | 180.0 |
Bi1iii—Li1—Li1ii | 123.1 (4) | Bi1xi—Sm1—Li1xv | 46.49 (5) |
Li2iv—Li1—Li1ii | 53.4 (3) | Bi1xii—Sm1—Li1xv | 101.7 (3) |
Li2—Li1—Li1ii | 118.8 (11) | Bi1ix—Sm1—Li1xv | 78.3 (3) |
Li2v—Li1—Li1ii | 53.4 (3) | Bi1—Sm1—Li1xv | 133.51 (5) |
Bi1—Li1—Li1ii | 50.9 (7) | Bi1xiii—Sm1—Li1xv | 46.49 (5) |
Li1i—Li1—Li1ii | 84.5 (10) | Bi1x—Sm1—Li1xv | 133.51 (5) |
Li1iii—Li1—Li1ii | 84.5 (10) | Li2—Sm1—Li1xv | 134.1 (3) |
Bi1i—Li1—Sm1vi | 57.5 (3) | Li2xiv—Sm1—Li1xv | 45.9 (3) |
Bi1ii—Li1—Sm1vi | 57.5 (3) | Bi1xi—Sm1—Li1i | 133.51 (5) |
Bi1iii—Li1—Sm1vi | 119.9 (8) | Bi1xii—Sm1—Li1i | 78.3 (3) |
Li2iv—Li1—Sm1vi | 126.5 (3) | Bi1ix—Sm1—Li1i | 101.7 (3) |
Li2—Li1—Sm1vi | 126.5 (3) | Bi1—Sm1—Li1i | 46.49 (5) |
Li2v—Li1—Sm1vi | 66.18 (19) | Bi1xiii—Sm1—Li1i | 133.51 (5) |
Bi1—Li1—Sm1vi | 134.1 (3) | Bi1x—Sm1—Li1i | 46.49 (5) |
Li1i—Li1—Sm1vi | 99.2 (3) | Li2—Sm1—Li1i | 45.9 (3) |
Li1iii—Li1—Sm1vi | 175.0 (9) | Li2xiv—Sm1—Li1i | 134.1 (3) |
Li1ii—Li1—Sm1vi | 99.2 (3) | Li1xv—Sm1—Li1i | 180.000 (1) |
Bi1i—Li1—Sm1vii | 119.9 (8) | Bi1xi—Sm1—Li1xiv | 101.7 (3) |
Bi1ii—Li1—Sm1vii | 57.5 (3) | Bi1xii—Sm1—Li1xiv | 46.49 (5) |
Bi1iii—Li1—Sm1vii | 57.5 (3) | Bi1ix—Sm1—Li1xiv | 133.51 (5) |
Li2iv—Li1—Sm1vii | 66.18 (19) | Bi1—Sm1—Li1xiv | 78.3 (3) |
Li2—Li1—Sm1vii | 126.5 (3) | Bi1xiii—Sm1—Li1xiv | 46.49 (5) |
Li2v—Li1—Sm1vii | 126.5 (3) | Bi1x—Sm1—Li1xiv | 133.51 (5) |
Bi1—Li1—Sm1vii | 134.1 (3) | Li2—Sm1—Li1xiv | 134.1 (3) |
Li1i—Li1—Sm1vii | 175.0 (9) | Li2xiv—Sm1—Li1xiv | 45.9 (3) |
Li1iii—Li1—Sm1vii | 99.2 (3) | Li1xv—Sm1—Li1xiv | 77.0 (4) |
Li1ii—Li1—Sm1vii | 99.2 (3) | Li1i—Sm1—Li1xiv | 103.0 (4) |
Sm1vi—Li1—Sm1vii | 77.0 (4) | Bi1xi—Sm1—Li1viii | 78.3 (3) |
Li1viii—Li2—Li1i | 106.7 (5) | Bi1xii—Sm1—Li1viii | 133.51 (5) |
Li1viii—Li2—Li1ix | 73.3 (5) | Bi1ix—Sm1—Li1viii | 46.49 (5) |
Li1i—Li2—Li1ix | 180.000 (1) | Bi1—Sm1—Li1viii | 101.7 (3) |
Li1viii—Li2—Li1 | 179.999 (1) | Bi1xiii—Sm1—Li1viii | 133.51 (5) |
Li1i—Li2—Li1 | 73.3 (5) | Bi1x—Sm1—Li1viii | 46.49 (5) |
Li1ix—Li2—Li1 | 106.7 (5) | Li2—Sm1—Li1viii | 45.9 (3) |
Li1viii—Li2—Li1iii | 106.7 (5) | Li2xiv—Sm1—Li1viii | 134.1 (3) |
Li1i—Li2—Li1iii | 106.7 (5) | Li1xv—Sm1—Li1viii | 103.0 (4) |
Li1ix—Li2—Li1iii | 73.3 (5) | Li1i—Sm1—Li1viii | 77.0 (4) |
Li1—Li2—Li1iii | 73.3 (5) | Li1xiv—Sm1—Li1viii | 180.0 |
Li1viii—Li2—Li1x | 73.3 (5) | Li1i—Bi1—Li1ii | 112.7 (4) |
Li1i—Li2—Li1x | 73.3 (5) | Li1i—Bi1—Li1iii | 112.7 (4) |
Li1ix—Li2—Li1x | 106.7 (5) | Li1ii—Bi1—Li1iii | 112.7 (4) |
Li1—Li2—Li1x | 106.7 (5) | Li1i—Bi1—Li1 | 74.0 (5) |
Li1iii—Li2—Li1x | 180.0 | Li1ii—Bi1—Li1 | 74.0 (5) |
Li1viii—Li2—Bi1i | 126.5 (2) | Li1iii—Bi1—Li1 | 74.0 (5) |
Li1i—Li2—Bi1i | 56.8 (5) | Li1i—Bi1—Sm1 | 76.0 (3) |
Li1ix—Li2—Bi1i | 123.2 (5) | Li1ii—Bi1—Sm1 | 161.7 (5) |
Li1—Li2—Bi1i | 53.5 (2) | Li1iii—Bi1—Sm1 | 76.0 (3) |
Li1iii—Li2—Bi1i | 126.5 (2) | Li1—Bi1—Sm1 | 124.270 (9) |
Li1x—Li2—Bi1i | 53.5 (2) | Li1i—Bi1—Sm1iv | 161.7 (5) |
Li1viii—Li2—Bi1ix | 53.5 (2) | Li1ii—Bi1—Sm1iv | 76.0 (3) |
Li1i—Li2—Bi1ix | 123.2 (5) | Li1iii—Bi1—Sm1iv | 76.0 (3) |
Li1ix—Li2—Bi1ix | 56.8 (5) | Li1—Bi1—Sm1iv | 124.270 (9) |
Li1—Li2—Bi1ix | 126.5 (2) | Sm1—Bi1—Sm1iv | 91.398 (12) |
Li1iii—Li2—Bi1ix | 53.5 (2) | Li1i—Bi1—Sm1v | 76.0 (3) |
Li1x—Li2—Bi1ix | 126.5 (2) | Li1ii—Bi1—Sm1v | 76.0 (3) |
Bi1i—Li2—Bi1ix | 180.0 | Li1iii—Bi1—Sm1v | 161.7 (5) |
Li1viii—Li2—Bi1viii | 56.8 (5) | Li1—Bi1—Sm1v | 124.270 (9) |
Li1i—Li2—Bi1viii | 126.5 (2) | Sm1—Bi1—Sm1v | 91.398 (12) |
Li1ix—Li2—Bi1viii | 53.5 (2) | Sm1iv—Bi1—Sm1v | 91.398 (12) |
Li1—Li2—Bi1viii | 123.2 (5) | Li1i—Bi1—Li2iv | 129.3 (5) |
Li1iii—Li2—Bi1viii | 126.5 (2) | Li1ii—Bi1—Li2iv | 56.5 (3) |
Li1x—Li2—Bi1viii | 53.5 (2) | Li1iii—Bi1—Li2iv | 56.5 (3) |
Bi1i—Li2—Bi1viii | 90.774 (12) | Li1—Bi1—Li2iv | 55.285 (9) |
Bi1ix—Li2—Bi1viii | 89.226 (12) | Sm1—Bi1—Li2iv | 131.325 (4) |
Li1viii—Li2—Bi1 | 123.2 (5) | Sm1iv—Bi1—Li2iv | 68.985 (12) |
Li1i—Li2—Bi1 | 53.5 (2) | Sm1v—Bi1—Li2iv | 131.325 (4) |
Li1ix—Li2—Bi1 | 126.5 (2) | Li1i—Bi1—Li2v | 56.5 (3) |
Li1—Li2—Bi1 | 56.8 (5) | Li1ii—Bi1—Li2v | 56.5 (3) |
Li1iii—Li2—Bi1 | 53.5 (2) | Li1iii—Bi1—Li2v | 129.3 (5) |
Li1x—Li2—Bi1 | 126.5 (2) | Li1—Bi1—Li2v | 55.285 (9) |
Bi1i—Li2—Bi1 | 89.226 (12) | Sm1—Bi1—Li2v | 131.325 (4) |
Bi1ix—Li2—Bi1 | 90.774 (12) | Sm1iv—Bi1—Li2v | 131.325 (4) |
Bi1viii—Li2—Bi1 | 180.0 | Sm1v—Bi1—Li2v | 68.985 (13) |
Li1viii—Li2—Bi1iii | 126.5 (2) | Li2iv—Bi1—Li2v | 90.774 (12) |
Li1i—Li2—Bi1iii | 126.5 (2) | Li1i—Bi1—Li2 | 56.5 (3) |
Li1ix—Li2—Bi1iii | 53.5 (2) | Li1ii—Bi1—Li2 | 129.3 (5) |
Li1—Li2—Bi1iii | 53.5 (2) | Li1iii—Bi1—Li2 | 56.5 (3) |
Li1iii—Li2—Bi1iii | 56.8 (5) | Li1—Bi1—Li2 | 55.285 (9) |
Li1x—Li2—Bi1iii | 123.2 (5) | Sm1—Bi1—Li2 | 68.985 (13) |
Bi1i—Li2—Bi1iii | 90.774 (12) | Sm1iv—Bi1—Li2 | 131.325 (4) |
Bi1ix—Li2—Bi1iii | 89.226 (12) | Sm1v—Bi1—Li2 | 131.325 (4) |
Bi1viii—Li2—Bi1iii | 90.774 (12) | Li2iv—Bi1—Li2 | 90.774 (12) |
Bi1—Li2—Bi1iii | 89.226 (12) | Li2v—Bi1—Li2 | 90.774 (12) |
Li1viii—Li2—Bi1x | 53.5 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+2, −z+1; (iii) −x, −y+1, −z+1; (iv) x, y+1, z; (v) x+1, y+1, z; (vi) x+1, y+1, z+1; (vii) x, y+1, z+1; (viii) −x, −y, −z+1; (ix) x−1, y−1, z; (x) x, y−1, z; (xi) −x, −y, −z; (xii) −x+1, −y+1, −z; (xiii) −x, −y+1, −z; (xiv) x, y, z−1; (xv) x−1, y−1, z−1. |
GdLi3Bi2 | Dx = 7.310 Mg m−3 |
Mr = 596.03 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, P3m1 | Cell parameters from 547 reflections |
a = 4.6188 (7) Å | θ = 2.8–24.7° |
c = 7.328 (2) Å | µ = 76.75 mm−1 |
V = 135.39 (5) Å3 | T = 200 K |
Z = 1 | Irregular, silver |
F(000) = 239 | 0.02 × 0.02 × 0.02 mm |
Bruker APEXII CCD diffractometer | 192 independent reflections |
Radiation source: fine-focus sealed tube | 177 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.051 |
φ and ω scans | θmax = 30.6°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) | h = −6→6 |
Tmin = 0.283, Tmax = 0.373 | k = −6→6 |
2067 measured reflections | l = −10→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.023 | w = 1/[σ2(Fo2) + (0.0225P)2 + 0.9138P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.048 | (Δ/σ)max < 0.001 |
S = 1.08 | Δρmax = 2.57 e Å−3 |
192 reflections | Δρmin = −1.45 e Å−3 |
9 parameters | Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0016 (10) |
GdLi3Bi2 | Z = 1 |
Mr = 596.03 | Mo Kα radiation |
Trigonal, P3m1 | µ = 76.75 mm−1 |
a = 4.6188 (7) Å | T = 200 K |
c = 7.328 (2) Å | 0.02 × 0.02 × 0.02 mm |
V = 135.39 (5) Å3 |
Bruker APEXII CCD diffractometer | 192 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) | 177 reflections with I > 2σ(I) |
Tmin = 0.283, Tmax = 0.373 | Rint = 0.051 |
2067 measured reflections |
R[F2 > 2σ(F2)] = 0.023 | 9 parameters |
wR(F2) = 0.048 | 0 restraints |
S = 1.08 | Δρmax = 2.57 e Å−3 |
192 reflections | Δρmin = −1.45 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Li1 | 0.3333 | 0.6667 | 0.643 (5) | 0.033 (7)* | |
Li2 | 0.0000 | 0.0000 | 0.5000 | 0.033 (7)* | |
Gd1 | 0.0000 | 0.0000 | 0.0000 | 0.0099 (3) | |
Bi1 | 0.3333 | 0.6667 | 0.24612 (8) | 0.0109 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Gd1 | 0.0102 (3) | 0.0102 (3) | 0.0092 (5) | 0.00512 (17) | 0.000 | 0.000 |
Bi1 | 0.0105 (3) | 0.0105 (3) | 0.0118 (3) | 0.00525 (13) | 0.000 | 0.000 |
Li1—Bi1i | 2.788 (11) | Li2—Bi1iii | 3.2515 (6) |
Li1—Bi1ii | 2.788 (11) | Li2—Bi1x | 3.2515 (6) |
Li1—Bi1iii | 2.788 (11) | Gd1—Bi1xi | 3.2193 (5) |
Li1—Li2iv | 2.865 (14) | Gd1—Bi1xii | 3.2193 (6) |
Li1—Li2 | 2.865 (14) | Gd1—Bi1ix | 3.2193 (6) |
Li1—Li2v | 2.865 (14) | Gd1—Bi1 | 3.2193 (6) |
Li1—Bi1 | 2.91 (4) | Gd1—Bi1xiii | 3.2193 (6) |
Li1—Li1i | 3.39 (5) | Gd1—Bi1x | 3.2193 (6) |
Li1—Li1iii | 3.39 (5) | Gd1—Li2xiv | 3.6640 (10) |
Li1—Li1ii | 3.39 (5) | Gd1—Li1xv | 3.74 (3) |
Li1—Gd1vi | 3.74 (3) | Gd1—Li1i | 3.74 (3) |
Li1—Gd1vii | 3.74 (3) | Gd1—Li1xiv | 3.74 (3) |
Li2—Li1viii | 2.865 (14) | Gd1—Li1viii | 3.74 (3) |
Li2—Li1i | 2.865 (14) | Bi1—Li1i | 2.788 (11) |
Li2—Li1ix | 2.865 (14) | Bi1—Li1ii | 2.788 (11) |
Li2—Li1iii | 2.865 (14) | Bi1—Li1iii | 2.788 (11) |
Li2—Li1x | 2.865 (14) | Bi1—Gd1iv | 3.2193 (6) |
Li2—Bi1i | 3.2515 (6) | Bi1—Gd1v | 3.2193 (6) |
Li2—Bi1ix | 3.2515 (6) | Bi1—Li2iv | 3.2515 (6) |
Li2—Bi1viii | 3.2515 (6) | Bi1—Li2v | 3.2515 (6) |
Li2—Bi1 | 3.2515 (6) | ||
Bi1i—Li1—Bi1ii | 111.9 (7) | Li1i—Li2—Bi1x | 53.8 (3) |
Bi1i—Li1—Bi1iii | 111.9 (7) | Li1ix—Li2—Bi1x | 126.2 (3) |
Bi1ii—Li1—Bi1iii | 111.9 (7) | Li1—Li2—Bi1x | 126.2 (3) |
Bi1i—Li1—Li2iv | 175.5 (15) | Li1iii—Li2—Bi1x | 123.6 (7) |
Bi1ii—Li1—Li2iv | 70.21 (5) | Li1x—Li2—Bi1x | 56.4 (7) |
Bi1iii—Li1—Li2iv | 70.21 (5) | Bi1i—Li2—Bi1x | 89.489 (17) |
Bi1i—Li1—Li2 | 70.21 (5) | Bi1ix—Li2—Bi1x | 90.511 (17) |
Bi1ii—Li1—Li2 | 175.5 (15) | Bi1viii—Li2—Bi1x | 89.489 (17) |
Bi1iii—Li1—Li2 | 70.21 (5) | Bi1—Li2—Bi1x | 90.511 (17) |
Li2iv—Li1—Li2 | 107.4 (8) | Bi1iii—Li2—Bi1x | 180.0 |
Bi1i—Li1—Li2v | 70.21 (5) | Bi1xi—Gd1—Bi1xii | 91.674 (17) |
Bi1ii—Li1—Li2v | 70.21 (5) | Bi1xi—Gd1—Bi1ix | 88.326 (17) |
Bi1iii—Li1—Li2v | 175.5 (15) | Bi1xii—Gd1—Bi1ix | 180.0 |
Li2iv—Li1—Li2v | 107.4 (8) | Bi1xi—Gd1—Bi1 | 180.0 |
Li2—Li1—Li2v | 107.4 (8) | Bi1xii—Gd1—Bi1 | 88.326 (17) |
Bi1i—Li1—Bi1 | 107.0 (7) | Bi1ix—Gd1—Bi1 | 91.674 (17) |
Bi1ii—Li1—Bi1 | 107.0 (7) | Bi1xi—Gd1—Bi1xiii | 91.674 (17) |
Bi1iii—Li1—Bi1 | 107.0 (7) | Bi1xii—Gd1—Bi1xiii | 91.674 (17) |
Li2iv—Li1—Bi1 | 68.6 (7) | Bi1ix—Gd1—Bi1xiii | 88.326 (17) |
Li2—Li1—Bi1 | 68.6 (7) | Bi1—Gd1—Bi1xiii | 88.326 (17) |
Li2v—Li1—Bi1 | 68.6 (7) | Bi1xi—Gd1—Bi1x | 88.326 (17) |
Bi1i—Li1—Li1i | 55.1 (3) | Bi1xii—Gd1—Bi1x | 88.326 (17) |
Bi1ii—Li1—Li1i | 123.8 (5) | Bi1ix—Gd1—Bi1x | 91.674 (17) |
Bi1iii—Li1—Li1i | 123.8 (5) | Bi1—Gd1—Bi1x | 91.674 (17) |
Li2iv—Li1—Li1i | 120.4 (17) | Bi1xiii—Gd1—Bi1x | 180.0 |
Li2—Li1—Li1i | 53.7 (4) | Bi1xi—Gd1—Li2 | 124.072 (12) |
Li2v—Li1—Li1i | 53.7 (4) | Bi1xii—Gd1—Li2 | 124.072 (12) |
Bi1—Li1—Li1i | 51.8 (10) | Bi1ix—Gd1—Li2 | 55.928 (12) |
Bi1i—Li1—Li1iii | 123.8 (5) | Bi1—Gd1—Li2 | 55.928 (12) |
Bi1ii—Li1—Li1iii | 123.8 (5) | Bi1xiii—Gd1—Li2 | 124.071 (12) |
Bi1iii—Li1—Li1iii | 55.1 (3) | Bi1x—Gd1—Li2 | 55.929 (12) |
Li2iv—Li1—Li1iii | 53.7 (4) | Bi1xi—Gd1—Li2xiv | 55.928 (12) |
Li2—Li1—Li1iii | 53.7 (4) | Bi1xii—Gd1—Li2xiv | 55.928 (12) |
Li2v—Li1—Li1iii | 120.4 (17) | Bi1ix—Gd1—Li2xiv | 124.072 (12) |
Bi1—Li1—Li1iii | 51.8 (10) | Bi1—Gd1—Li2xiv | 124.072 (12) |
Li1i—Li1—Li1iii | 85.8 (15) | Bi1xiii—Gd1—Li2xiv | 55.929 (12) |
Bi1i—Li1—Li1ii | 123.8 (5) | Bi1x—Gd1—Li2xiv | 124.071 (12) |
Bi1ii—Li1—Li1ii | 55.1 (3) | Li2—Gd1—Li2xiv | 180.0 |
Bi1iii—Li1—Li1ii | 123.8 (5) | Bi1xi—Gd1—Li1xv | 46.53 (6) |
Li2iv—Li1—Li1ii | 53.7 (4) | Bi1xii—Gd1—Li1xv | 101.5 (4) |
Li2—Li1—Li1ii | 120.4 (17) | Bi1ix—Gd1—Li1xv | 78.5 (4) |
Li2v—Li1—Li1ii | 53.7 (4) | Bi1—Gd1—Li1xv | 133.47 (6) |
Bi1—Li1—Li1ii | 51.8 (10) | Bi1xiii—Gd1—Li1xv | 46.53 (6) |
Li1i—Li1—Li1ii | 85.8 (15) | Bi1x—Gd1—Li1xv | 133.47 (6) |
Li1iii—Li1—Li1ii | 85.8 (15) | Li2—Gd1—Li1xv | 134.5 (4) |
Bi1i—Li1—Gd1vi | 56.9 (4) | Li2xiv—Gd1—Li1xv | 45.5 (4) |
Bi1ii—Li1—Gd1vi | 56.9 (4) | Bi1xi—Gd1—Li1i | 133.47 (6) |
Bi1iii—Li1—Gd1vi | 118.6 (12) | Bi1xii—Gd1—Li1i | 78.5 (4) |
Li2iv—Li1—Gd1vi | 126.0 (5) | Bi1ix—Gd1—Li1i | 101.5 (4) |
Li2—Li1—Gd1vi | 126.0 (5) | Bi1—Gd1—Li1i | 46.53 (6) |
Li2v—Li1—Gd1vi | 65.9 (3) | Bi1xiii—Gd1—Li1i | 133.47 (6) |
Bi1—Li1—Gd1vi | 134.5 (4) | Bi1x—Gd1—Li1i | 46.53 (6) |
Li1i—Li1—Gd1vi | 98.7 (5) | Li2—Gd1—Li1i | 45.5 (4) |
Li1iii—Li1—Gd1vi | 173.7 (14) | Li2xiv—Gd1—Li1i | 134.5 (4) |
Li1ii—Li1—Gd1vi | 98.7 (5) | Li1xv—Gd1—Li1i | 180.000 (1) |
Bi1i—Li1—Gd1vii | 118.6 (12) | Bi1xi—Gd1—Li1xiv | 101.5 (4) |
Bi1ii—Li1—Gd1vii | 56.9 (4) | Bi1xii—Gd1—Li1xiv | 46.53 (6) |
Bi1iii—Li1—Gd1vii | 56.9 (4) | Bi1ix—Gd1—Li1xiv | 133.47 (6) |
Li2iv—Li1—Gd1vii | 65.9 (3) | Bi1—Gd1—Li1xiv | 78.5 (4) |
Li2—Li1—Gd1vii | 126.0 (5) | Bi1xiii—Gd1—Li1xiv | 46.53 (6) |
Li2v—Li1—Gd1vii | 126.0 (5) | Bi1x—Gd1—Li1xiv | 133.47 (6) |
Bi1—Li1—Gd1vii | 134.5 (4) | Li2—Gd1—Li1xiv | 134.5 (4) |
Li1i—Li1—Gd1vii | 173.7 (14) | Li2xiv—Gd1—Li1xiv | 45.5 (4) |
Li1iii—Li1—Gd1vii | 98.7 (5) | Li1xv—Gd1—Li1xiv | 76.4 (6) |
Li1ii—Li1—Gd1vii | 98.7 (5) | Li1i—Gd1—Li1xiv | 103.6 (6) |
Gd1vi—Li1—Gd1vii | 76.4 (6) | Bi1xi—Gd1—Li1viii | 78.5 (4) |
Li1viii—Li2—Li1i | 107.4 (8) | Bi1xii—Gd1—Li1viii | 133.47 (6) |
Li1viii—Li2—Li1ix | 72.6 (8) | Bi1ix—Gd1—Li1viii | 46.53 (6) |
Li1i—Li2—Li1ix | 180.000 (1) | Bi1—Gd1—Li1viii | 101.5 (4) |
Li1viii—Li2—Li1 | 179.999 (1) | Bi1xiii—Gd1—Li1viii | 133.47 (6) |
Li1i—Li2—Li1 | 72.6 (8) | Bi1x—Gd1—Li1viii | 46.53 (6) |
Li1ix—Li2—Li1 | 107.4 (8) | Li2—Gd1—Li1viii | 45.5 (4) |
Li1viii—Li2—Li1iii | 107.4 (8) | Li2xiv—Gd1—Li1viii | 134.5 (4) |
Li1i—Li2—Li1iii | 107.4 (8) | Li1xv—Gd1—Li1viii | 103.6 (6) |
Li1ix—Li2—Li1iii | 72.6 (8) | Li1i—Gd1—Li1viii | 76.4 (6) |
Li1—Li2—Li1iii | 72.6 (8) | Li1xiv—Gd1—Li1viii | 180.0 |
Li1viii—Li2—Li1x | 72.6 (8) | Li1i—Bi1—Li1ii | 111.9 (7) |
Li1i—Li2—Li1x | 72.6 (8) | Li1i—Bi1—Li1iii | 111.9 (7) |
Li1ix—Li2—Li1x | 107.4 (8) | Li1ii—Bi1—Li1iii | 111.9 (7) |
Li1—Li2—Li1x | 107.4 (8) | Li1i—Bi1—Li1 | 73.1 (7) |
Li1iii—Li2—Li1x | 180.0 (14) | Li1ii—Bi1—Li1 | 73.1 (7) |
Li1viii—Li2—Bi1i | 126.2 (3) | Li1iii—Bi1—Li1 | 73.1 (8) |
Li1i—Li2—Bi1i | 56.4 (7) | Li1i—Bi1—Gd1iv | 162.9 (7) |
Li1ix—Li2—Bi1i | 123.6 (7) | Li1ii—Bi1—Gd1iv | 76.5 (5) |
Li1—Li2—Bi1i | 53.8 (3) | Li1iii—Bi1—Gd1iv | 76.5 (5) |
Li1iii—Li2—Bi1i | 126.2 (3) | Li1—Bi1—Gd1iv | 124.072 (12) |
Li1x—Li2—Bi1i | 53.8 (3) | Li1i—Bi1—Gd1 | 76.5 (5) |
Li1viii—Li2—Bi1ix | 53.8 (3) | Li1ii—Bi1—Gd1 | 162.9 (7) |
Li1i—Li2—Bi1ix | 123.6 (7) | Li1iii—Bi1—Gd1 | 76.5 (5) |
Li1ix—Li2—Bi1ix | 56.4 (7) | Li1—Bi1—Gd1 | 124.072 (12) |
Li1—Li2—Bi1ix | 126.2 (3) | Gd1iv—Bi1—Gd1 | 91.674 (17) |
Li1iii—Li2—Bi1ix | 53.8 (3) | Li1i—Bi1—Gd1v | 76.5 (5) |
Li1x—Li2—Bi1ix | 126.2 (3) | Li1ii—Bi1—Gd1v | 76.5 (5) |
Bi1i—Li2—Bi1ix | 180.0 | Li1iii—Bi1—Gd1v | 162.9 (7) |
Li1viii—Li2—Bi1viii | 56.4 (7) | Li1—Bi1—Gd1v | 124.072 (13) |
Li1i—Li2—Bi1viii | 126.2 (3) | Gd1iv—Bi1—Gd1v | 91.674 (17) |
Li1ix—Li2—Bi1viii | 53.8 (3) | Gd1—Bi1—Gd1v | 91.674 (17) |
Li1—Li2—Bi1viii | 123.6 (7) | Li1i—Bi1—Li2iv | 128.1 (7) |
Li1iii—Li2—Bi1viii | 126.2 (3) | Li1ii—Bi1—Li2iv | 56.0 (4) |
Li1x—Li2—Bi1viii | 53.8 (3) | Li1iii—Bi1—Li2iv | 56.0 (4) |
Bi1i—Li2—Bi1viii | 90.511 (17) | Li1—Bi1—Li2iv | 55.098 (12) |
Bi1ix—Li2—Bi1viii | 89.489 (17) | Gd1iv—Bi1—Li2iv | 68.974 (17) |
Li1viii—Li2—Bi1 | 123.6 (7) | Gd1—Bi1—Li2iv | 131.317 (5) |
Li1i—Li2—Bi1 | 53.8 (3) | Gd1v—Bi1—Li2iv | 131.317 (5) |
Li1ix—Li2—Bi1 | 126.2 (3) | Li1i—Bi1—Li2v | 56.0 (4) |
Li1—Li2—Bi1 | 56.4 (7) | Li1ii—Bi1—Li2v | 56.0 (4) |
Li1iii—Li2—Bi1 | 53.8 (3) | Li1iii—Bi1—Li2v | 128.1 (7) |
Li1x—Li2—Bi1 | 126.2 (3) | Li1—Bi1—Li2v | 55.098 (12) |
Bi1i—Li2—Bi1 | 89.489 (17) | Gd1iv—Bi1—Li2v | 131.317 (5) |
Bi1ix—Li2—Bi1 | 90.511 (17) | Gd1—Bi1—Li2v | 131.317 (5) |
Bi1viii—Li2—Bi1 | 180.0 | Gd1v—Bi1—Li2v | 68.974 (17) |
Li1viii—Li2—Bi1iii | 126.2 (3) | Li2iv—Bi1—Li2v | 90.511 (17) |
Li1i—Li2—Bi1iii | 126.2 (3) | Li1i—Bi1—Li2 | 56.0 (4) |
Li1ix—Li2—Bi1iii | 53.8 (3) | Li1ii—Bi1—Li2 | 128.1 (7) |
Li1—Li2—Bi1iii | 53.8 (3) | Li1iii—Bi1—Li2 | 56.0 (4) |
Li1iii—Li2—Bi1iii | 56.4 (7) | Li1—Bi1—Li2 | 55.098 (12) |
Li1x—Li2—Bi1iii | 123.6 (7) | Gd1iv—Bi1—Li2 | 131.317 (5) |
Bi1i—Li2—Bi1iii | 90.511 (17) | Gd1—Bi1—Li2 | 68.974 (17) |
Bi1ix—Li2—Bi1iii | 89.489 (17) | Gd1v—Bi1—Li2 | 131.317 (5) |
Bi1viii—Li2—Bi1iii | 90.511 (17) | Li2iv—Bi1—Li2 | 90.511 (17) |
Bi1—Li2—Bi1iii | 89.489 (17) | Li2v—Bi1—Li2 | 90.511 (17) |
Li1viii—Li2—Bi1x | 53.8 (3) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+2, −z+1; (iii) −x, −y+1, −z+1; (iv) x, y+1, z; (v) x+1, y+1, z; (vi) x+1, y+1, z+1; (vii) x, y+1, z+1; (viii) −x, −y, −z+1; (ix) x−1, y−1, z; (x) x, y−1, z; (xi) −x, −y, −z; (xii) −x+1, −y+1, −z; (xiii) −x, −y+1, −z; (xiv) x, y, z−1; (xv) x−1, y−1, z−1. |
TbLi3Bi2 | Dx = 7.358 Mg m−3 |
Mr = 597.70 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, P3m1 | Cell parameters from 1076 reflections |
a = 4.6165 (9) Å | θ = 2.8–30.1° |
c = 7.3087 (14) Å | µ = 77.84 mm−1 |
V = 134.90 (5) Å3 | T = 200 K |
Z = 1 | Irregular, silver |
F(000) = 240 | 0.06 × 0.05 × 0.05 mm |
Bruker APEXII CCD diffractometer | 185 independent reflections |
Radiation source: fine-focus sealed tube | 183 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
φ and ω scans | θmax = 30.3°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) | h = −6→6 |
Tmin = 0.088, Tmax = 0.124 | k = −6→6 |
2012 measured reflections | l = −9→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.018 | w = 1/[σ2(Fo2) + (0.0188P)2 + 0.6736P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.039 | (Δ/σ)max < 0.001 |
S = 1.17 | Δρmax = 1.17 e Å−3 |
185 reflections | Δρmin = −3.33 e Å−3 |
9 parameters | Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0260 (17) |
TbLi3Bi2 | Z = 1 |
Mr = 597.70 | Mo Kα radiation |
Trigonal, P3m1 | µ = 77.84 mm−1 |
a = 4.6165 (9) Å | T = 200 K |
c = 7.3087 (14) Å | 0.06 × 0.05 × 0.05 mm |
V = 134.90 (5) Å3 |
Bruker APEXII CCD diffractometer | 185 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) | 183 reflections with I > 2σ(I) |
Tmin = 0.088, Tmax = 0.124 | Rint = 0.037 |
2012 measured reflections |
R[F2 > 2σ(F2)] = 0.018 | 9 parameters |
wR(F2) = 0.039 | 0 restraints |
S = 1.17 | Δρmax = 1.17 e Å−3 |
185 reflections | Δρmin = −3.33 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Li1 | 0.3333 | 0.6667 | 0.647 (3) | 0.017 (4)* | |
Li2 | 0.0000 | 0.0000 | 0.5000 | 0.017 (4)* | |
Tb1 | 0.0000 | 0.0000 | 0.0000 | 0.0068 (2) | |
Bi1 | 0.3333 | 0.6667 | 0.24492 (6) | 0.0072 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Tb1 | 0.0074 (3) | 0.0074 (3) | 0.0058 (4) | 0.00368 (13) | 0.000 | 0.000 |
Bi1 | 0.0072 (2) | 0.0072 (2) | 0.0073 (3) | 0.00359 (11) | 0.000 | 0.000 |
Li1—Bi1i | 2.779 (7) | Li2—Bi1iii | 3.2527 (5) |
Li1—Bi1ii | 2.779 (7) | Li2—Bi1x | 3.2527 (5) |
Li1—Bi1iii | 2.779 (7) | Tb1—Bi1xi | 3.2106 (5) |
Li1—Li2iv | 2.874 (9) | Tb1—Bi1xii | 3.2106 (5) |
Li1—Li2 | 2.874 (9) | Tb1—Bi1ix | 3.2106 (5) |
Li1—Li2v | 2.874 (9) | Tb1—Bi1 | 3.2106 (5) |
Li1—Bi1 | 2.94 (2) | Tb1—Bi1xiii | 3.2107 (5) |
Li1—Li1i | 3.43 (3) | Tb1—Bi1x | 3.2107 (5) |
Li1—Li1iii | 3.43 (3) | Tb1—Li2xiv | 3.6544 (7) |
Li1—Li1ii | 3.43 (3) | Tb1—Li1xv | 3.708 (17) |
Li1—Tb1vi | 3.708 (17) | Tb1—Li1i | 3.708 (17) |
Li1—Tb1vii | 3.708 (17) | Tb1—Li1xiv | 3.708 (17) |
Li2—Li1viii | 2.874 (9) | Tb1—Li1viii | 3.708 (17) |
Li2—Li1i | 2.874 (9) | Bi1—Li1i | 2.779 (7) |
Li2—Li1ix | 2.874 (9) | Bi1—Li1ii | 2.779 (7) |
Li2—Li1iii | 2.874 (9) | Bi1—Li1iii | 2.779 (7) |
Li2—Li1x | 2.874 (9) | Bi1—Tb1iv | 3.2106 (5) |
Li2—Bi1i | 3.2526 (5) | Bi1—Tb1v | 3.2106 (5) |
Li2—Bi1ix | 3.2526 (5) | Bi1—Li2v | 3.2526 (5) |
Li2—Bi1viii | 3.2526 (5) | Bi1—Li2iv | 3.2526 (5) |
Li2—Bi1 | 3.2526 (5) | ||
Bi1i—Li1—Bi1ii | 112.3 (4) | Li1i—Li2—Bi1x | 53.5 (2) |
Bi1i—Li1—Bi1iii | 112.3 (4) | Li1ix—Li2—Bi1x | 126.5 (2) |
Bi1ii—Li1—Bi1iii | 112.3 (4) | Li1—Li2—Bi1x | 126.5 (2) |
Bi1i—Li1—Li2iv | 174.5 (9) | Li1iii—Li2—Bi1x | 123.0 (4) |
Bi1ii—Li1—Li2iv | 70.22 (4) | Li1x—Li2—Bi1x | 57.0 (4) |
Bi1iii—Li1—Li2iv | 70.22 (4) | Bi1i—Li2—Bi1x | 89.587 (13) |
Bi1i—Li1—Li2 | 70.22 (4) | Bi1ix—Li2—Bi1x | 90.413 (13) |
Bi1ii—Li1—Li2 | 174.5 (9) | Bi1viii—Li2—Bi1x | 89.587 (13) |
Bi1iii—Li1—Li2 | 70.22 (4) | Bi1—Li2—Bi1x | 90.414 (13) |
Li2iv—Li1—Li2 | 106.8 (5) | Bi1iii—Li2—Bi1x | 180.0 |
Bi1i—Li1—Li2v | 70.22 (4) | Bi1xi—Tb1—Bi1xii | 91.934 (13) |
Bi1ii—Li1—Li2v | 70.22 (4) | Bi1xi—Tb1—Bi1ix | 88.066 (13) |
Bi1iii—Li1—Li2v | 174.5 (9) | Bi1xii—Tb1—Bi1ix | 180.0 |
Li2iv—Li1—Li2v | 106.8 (5) | Bi1xi—Tb1—Bi1 | 180.0 |
Li2—Li1—Li2v | 106.8 (5) | Bi1xii—Tb1—Bi1 | 88.066 (13) |
Bi1i—Li1—Bi1 | 106.5 (5) | Bi1ix—Tb1—Bi1 | 91.934 (13) |
Bi1ii—Li1—Bi1 | 106.5 (5) | Bi1xi—Tb1—Bi1xiii | 91.933 (13) |
Bi1iii—Li1—Bi1 | 106.5 (5) | Bi1xii—Tb1—Bi1xiii | 91.933 (13) |
Li2iv—Li1—Bi1 | 68.0 (4) | Bi1ix—Tb1—Bi1xiii | 88.067 (13) |
Li2—Li1—Bi1 | 68.0 (4) | Bi1—Tb1—Bi1xiii | 88.066 (13) |
Li2v—Li1—Bi1 | 68.0 (4) | Bi1xi—Tb1—Bi1x | 88.067 (13) |
Bi1i—Li1—Li1i | 55.40 (15) | Bi1xii—Tb1—Bi1x | 88.067 (13) |
Bi1ii—Li1—Li1i | 123.4 (3) | Bi1ix—Tb1—Bi1x | 91.933 (13) |
Bi1iii—Li1—Li1i | 123.4 (3) | Bi1—Tb1—Bi1x | 91.934 (13) |
Li2iv—Li1—Li1i | 119.1 (11) | Bi1xiii—Tb1—Bi1x | 180.0 |
Li2—Li1—Li1i | 53.4 (2) | Bi1xi—Tb1—Li2 | 123.885 (10) |
Li2v—Li1—Li1i | 53.4 (2) | Bi1xii—Tb1—Li2 | 123.885 (9) |
Bi1—Li1—Li1i | 51.1 (6) | Bi1ix—Tb1—Li2 | 56.115 (9) |
Bi1i—Li1—Li1iii | 123.4 (3) | Bi1—Tb1—Li2 | 56.115 (9) |
Bi1ii—Li1—Li1iii | 123.4 (3) | Bi1xiii—Tb1—Li2 | 123.885 (10) |
Bi1iii—Li1—Li1iii | 55.40 (15) | Bi1x—Tb1—Li2 | 56.115 (10) |
Li2iv—Li1—Li1iii | 53.4 (2) | Bi1xi—Tb1—Li2xiv | 56.115 (10) |
Li2—Li1—Li1iii | 53.4 (2) | Bi1xii—Tb1—Li2xiv | 56.115 (9) |
Li2v—Li1—Li1iii | 119.1 (11) | Bi1ix—Tb1—Li2xiv | 123.885 (9) |
Bi1—Li1—Li1iii | 51.1 (6) | Bi1—Tb1—Li2xiv | 123.885 (9) |
Li1i—Li1—Li1iii | 84.7 (9) | Bi1xiii—Tb1—Li2xiv | 56.115 (10) |
Bi1i—Li1—Li1ii | 123.4 (3) | Bi1x—Tb1—Li2xiv | 123.885 (10) |
Bi1ii—Li1—Li1ii | 55.40 (15) | Li2—Tb1—Li2xiv | 180.0 |
Bi1iii—Li1—Li1ii | 123.4 (3) | Bi1xi—Tb1—Li1xv | 46.69 (4) |
Li2iv—Li1—Li1ii | 53.4 (2) | Bi1xii—Tb1—Li1xv | 102.1 (3) |
Li2—Li1—Li1ii | 119.1 (11) | Bi1ix—Tb1—Li1xv | 77.9 (3) |
Li2v—Li1—Li1ii | 53.4 (2) | Bi1—Tb1—Li1xv | 133.31 (4) |
Bi1—Li1—Li1ii | 51.1 (6) | Bi1xiii—Tb1—Li1xv | 46.69 (4) |
Li1i—Li1—Li1ii | 84.7 (9) | Bi1x—Tb1—Li1xv | 133.31 (4) |
Li1iii—Li1—Li1ii | 84.7 (9) | Li2—Tb1—Li1xv | 134.0 (3) |
Bi1i—Li1—Tb1vi | 57.2 (3) | Li2xiv—Tb1—Li1xv | 46.0 (3) |
Bi1ii—Li1—Tb1vi | 57.2 (3) | Bi1xi—Tb1—Li1i | 133.31 (4) |
Bi1iii—Li1—Tb1vi | 119.5 (7) | Bi1xii—Tb1—Li1i | 77.9 (3) |
Li2iv—Li1—Tb1vi | 126.4 (3) | Bi1ix—Tb1—Li1i | 102.1 (3) |
Li2—Li1—Tb1vi | 126.4 (3) | Bi1—Tb1—Li1i | 46.69 (4) |
Li2v—Li1—Tb1vi | 66.04 (18) | Bi1xiii—Tb1—Li1i | 133.31 (4) |
Bi1—Li1—Tb1vi | 134.0 (3) | Bi1x—Tb1—Li1i | 46.69 (4) |
Li1i—Li1—Tb1vi | 99.0 (3) | Li2—Tb1—Li1i | 46.0 (3) |
Li1iii—Li1—Tb1vi | 174.9 (9) | Li2xiv—Tb1—Li1i | 134.0 (3) |
Li1ii—Li1—Tb1vi | 99.0 (3) | Li1xv—Tb1—Li1i | 180.000 (1) |
Bi1i—Li1—Tb1vii | 119.5 (7) | Bi1xi—Tb1—Li1xiv | 102.1 (3) |
Bi1ii—Li1—Tb1vii | 57.2 (3) | Bi1xii—Tb1—Li1xiv | 46.69 (4) |
Bi1iii—Li1—Tb1vii | 57.2 (3) | Bi1ix—Tb1—Li1xiv | 133.31 (4) |
Li2iv—Li1—Tb1vii | 66.04 (18) | Bi1—Tb1—Li1xiv | 77.9 (3) |
Li2—Li1—Tb1vii | 126.4 (3) | Bi1xiii—Tb1—Li1xiv | 46.69 (4) |
Li2v—Li1—Tb1vii | 126.4 (3) | Bi1x—Tb1—Li1xiv | 133.31 (4) |
Bi1—Li1—Tb1vii | 134.0 (3) | Li2—Tb1—Li1xiv | 134.0 (3) |
Li1i—Li1—Tb1vii | 174.9 (9) | Li2xiv—Tb1—Li1xiv | 46.0 (3) |
Li1iii—Li1—Tb1vii | 99.0 (3) | Li1xv—Tb1—Li1xiv | 77.0 (4) |
Li1ii—Li1—Tb1vii | 99.0 (3) | Li1i—Tb1—Li1xiv | 103.0 (4) |
Tb1vi—Li1—Tb1vii | 77.0 (4) | Bi1xi—Tb1—Li1viii | 77.9 (3) |
Li1viii—Li2—Li1i | 106.8 (5) | Bi1xii—Tb1—Li1viii | 133.31 (4) |
Li1viii—Li2—Li1ix | 73.2 (5) | Bi1ix—Tb1—Li1viii | 46.69 (4) |
Li1i—Li2—Li1ix | 180.000 (1) | Bi1—Tb1—Li1viii | 102.1 (3) |
Li1viii—Li2—Li1 | 180.000 (1) | Bi1xiii—Tb1—Li1viii | 133.31 (4) |
Li1i—Li2—Li1 | 73.2 (5) | Bi1x—Tb1—Li1viii | 46.69 (4) |
Li1ix—Li2—Li1 | 106.8 (5) | Li2—Tb1—Li1viii | 46.0 (3) |
Li1viii—Li2—Li1iii | 106.8 (5) | Li2xiv—Tb1—Li1viii | 134.0 (3) |
Li1i—Li2—Li1iii | 106.8 (5) | Li1xv—Tb1—Li1viii | 103.0 (4) |
Li1ix—Li2—Li1iii | 73.2 (5) | Li1i—Tb1—Li1viii | 77.0 (4) |
Li1—Li2—Li1iii | 73.2 (5) | Li1xiv—Tb1—Li1viii | 180.0 (5) |
Li1viii—Li2—Li1x | 73.2 (5) | Li1i—Bi1—Li1ii | 112.3 (4) |
Li1i—Li2—Li1x | 73.2 (5) | Li1i—Bi1—Li1iii | 112.3 (4) |
Li1ix—Li2—Li1x | 106.8 (5) | Li1ii—Bi1—Li1iii | 112.3 (4) |
Li1—Li2—Li1x | 106.8 (5) | Li1i—Bi1—Li1 | 73.5 (5) |
Li1iii—Li2—Li1x | 180.0 | Li1ii—Bi1—Li1 | 73.5 (5) |
Li1viii—Li2—Bi1i | 126.5 (2) | Li1iii—Bi1—Li1 | 73.5 (5) |
Li1i—Li2—Bi1i | 57.0 (4) | Li1i—Bi1—Tb1iv | 162.6 (5) |
Li1ix—Li2—Bi1i | 123.0 (4) | Li1ii—Bi1—Tb1iv | 76.1 (3) |
Li1—Li2—Bi1i | 53.5 (2) | Li1iii—Bi1—Tb1iv | 76.1 (3) |
Li1iii—Li2—Bi1i | 126.5 (2) | Li1—Bi1—Tb1iv | 123.885 (10) |
Li1x—Li2—Bi1i | 53.5 (2) | Li1i—Bi1—Tb1 | 76.1 (3) |
Li1viii—Li2—Bi1ix | 53.5 (2) | Li1ii—Bi1—Tb1 | 162.6 (5) |
Li1i—Li2—Bi1ix | 123.0 (4) | Li1iii—Bi1—Tb1 | 76.1 (3) |
Li1ix—Li2—Bi1ix | 57.0 (4) | Li1—Bi1—Tb1 | 123.885 (9) |
Li1—Li2—Bi1ix | 126.5 (2) | Tb1iv—Bi1—Tb1 | 91.934 (13) |
Li1iii—Li2—Bi1ix | 53.5 (2) | Li1i—Bi1—Tb1v | 76.1 (3) |
Li1x—Li2—Bi1ix | 126.5 (2) | Li1ii—Bi1—Tb1v | 76.1 (3) |
Bi1i—Li2—Bi1ix | 180.0 | Li1iii—Bi1—Tb1v | 162.6 (5) |
Li1viii—Li2—Bi1viii | 57.0 (4) | Li1—Bi1—Tb1v | 123.885 (10) |
Li1i—Li2—Bi1viii | 126.5 (2) | Tb1iv—Bi1—Tb1v | 91.934 (13) |
Li1ix—Li2—Bi1viii | 53.5 (2) | Tb1—Bi1—Tb1v | 91.934 (13) |
Li1—Li2—Bi1viii | 123.0 (4) | Li1i—Bi1—Li2v | 56.3 (2) |
Li1iii—Li2—Bi1viii | 126.5 (2) | Li1ii—Bi1—Li2v | 56.3 (2) |
Li1x—Li2—Bi1viii | 53.5 (2) | Li1iii—Bi1—Li2v | 128.6 (5) |
Bi1i—Li2—Bi1viii | 90.414 (13) | Li1—Bi1—Li2v | 55.028 (9) |
Bi1ix—Li2—Bi1viii | 89.586 (13) | Tb1iv—Bi1—Li2v | 131.276 (5) |
Li1viii—Li2—Bi1 | 123.0 (4) | Tb1—Bi1—Li2v | 131.276 (4) |
Li1i—Li2—Bi1 | 53.5 (2) | Tb1v—Bi1—Li2v | 68.857 (15) |
Li1ix—Li2—Bi1 | 126.5 (2) | Li1i—Bi1—Li2iv | 128.6 (5) |
Li1—Li2—Bi1 | 57.0 (4) | Li1ii—Bi1—Li2iv | 56.3 (2) |
Li1iii—Li2—Bi1 | 53.5 (2) | Li1iii—Bi1—Li2iv | 56.3 (2) |
Li1x—Li2—Bi1 | 126.5 (2) | Li1—Bi1—Li2iv | 55.028 (9) |
Bi1i—Li2—Bi1 | 89.586 (13) | Tb1iv—Bi1—Li2iv | 68.857 (15) |
Bi1ix—Li2—Bi1 | 90.414 (13) | Tb1—Bi1—Li2iv | 131.276 (5) |
Bi1viii—Li2—Bi1 | 180.0 | Tb1v—Bi1—Li2iv | 131.276 (5) |
Li1viii—Li2—Bi1iii | 126.5 (2) | Li2v—Bi1—Li2iv | 90.413 (13) |
Li1i—Li2—Bi1iii | 126.5 (2) | Li1i—Bi1—Li2 | 56.3 (2) |
Li1ix—Li2—Bi1iii | 53.5 (2) | Li1ii—Bi1—Li2 | 128.6 (5) |
Li1—Li2—Bi1iii | 53.5 (2) | Li1iii—Bi1—Li2 | 56.3 (2) |
Li1iii—Li2—Bi1iii | 57.0 (4) | Li1—Bi1—Li2 | 55.028 (10) |
Li1x—Li2—Bi1iii | 123.0 (4) | Tb1iv—Bi1—Li2 | 131.276 (5) |
Bi1i—Li2—Bi1iii | 90.413 (13) | Tb1—Bi1—Li2 | 68.857 (15) |
Bi1ix—Li2—Bi1iii | 89.587 (13) | Tb1v—Bi1—Li2 | 131.276 (5) |
Bi1viii—Li2—Bi1iii | 90.413 (13) | Li2v—Bi1—Li2 | 90.413 (14) |
Bi1—Li2—Bi1iii | 89.586 (13) | Li2iv—Bi1—Li2 | 90.413 (13) |
Li1viii—Li2—Bi1x | 53.5 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+2, −z+1; (iii) −x, −y+1, −z+1; (iv) x, y+1, z; (v) x+1, y+1, z; (vi) x+1, y+1, z+1; (vii) x, y+1, z+1; (viii) −x, −y, −z+1; (ix) x−1, y−1, z; (x) x, y−1, z; (xi) −x, −y, −z; (xii) −x+1, −y+1, −z; (xiii) −x, −y+1, −z; (xiv) x, y, z−1; (xv) x−1, y−1, z−1. |
Experimental details
(LaLi3Bi2) | (CeLi3Bi2) | (PrLi3Bi2) | (NdLi3Bi2) | |
Crystal data | ||||
Chemical formula | LaLi3Bi2 | CeLi3Bi2 | PrLi3Bi2 | NdLi3Bi2 |
Mr | 577.69 | 578.90 | 579.69 | 583.02 |
Crystal system, space group | Trigonal, P3m1 | Trigonal, P3m1 | Trigonal, P3m1 | Trigonal, P3m1 |
Temperature (K) | 200 | 200 | 200 | 200 |
a, c (Å) | 4.7010 (3), 7.5431 (11) | 4.6790 (6), 7.4776 (17) | 4.6672 (7), 7.435 (2) | 4.6596 (8), 7.422 (2) |
V (Å3) | 144.36 (2) | 141.77 (4) | 140.26 (5) | 139.55 (6) |
Z | 1 | 1 | 1 | 1 |
Radiation type | Mo Kα | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 67.89 | 69.62 | 70.94 | 71.88 |
Crystal size (mm) | 0.05 × 0.04 × 0.04 | 0.05 × 0.05 × 0.04 | 0.04 × 0.04 × 0.04 | 0.04 × 0.03 × 0.02 |
Data collection | ||||
Diffractometer | Bruker APEXII CCD diffractometer | Bruker APEXII CCD diffractometer | Bruker APEXII CCD diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2008) | Multi-scan (SADABS; Sheldrick, 2008) | Multi-scan (SADABS; Sheldrick, 2008) | Multi-scan (SADABS; Sheldrick, 2008) |
Tmin, Tmax | 0.118, 0.182 | 0.123, 0.177 | 0.155, 0.184 | 0.166, 0.392 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2231, 202, 197 | 2135, 201, 196 | 2042, 198, 193 | 2078, 191, 179 |
Rint | 0.032 | 0.028 | 0.029 | 0.065 |
(sin θ/λ)max (Å−1) | 0.712 | 0.716 | 0.718 | 0.709 |
Refinement | ||||
R[F2 > 2σ(F2)], wR(F2), S | 0.013, 0.026, 1.16 | 0.013, 0.026, 1.17 | 0.015, 0.027, 1.22 | 0.022, 0.042, 1.13 |
No. of reflections | 202 | 201 | 198 | 191 |
No. of parameters | 9 | 9 | 9 | 9 |
Δρmax, Δρmin (e Å−3) | 1.23, −1.21 | 1.29, −2.18 | 1.62, −2.50 | 1.80, −1.74 |
(SmLi3Bi2) | (GdLi3Bi2) | (TbLi3Bi2) | |
Crystal data | |||
Chemical formula | SmLi3Bi2 | GdLi3Bi2 | TbLi3Bi2 |
Mr | 589.13 | 596.03 | 597.70 |
Crystal system, space group | Trigonal, P3m1 | Trigonal, P3m1 | Trigonal, P3m1 |
Temperature (K) | 200 | 200 | 200 |
a, c (Å) | 4.6398 (5), 7.3624 (16) | 4.6188 (7), 7.328 (2) | 4.6165 (9), 7.3087 (14) |
V (Å3) | 137.26 (4) | 135.39 (5) | 134.90 (5) |
Z | 1 | 1 | 1 |
Radiation type | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 74.32 | 76.75 | 77.84 |
Crystal size (mm) | 0.07 × 0.06 × 0.04 | 0.02 × 0.02 × 0.02 | 0.06 × 0.05 × 0.05 |
Data collection | |||
Diffractometer | Bruker APEXII CCD diffractometer | Bruker APEXII CCD diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2008) | Multi-scan (SADABS; Sheldrick, 2008) | Multi-scan (SADABS; Sheldrick, 2008) |
Tmin, Tmax | 0.083, 0.160 | 0.283, 0.373 | 0.088, 0.124 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2112, 192, 187 | 2067, 192, 177 | 2012, 185, 183 |
Rint | 0.037 | 0.051 | 0.037 |
(sin θ/λ)max (Å−1) | 0.712 | 0.716 | 0.710 |
Refinement | |||
R[F2 > 2σ(F2)], wR(F2), S | 0.015, 0.034, 1.17 | 0.023, 0.048, 1.08 | 0.018, 0.039, 1.17 |
No. of reflections | 192 | 192 | 185 |
No. of parameters | 9 | 9 | 9 |
Δρmax, Δρmin (e Å−3) | 1.11, −1.88 | 2.57, −1.45 | 1.17, −3.33 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), CrystalMaker (Palmer, 2007), publCIF (Westrip, 2010).
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register