Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Zintl phases are renowned for their diverse crystal structures with rich structural chemistry and have recently exhibited some remarkable heat- and charge-transport properties. The ternary bis­muthides RELi3Bi2 (RE = La–Nd, Sm, Gd, and Tb) (namely, lanthanum trilithium dibismuthide, LaLi3Bi2, cerium trilithium dibismuthide, CeLi3Bi2, praseodymium trilithium dibismuthide, PrLi3Bi2, neo­dymium trilithium dibismuthide, NdLi3Bi2, samarium trilithium dibismuthide, SmLi3Bi2, gadolinium trilithium dibismuthide, GdLi3Bi2, and terbium trilithium dibismuthide, TbLi3Bi2) were synthesized by high-temperature reactions of the elements in sealed Nb ampoules. Single-crystal X-ray diffraction analysis shows that all seven compounds are isostructural and crystallize in the LaLi3Sb2 type structure in the trigonal space group P\overline{3}m1 (Pearson symbol hP6). The unit-cell volumes decrease monotonically on moving from the La to the Tb compound, owing to the lanthanide contraction. The structure features a rare-earth metal atom and one Li atom in a nearly perfect octa­hedral coordination by six Bi atoms. The second crystallographically unique Li atom is surrounded by four Bi atoms in a slightly distorted tetra­hedral geometry. The atomic arrangements are best described as layered structures consisting of two-dimensional layers of fused LiBi4 tetra­hedra and LiBi6 octa­hedra, separated by rare-earth metal cations. As such, these compounds are expected to be valance-precise semiconductors, whose formulae can be represented as (RE3+)(Li1+)3(Bi3−)2.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229615016393/sk3600sup1.cif
Contains datablocks LaLi3Bi2, CeLi3Bi2, PrLi3Bi2, NdLi3Bi2, SmLi3Bi2, GdLi3Bi2, TbLi3Bi2, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615016393/sk3600LaLi3Bi2sup2.hkl
Contains datablock LaLi3Bi2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615016393/sk3600CeLi3Bi2sup3.hkl
Contains datablock CeLi3Bi2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615016393/sk3600PrLi3Bi2sup4.hkl
Contains datablock PrLi3Bi2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615016393/sk3600NdLi3Bi2sup5.hkl
Contains datablock NdLi3Bi2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615016393/sk3600SmLi3Bi2sup6.hkl
Contains datablock SmLi3Bi2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615016393/sk3600GdLi3Bi2sup7.hkl
Contains datablock GdLi3Bi2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615016393/sk3600TbLi3Bi2sup8.hkl
Contains datablock TbLi3Bi2

CCDC references: 1421999; 1421998; 1421997; 1421996; 1421995; 1421994; 1421993

Introduction top

Zintl phases are a class of compounds that provokes the inter­est of a number of solid-state chemists around the globe. They are renowned for their diverse crystal structures with rich structural chemistry (McNeil et al., 1973; Schäfer et al., 1973; Sevov, 2002; Kauzlarich et al., 2007), but recently they have captured the attention of the thermoelectric community due to some remarkable heat- and charge-transport properties found within their realm. For example, Yb14MnSb11, a Zintl phase with a very complicated structure, has become known as the best thermoelectric p-type material for high-temperature applications (Kauzlarich et al., 2007; Brown et al., 2006). The promise of this class of compounds as new thermoelectric materials has renewed the inter­est in exploratory studies for new Zintl phases with complex crystal structures, suitable electrical conductivity, and low thermal conductivity (Kauzlarich et al., 2007).

In the classical description, a Zintl phase contains electropositive alkali or alkaline-earth metals, and the main-group elements from groups 13–15. In such compounds, the electropositive metals donate their electrons to the more electronegative atoms, resulting in the formation of cations and (poly)anions, so that each element achieves complete octet of electrons in their valence shells (Schäfer et al., 1973; Sevov, 2002). The classical Zintl phases are therefore diamagnetic (or exhibit temperature-independent paramagnetism), and valence-precise insulators/semiconductors, by nature (Schäfer et al., 1973; Sevov, 2002).

In recent years, however, there have been numerous examples of compounds that do not completely follow the traditional Zintl ideas, yet, can be still rationalized as consisting of anions of heavier elements (from groups 13–15) and counter-cations for group 1, 2, or 3. Such `borderline' Zintl phases have a wide range of electrical properties ranging from narrow-band-gap semiconductors (e.g. Yb5In2Sb6 and Yb5Ga2Sb6; Kim et al., 2000; Subbarao et al., 2013), metals [e.g. Ba3Sn4As6 (Lam & Mar, 2001), Ca14MnSb11 (Rehr et al., 1994), etc.], and even superconductors such as BaSn3 (TC = 4.3 K; Schäfer et al., 2011) and SrSn3 (TC = 5.4 K) (Fässler & Hoffmann, 2000).

Inspired from these discoveries, over the last decade, our research group has been actively involved in the field of new solid-state materials, Zintl phases, and polar inter­metallics more specifically. We have identified several new compounds in the last two years alone (Makongo et al., 2014; Liu et al., 2015; Wang et al., 2015; Zhang et al., 2015). Over the course of the work, our efforts to alter the structures and fine-tune the electronic properties of rare-earth metals germanides we had worked on previously provided some unexpected results. We had hypothesized that by substitution of the very small lithium ions at rare-earth metal positions (RE hereafter), magnetic inter­actions could be modulated. Instead, we discovered a wealth of new compounds revealing the dual role of Li, as both a cation (electron-donor) and a partner in the covalent bonding. Examples of such compounds include RELiGe2 (RE = La–Nd, Sm, and Eu; Bobev et al., 2012), RE2Li2Ge3 and RE3Li4Ge4 (Guo et al. (Guo, You & Bobev, 2012), and RE7Li8Ge10 and RE11Li12Ge16 (RE = La–Nd, Sm; Guo, You, Jung & Bobev, 2012).

Expanding on the same ideas, we have turned our focus recently to Li-bearing pnictides for thermoelectric applications. During our early exploratory studies of the ternary RE–Li–Pn (Pn = Pnictogen = group 15) systems, we encountered a number of new phases. Some were surprisingly simple, such as RELi3Sb2 (RE = Ce–Nd, Sm, Gd–Ho; Schäfer et al., 2013). Some of the members of the family had been recognized before, but had been structurally misrepresented. Our work showed that they all crystallize in the LaLi3Sb2 structure type (Grund et al., 1984). As we noted earlier, some of the compounds we dealt with had been synthesized by Schuster and co-workers, but were originally reported with the formulae RELi2Sb2 (CaAl2Si2 type, space group P3m1, Pearson symbol hP5) (Schuster & Fischer, 1979; Fischer & Schuster, 1980, 1982; Zwiener et al., 1981; Grund et al., 1984). Subsequent neutron diffraction studies revealed that these structures actually contain an additional Li atom (per formula, augmenting the compositions to RELi3Pn2, which unlike the electron deficient RELi2Pn2 (RE3+)(Li1+)2(Pn3-)2 can be charge-balanced as (RE3+)(Li1+)3 (Pn3-)2 (Grund et al., 1984).

In this report, we present the structural aspects of the isotypic bis­muthides. We detail the crystal structures of all seven RELi3Bi2 (RE = La, Ce, Pr, Nd, Sm, Gd, and Tb) compounds, established from single-crystal X-ray diffraction work. The title compounds are isostructural and isoelectronic, and crystallize in the same structure as their Sb-based counterparts, namely, the LaLi3Sb2 structure type (Grund et al., 1984).

Experimental top

Synthesis and crystallization top

The RELi3Bi2 (RE = La–Sm, Gd, and Tb) compounds were obtained by high-temperature solid-state reactions of the respective elements in sealed niobium ampoules. The following rea­cta­nts were used for the syntheses: Li, La, Ce, Pr, Nd, Sm, Gd, and Bi. The metals were purchased from Alfa or Sigma–Aldrich with stated purity higher than 99.9 wt%.

All chemical manipulations were performed either inside an argon-filled dry glove-box or under vacuum. The surface of the lithium and the rare-earth metals were first shaved to remove any oxidized layer prior to use. The rea­cta­nts were weighed in stoichiometric ratios with a total mass of approximately 0.35 to 0.6 g and transferred into Nb tubes, which were then subsequently welded under an argon atmosphere. Further, these Nb ampoules were encapsulated inside fused silica tubes and sealed under vacuum (ca 10 -4 Torr; 1 Torr = 133.322 Pa) to avoid oxidation during the heat treatment. These silica tubes were then placed inside temperature-controlled furnaces. The optimized synthetic procedure involves heating the mixtures to 1173 K at a rate of 100 K h-1, equilibration for 24 h before cooling to 1073 K with a rate of 5 K h-1. The reaction mixtures were annealed at 1073 K for 96 h and finally cooled to 373 K with a cooling rate of 10 K h-1.

The products were irregularly shaped small crystals with a silver tinge. The products were not homogeneous and the targeted single crystals were selected manually using an optical microscope (based on appearance and confirmed by subsequent single-crystal X-ray diffraction work). The side products are as yet unidentified.

All the compounds in this series were found to be air and moisture sensitive.

Energy-dispersive X-ray (EDX) analyses were carried out on a Jeol 7400 F electron microscope, equipped with an INCA-OXFORD energy-dispersive spectrometer. The chemical compositions could not be reliably established because the EDX method is not sensitive enough to allow qu­anti­tative determination for Li, especially in the presence of very heavy elements.

Powder patterns were taken at room temperature on a Rigaku MiniFlex powder diffractometer using filtered Cu Kα radiation (λ = 1.54056 Å). The data were used for phase-dentification only. Irrespective of the method of synthesis, single-phase product was never obtained.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. Due to the air sensitivity, the single crystals were selected inside the argon-filled glove-box under an optical microscope. The crystals were cut with a scalpel to suitable (smaller) sizes. The X-ray absorption coefficients are very high; therefore we tried to minimize these effects by working with crystals in the range of 0.050–0.060 mm or smaller. Inspection and cutting were carried out in a drop of Paratone oil. The selected specimens were scooped up with micro-loops (obtained from MiTeGen) and transferred immediately to the single-crystal X-ray diffractometer. A stream of cold nitro­gen was used to protect the crystals from the ambient air.

After the quality of the crystals was confirmed by rapid scans, full spheres of intensity data were collected for all seven compounds. The raw data were integrated using the APEX2 software package (Bruker, 2007). The centrosymmetric trigonal space group P3m1 (No. 164) was chosen based on the (absence of) systematic absences and intensity statistics. All crystal structures were solved in a straightforward manner using direct methods, which provided the positions of the Bi and rare-earth metal atoms at the crystallographic sites 2d and 1a, respectively. Subsequent full-matrix least-squares/difference Fourier cycles were performed to locate the remaining two Li atoms from the Fourier maps. The isotropic refinement converged smoothly to satisfactory residuals for all refinements. The isotropic displacement parameters for the Li atoms (especially for atom Li2 in an o­cta­hedral coordination) were larger. A small disorder of the small Li atom in an o­cta­hedral hole, formed by hexagonal close packing of Bi atoms, can be proposed, but could not be reliably established. Hence, the isotropic displacement parameters of the Li2 atoms were constrained to those of the Li1 atoms using the EADP command. In the final least-squares cycles, the Bi and rare-earth metal atoms were refined anisotropically.

The final difference Fourier maps were generally flat. The small residual peaks are located at (2/3, 1/3, 0.37) for LaLi3Bi2 (1.23 e- Å-3), which is ca 0.16 Å from Li1; at (2/3, 1/3, 0.36) for CeLi3Bi2 (1.29 e- Å-3), which is ca 0.1 Å from Li1; at (2/3, 1/3, 0.98) for PrLi3Bi2 (1.62 e- Å-3), which is ca 1.7 Å from Bi1; at (0.82, 0.41, 0.70) for NdLi3Bi2 (1.80 e- Å-3), which is ca 0.7 Å from Bi1; at (0.19, 0.19, 0) for SmLi3Bi2 (1.10 e- Å-3), which is ca 0.9 Å from Sm1; at (2/3, 1/3, 0.86) for GdLi3Bi2 (2.57 e- Å-3) which is ca 0.8 Å from Bi1; at (0.56, 0.11, 0.74) for TbLi3Bi2 (1.17 e- Å-3) which is ca 0.9 Å from Bi1. The deepest holes (1–3 e- Å-3) were almost always in the proximity of lithium, attesting to the difficulty of refining light atoms in the presence of nearby very heavy elements.

The site-occupancy factors (sof) of the RE and Bi atoms were refined by freeing the occupancy of each individual site, while the remaining ones [sites?]were kept fixed. These trial refinements did not indicate any vacancies.

Before preparing the material for publication, for uniformity, all atomic coordinates were standardized using the program STRUCTURE TIDY (Gelato & Parthé, 1987).

Results and discussion top

At the outset, we point out that the syntheses and the structural determinations of NdLi3Bi2 and TbLi3Bi2 are being reported for the very first time. The other compounds in the series have been mentioned in various papers (Winter & Pöttgen, 2014; Grund et al., 1984) and can be found in the structural databases, but only their unit-cell parameters have been deduced from the respective powder X-ray diffraction patterns, i.e. the structures have never been refined. We also note here that our single-crystal unit-cell parameters are in excellent agreement with the literature.

A representation of this trigonal structure is shown in Fig. 1. The space group is P3m1 and the structure bears the Pearson symbol hP6. The asymmetric unit of the structure contains four atoms: one RE atom (site symmetry 3m.), two Li atoms [Li1 (3m.) and Li2 (3m.)], and one Bi atom (3m.). The unit-cell parameters (a and c constants) gradually decrease on moving from LaLi3Bi2 to TbLi3Bi2, as expected, following the lanthanide contraction and the diminishing size of the rare-earth metal atoms.

The crystal structure of these compounds can be visualized as a close-packed hexagonal array of Bi atoms in which Li1 atoms fill half of the available tetra­hedral voids, whereas the RE and Li2 atoms occupy the o­cta­hedral voids. The resulting structure is two-dimensional in nature, consisting of [Li12Bi2]4- layers separated by RE3+ cations (Fig. 2). The Li1 atoms in these layers are bonded to four Bi atoms in a slightly distorted tetra­hedral geometry. These two-dimensional layers are composed of edge-shared Li1Bi4 units. The Li2 atoms, which had been previously missed in the early structural studies are at the center of [Bi6] o­cta­hedral units within the [Li12Bi2]4- layers, as shown in Fig. 2. They are essential, as the valence-electron count would be unbalanced had Li2 been missing – the RELi3Bi2 family are Zintl phases, whose formula can be represented as (RE3+)(Li1+)3(Bi3-)2. This notion was confirmed by the electronic band structure calculations for LaLi3Sb2, published by us (Schäfer et al., 2013).

The three Li1—Bi bond lengths in the ab plane are the shortest, 2.779 (7) Å, for the Tb compound (smallest unit cell) and the largest, 2.813 (6) Å, for the La compound (largest unit cell). The fourth Li1—Bi bond length is longer in all compounds, and consistently follows the same trend, rooted in the lanthanide contraction: the Li1—Bi bond lengths range from 2.95 (2) to 2.89 (4) Å when moving across the RELi3Bi2 (RE = La–Nd, Sm, Gd, and Tb) series. These values are consistent with those found in LaLiBi2 [2.878 (1) Å; Pan et al., 2006] and the Li atoms in a tetra­hedral coordination in the newly discovered Eu4Li7Bi6 [2.82 (3)–2.93 (3) Å; Schäfer et al., 2014].

Li2—Bi inter­actions are systematically weaker than Li1—Bi and the distances are understandably longer – ranging from 3.2804 (3) to 3.2515 (6) Å on moving from LaLi3Bi2 to GdLi3Bi2. For the Tb compound, a very subtle increase in the Li2—Bi distance [3.2527 (5) Å] is observed. There are only a few other examples of bis­muthides which show similarly long Li—Bi bonds, for example, AuBi [3.325 (1) Å] and Li2AgBi [3.368 (1) Å] (Pauly et al., 1968a), and Li2MgBi [3.378 (1) Å; Pauly et al., 1968b]; the Li atoms in these structures are also o­cta­hedrally connected to six Bi atoms. The same holds true for the Li atoms in an o­cta­hedral coordination in Eu4Li7Bi6, with Li—Bi distances in the range 3.2832 (7)–3.3427 (5) Å (Schäfer et al., 2014)

The lengths of the RE—Bi contacts also decrease on moving from LaLi3Bi2 [3.2107 (5) Å] to TbLi3Bi2 [3.3299 (3) Å], reflecting the contraction of the unit cells. These distances are in good agreement when compared with the corresponding distances in compounds such as LaBi [3.305 (1) Å; Abdusalyamova et al., 1988], and SmBi [3.179 (1) Å] and GbBi [3.155 (1) Å] (Yoshihara et al., 1975), where all RE atoms are also coordinated to six Bi atoms in an o­cta­hedral fashion. In our earlier study on a related isostructural compound, viz. LaLi3Sb2, we found that the electronic band structure of this anti­monide shows overlapping of La 5d and Sb 5p bands, thus, indicating some extent of covalent bonding between La and Sb (Schäfer et al., 2013). Based on the RE—Bi distances, we can argue that the notion of some degree of covalency of the bonding between La and Bi can be also extended in the title bis­muthides.

Lastly, we would also like to briefly note the closely related crystal structure of well known CaAl2Si2 (same space group, one fewer atom). The relation between the two structures is shown in Fig. 1. The two structures are topologically very similar, and RELi3Bi2 can be obtained by filling the vacant o­cta­hedral sites in the `parent' CaAl2Si2 structure (the Li2 atoms). Hence, as also noted in other papers, the structure of the pnictides RELi3Pn2 can also be referred as the stuffed version of the CaAl2Si2 structure. Winter & Pöttgen (2014) also pointed out isopointal hydride–halide phases of the alkaline-earth metals with compositions AE2H3X (AE = Ca, Sr, Ba; X = Cl, Br, I). Along these lines, we recall that the CaAl2Si2 structure is isopointal with La2SO2, which is an ordered ternary variant of the La2O3 structure.

Computing details top

For all compounds, data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2007); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the structure of RELi3Bi2 emphasizing the polyanionic [Li12Bi2]4- layers. The figure also illustrates the structural relationship between CaAl2Si2 (Pearson symbol hP5) and RELi3Bi2 (Pearson symbol hP6).
[Figure 2] Fig. 2. The coordination environments of (a) Li1 (shown in blue), (b) Li2 (magenta), and (c) RE (black) atoms.
(LaLi3Bi2) Lanthanum trilithium dibismuthide top
Crystal data top
LaLi3Bi2Dx = 6.645 Mg m3
Mr = 577.69Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3m1Cell parameters from 1334 reflections
a = 4.7010 (3) Åθ = 2.7–30.4°
c = 7.5431 (11) ŵ = 67.89 mm1
V = 144.36 (2) Å3T = 200 K
Z = 1Irregular, silver
F(000) = 2320.05 × 0.04 × 0.04 mm
Data collection top
Bruker APEXII CCD
diffractometer
202 independent reflections
Radiation source: fine-focus sealed tube197 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 30.4°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 66
Tmin = 0.118, Tmax = 0.182k = 66
2231 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.013 w = 1/[σ2(Fo2) + (0.0079P)2 + 0.5698P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.026(Δ/σ)max < 0.001
S = 1.16Δρmax = 1.23 e Å3
202 reflectionsΔρmin = 1.21 e Å3
9 parametersExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0161 (9)
Crystal data top
LaLi3Bi2Z = 1
Mr = 577.69Mo Kα radiation
Trigonal, P3m1µ = 67.89 mm1
a = 4.7010 (3) ÅT = 200 K
c = 7.5431 (11) Å0.05 × 0.04 × 0.04 mm
V = 144.36 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
202 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
197 reflections with I > 2σ(I)
Tmin = 0.118, Tmax = 0.182Rint = 0.032
2231 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0139 parameters
wR(F2) = 0.0260 restraints
S = 1.16Δρmax = 1.23 e Å3
202 reflectionsΔρmin = 1.21 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Li10.33330.66670.646 (3)0.028 (3)*
Li20.00000.00000.50000.028 (3)*
La10.00000.00000.00000.00639 (15)
Bi10.33330.66670.25575 (4)0.00720 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.00649 (19)0.00649 (19)0.0062 (3)0.00324 (10)0.0000.000
Bi10.00683 (14)0.00683 (14)0.00794 (17)0.00342 (7)0.0000.000
Geometric parameters (Å, º) top
Li1—Bi1i2.813 (6)Li2—Bi1iii3.2804 (3)
Li1—Bi1ii2.813 (6)Li2—Bi1x3.2804 (3)
Li1—Bi1iii2.813 (6)La1—Bi1xi3.3298 (3)
Li1—Li2iv2.930 (8)La1—Bi1xii3.3298 (3)
Li1—Li22.930 (8)La1—Bi1ix3.3298 (3)
Li1—Li2v2.930 (8)La1—Bi13.3299 (3)
Li1—Bi12.95 (2)La1—Bi1xiii3.3299 (3)
Li1—Li1i3.50 (3)La1—Bi1x3.3299 (3)
Li1—Li1iii3.50 (3)La1—Li2xiv3.7715 (5)
Li1—Li1ii3.50 (3)La1—Li1xv3.806 (15)
Li1—La1vi3.806 (15)La1—Li1i3.806 (15)
Li1—La1vii3.806 (15)La1—Li1xiv3.806 (15)
Li2—Li1viii2.930 (8)La1—Li1viii3.806 (15)
Li2—Li1i2.930 (8)Bi1—Li1i2.813 (6)
Li2—Li1ix2.930 (8)Bi1—Li1ii2.813 (6)
Li2—Li1iii2.930 (8)Bi1—Li1iii2.813 (6)
Li2—Li1x2.930 (8)Bi1—Li2iv3.2804 (3)
Li2—Bi1i3.2804 (3)Bi1—Li2v3.2804 (3)
Li2—Bi1ix3.2804 (3)Bi1—La1iv3.3299 (3)
Li2—Bi1viii3.2804 (3)Bi1—La1v3.3299 (3)
Li2—Bi13.2804 (3)
Bi1i—Li1—Bi1ii113.4 (4)Li1i—Li2—Bi1x53.50 (18)
Bi1i—Li1—Bi1iii113.4 (4)Li1ix—Li2—Bi1x126.50 (18)
Bi1ii—Li1—Bi1iii113.4 (4)Li1—Li2—Bi1x126.50 (18)
Bi1i—Li1—Li2iv173.1 (8)Li1iii—Li2—Bi1x123.7 (4)
Bi1ii—Li1—Li2iv69.64 (4)Li1x—Li2—Bi1x56.3 (4)
Bi1iii—Li1—Li2iv69.64 (4)Bi1i—Li2—Bi1x88.463 (8)
Bi1i—Li1—Li269.64 (4)Bi1ix—Li2—Bi1x91.537 (8)
Bi1ii—Li1—Li2173.1 (8)Bi1viii—Li2—Bi1x88.463 (8)
Bi1iii—Li1—Li269.64 (4)Bi1—Li2—Bi1x91.537 (8)
Li2iv—Li1—Li2106.7 (4)Bi1iii—Li2—Bi1x180.0
Bi1i—Li1—Li2v69.64 (4)Bi1xi—La1—Bi1xii89.803 (9)
Bi1ii—Li1—Li2v69.64 (4)Bi1xi—La1—Bi1ix90.197 (8)
Bi1iii—Li1—Li2v173.1 (8)Bi1xii—La1—Bi1ix180.0
Li2iv—Li1—Li2v106.7 (4)Bi1xi—La1—Bi1180.000 (9)
Li2—Li1—Li2v106.7 (4)Bi1xii—La1—Bi190.197 (9)
Bi1i—Li1—Bi1105.2 (4)Bi1ix—La1—Bi189.803 (9)
Bi1ii—Li1—Bi1105.2 (4)Bi1xi—La1—Bi1xiii89.802 (9)
Bi1iii—Li1—Bi1105.2 (4)Bi1xii—La1—Bi1xiii89.802 (8)
Li2iv—Li1—Bi167.9 (4)Bi1ix—La1—Bi1xiii90.198 (8)
Li2—Li1—Bi167.9 (4)Bi1—La1—Bi1xiii90.197 (8)
Li2v—Li1—Bi167.9 (4)Bi1xi—La1—Bi1x90.198 (9)
Bi1i—Li1—Li1i54.35 (13)Bi1xii—La1—Bi1x90.198 (8)
Bi1ii—Li1—Li1i122.7 (3)Bi1ix—La1—Bi1x89.802 (8)
Bi1iii—Li1—Li1i122.7 (3)Bi1—La1—Bi1x89.803 (8)
Li2iv—Li1—Li1i118.7 (10)Bi1xiii—La1—Bi1x180.0
Li2—Li1—Li1i53.3 (2)Bi1xi—La1—Li2125.404 (6)
Li2v—Li1—Li1i53.3 (2)Bi1xii—La1—Li2125.404 (6)
Bi1—Li1—Li1i50.9 (6)Bi1ix—La1—Li254.596 (6)
Bi1i—Li1—Li1iii122.7 (3)Bi1—La1—Li254.596 (6)
Bi1ii—Li1—Li1iii122.7 (3)Bi1xiii—La1—Li2125.404 (6)
Bi1iii—Li1—Li1iii54.35 (13)Bi1x—La1—Li254.596 (6)
Li2iv—Li1—Li1iii53.3 (2)Bi1xi—La1—Li2xiv54.596 (6)
Li2—Li1—Li1iii53.3 (2)Bi1xii—La1—Li2xiv54.596 (6)
Li2v—Li1—Li1iii118.7 (10)Bi1ix—La1—Li2xiv125.404 (6)
Bi1—Li1—Li1iii50.9 (6)Bi1—La1—Li2xiv125.404 (6)
Li1i—Li1—Li1iii84.4 (8)Bi1xiii—La1—Li2xiv54.596 (6)
Bi1i—Li1—Li1ii122.7 (3)Bi1x—La1—Li2xiv125.404 (6)
Bi1ii—Li1—Li1ii54.35 (13)Li2—La1—Li2xiv180.0
Bi1iii—Li1—Li1ii122.7 (3)Bi1xi—La1—Li1xv45.83 (4)
Li2iv—Li1—Li1ii53.3 (2)Bi1xii—La1—Li1xv100.1 (2)
Li2—Li1—Li1ii118.7 (10)Bi1ix—La1—Li1xv79.9 (2)
Li2v—Li1—Li1ii53.3 (2)Bi1—La1—Li1xv134.17 (4)
Bi1—Li1—Li1ii50.9 (6)Bi1xiii—La1—Li1xv45.83 (4)
Li1i—Li1—Li1ii84.4 (8)Bi1x—La1—Li1xv134.17 (4)
Li1iii—Li1—Li1ii84.4 (8)Li2—La1—Li1xv134.5 (2)
Bi1i—Li1—La1vi58.1 (3)Li2xiv—La1—Li1xv45.5 (2)
Bi1ii—Li1—La1vi58.1 (3)Bi1xi—La1—Li1i134.17 (4)
Bi1iii—Li1—La1vi120.3 (7)Bi1xii—La1—Li1i79.9 (2)
Li2iv—Li1—La1vi126.5 (3)Bi1ix—La1—Li1i100.1 (2)
Li2—Li1—La1vi126.5 (3)Bi1—La1—Li1i45.83 (4)
Li2v—Li1—La1vi66.64 (16)Bi1xiii—La1—Li1i134.17 (4)
Bi1—Li1—La1vi134.5 (2)Bi1x—La1—Li1i45.83 (4)
Li1i—Li1—La1vi99.5 (3)Li2—La1—Li1i45.5 (2)
Li1iii—Li1—La1vi174.6 (8)Li2xiv—La1—Li1i134.5 (2)
Li1ii—Li1—La1vi99.5 (3)Li1xv—La1—Li1i180.000 (1)
Bi1i—Li1—La1vii120.3 (7)Bi1xi—La1—Li1xiv100.1 (2)
Bi1ii—Li1—La1vii58.1 (3)Bi1xii—La1—Li1xiv45.83 (4)
Bi1iii—Li1—La1vii58.1 (3)Bi1ix—La1—Li1xiv134.17 (4)
Li2iv—Li1—La1vii66.64 (16)Bi1—La1—Li1xiv79.9 (2)
Li2—Li1—La1vii126.5 (3)Bi1xiii—La1—Li1xiv45.83 (4)
Li2v—Li1—La1vii126.5 (3)Bi1x—La1—Li1xiv134.17 (4)
Bi1—Li1—La1vii134.5 (2)Li2—La1—Li1xiv134.5 (2)
Li1i—Li1—La1vii174.6 (8)Li2xiv—La1—Li1xiv45.5 (2)
Li1iii—Li1—La1vii99.5 (3)Li1xv—La1—Li1xiv76.3 (4)
Li1ii—Li1—La1vii99.5 (3)Li1i—La1—Li1xiv103.7 (4)
La1vi—Li1—La1vii76.3 (4)Bi1xi—La1—Li1viii79.9 (2)
Li1viii—Li2—Li1i106.7 (4)Bi1xii—La1—Li1viii134.17 (4)
Li1viii—Li2—Li1ix73.3 (4)Bi1ix—La1—Li1viii45.83 (4)
Li1i—Li2—Li1ix180.000 (1)Bi1—La1—Li1viii100.1 (2)
Li1viii—Li2—Li1180.000 (1)Bi1xiii—La1—Li1viii134.17 (4)
Li1i—Li2—Li173.3 (4)Bi1x—La1—Li1viii45.83 (4)
Li1ix—Li2—Li1106.7 (4)Li2—La1—Li1viii45.5 (2)
Li1viii—Li2—Li1iii106.7 (4)Li2xiv—La1—Li1viii134.5 (2)
Li1i—Li2—Li1iii106.7 (4)Li1xv—La1—Li1viii103.7 (4)
Li1ix—Li2—Li1iii73.3 (4)Li1i—La1—Li1viii76.3 (4)
Li1—Li2—Li1iii73.3 (4)Li1xiv—La1—Li1viii180.0
Li1viii—Li2—Li1x73.3 (4)Li1i—Bi1—Li1ii113.4 (4)
Li1i—Li2—Li1x73.3 (4)Li1i—Bi1—Li1iii113.4 (4)
Li1ix—Li2—Li1x106.7 (4)Li1ii—Bi1—Li1iii113.4 (4)
Li1—Li2—Li1x106.7 (4)Li1i—Bi1—Li174.8 (4)
Li1iii—Li2—Li1x180.0 (8)Li1ii—Bi1—Li174.8 (4)
Li1viii—Li2—Bi1i126.50 (18)Li1iii—Bi1—Li174.8 (4)
Li1i—Li2—Bi1i56.3 (4)Li1i—Bi1—Li2iv130.6 (4)
Li1ix—Li2—Bi1i123.7 (4)Li1ii—Bi1—Li2iv56.9 (2)
Li1—Li2—Bi1i53.50 (18)Li1iii—Bi1—Li2iv56.9 (2)
Li1iii—Li2—Bi1i126.50 (18)Li1—Bi1—Li2iv55.830 (6)
Li1x—Li2—Bi1i53.50 (18)Li1i—Bi1—Li2v56.9 (2)
Li1viii—Li2—Bi1ix53.50 (18)Li1ii—Bi1—Li2v56.9 (2)
Li1i—Li2—Bi1ix123.7 (4)Li1iii—Bi1—Li2v130.6 (4)
Li1ix—Li2—Bi1ix56.3 (4)Li1—Bi1—Li2v55.830 (7)
Li1—Li2—Bi1ix126.50 (18)Li2iv—Bi1—Li2v91.537 (8)
Li1iii—Li2—Bi1ix53.50 (18)Li1i—Bi1—Li256.9 (2)
Li1x—Li2—Bi1ix126.50 (18)Li1ii—Bi1—Li2130.6 (4)
Bi1i—Li2—Bi1ix180.0Li1iii—Bi1—Li256.9 (2)
Li1viii—Li2—Bi1viii56.3 (4)Li1—Bi1—Li255.830 (6)
Li1i—Li2—Bi1viii126.50 (18)Li2iv—Bi1—Li291.537 (9)
Li1ix—Li2—Bi1viii53.50 (18)Li2v—Bi1—Li291.537 (9)
Li1—Li2—Bi1viii123.7 (4)Li1i—Bi1—La1iv159.8 (4)
Li1iii—Li2—Bi1viii126.50 (18)Li1ii—Bi1—La1iv76.0 (3)
Li1x—Li2—Bi1viii53.50 (18)Li1iii—Bi1—La1iv76.0 (3)
Bi1i—Li2—Bi1viii91.537 (9)Li1—Bi1—La1iv125.404 (6)
Bi1ix—Li2—Bi1viii88.463 (9)Li2iv—Bi1—La1iv69.574 (9)
Li1viii—Li2—Bi1123.7 (4)Li2v—Bi1—La1iv131.497 (3)
Li1i—Li2—Bi153.50 (18)Li2—Bi1—La1iv131.497 (3)
Li1ix—Li2—Bi1126.50 (18)Li1i—Bi1—La176.0 (3)
Li1—Li2—Bi156.3 (4)Li1ii—Bi1—La1159.8 (4)
Li1iii—Li2—Bi153.50 (18)Li1iii—Bi1—La176.0 (3)
Li1x—Li2—Bi1126.50 (18)Li1—Bi1—La1125.404 (6)
Bi1i—Li2—Bi188.463 (9)Li2iv—Bi1—La1131.497 (3)
Bi1ix—Li2—Bi191.537 (8)Li2v—Bi1—La1131.497 (2)
Bi1viii—Li2—Bi1180.0Li2—Bi1—La169.574 (9)
Li1viii—Li2—Bi1iii126.50 (18)La1iv—Bi1—La189.802 (8)
Li1i—Li2—Bi1iii126.50 (18)Li1i—Bi1—La1v76.0 (3)
Li1ix—Li2—Bi1iii53.50 (18)Li1ii—Bi1—La1v76.0 (3)
Li1—Li2—Bi1iii53.50 (18)Li1iii—Bi1—La1v159.8 (4)
Li1iii—Li2—Bi1iii56.3 (4)Li1—Bi1—La1v125.404 (6)
Li1x—Li2—Bi1iii123.7 (4)Li2iv—Bi1—La1v131.497 (3)
Bi1i—Li2—Bi1iii91.537 (8)Li2v—Bi1—La1v69.574 (9)
Bi1ix—Li2—Bi1iii88.463 (8)Li2—Bi1—La1v131.497 (3)
Bi1viii—Li2—Bi1iii91.537 (8)La1iv—Bi1—La1v89.802 (9)
Bi1—Li2—Bi1iii88.463 (8)La1—Bi1—La1v89.802 (9)
Li1viii—Li2—Bi1x53.50 (18)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x, y+1, z+1; (iv) x, y+1, z; (v) x+1, y+1, z; (vi) x+1, y+1, z+1; (vii) x, y+1, z+1; (viii) x, y, z+1; (ix) x1, y1, z; (x) x, y1, z; (xi) x, y, z; (xii) x+1, y+1, z; (xiii) x, y+1, z; (xiv) x, y, z1; (xv) x1, y1, z1.
(CeLi3Bi2) Cerium trilithium dibismuthide top
Crystal data top
CeLi3Bi2Dx = 6.780 Mg m3
Mr = 578.90Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3m1Cell parameters from 1270 reflections
a = 4.6790 (6) Åθ = 2.7–30.6°
c = 7.4776 (17) ŵ = 69.62 mm1
V = 141.77 (4) Å3T = 200 K
Z = 1Irregular, silver
F(000) = 2330.05 × 0.05 × 0.04 mm
Data collection top
Bruker APEXII CCD
diffractometer
201 independent reflections
Radiation source: fine-focus sealed tube196 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 30.6°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 66
Tmin = 0.123, Tmax = 0.177k = 66
2135 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.013 w = 1/[σ2(Fo2) + (0.0088P)2 + 0.6243P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.026(Δ/σ)max < 0.001
S = 1.17Δρmax = 1.29 e Å3
201 reflectionsΔρmin = 2.18 e Å3
9 parametersExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0051 (6)
Crystal data top
CeLi3Bi2Z = 1
Mr = 578.90Mo Kα radiation
Trigonal, P3m1µ = 69.62 mm1
a = 4.6790 (6) ÅT = 200 K
c = 7.4776 (17) Å0.05 × 0.05 × 0.04 mm
V = 141.77 (4) Å3
Data collection top
Bruker APEXII CCD
diffractometer
201 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
196 reflections with I > 2σ(I)
Tmin = 0.123, Tmax = 0.177Rint = 0.028
2135 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0139 parameters
wR(F2) = 0.0260 restraints
S = 1.17Δρmax = 1.29 e Å3
201 reflectionsΔρmin = 2.18 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Li10.33330.66670.647 (3)0.030 (4)*
Li20.00000.00000.50000.030 (4)*
Ce10.00000.00000.00000.00637 (15)
Bi10.33330.66670.25328 (4)0.00727 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce10.00696 (19)0.00696 (19)0.0052 (3)0.00348 (10)0.0000.000
Bi10.00748 (13)0.00748 (13)0.00684 (17)0.00374 (7)0.0000.000
Geometric parameters (Å, º) top
Li1—Bi1i2.802 (6)Li2—Bi1iii3.2713 (4)
Li1—Bi1ii2.802 (6)Li2—Bi1x3.2713 (4)
Li1—Bi1iii2.802 (6)Ce1—Bi1xi3.2992 (4)
Li1—Li2iv2.918 (8)Ce1—Bi1xii3.2992 (4)
Li1—Li22.918 (8)Ce1—Bi1ix3.2992 (4)
Li1—Li2v2.918 (8)Ce1—Bi13.2992 (4)
Li1—Bi12.95 (2)Ce1—Bi1xiii3.2992 (4)
Li1—Li1i3.49 (3)Ce1—Bi1x3.2992 (4)
Li1—Li1iii3.49 (3)Ce1—Li2xiv3.7388 (9)
Li1—Li1ii3.49 (3)Ce1—Li1xv3.775 (15)
Li1—Ce1vi3.775 (15)Ce1—Li1i3.775 (15)
Li1—Ce1vii3.775 (15)Ce1—Li1xiv3.775 (15)
Li2—Li1viii2.918 (8)Ce1—Li1viii3.775 (15)
Li2—Li1i2.918 (8)Bi1—Li1i2.802 (6)
Li2—Li1ix2.918 (8)Bi1—Li1ii2.802 (6)
Li2—Li1iii2.918 (8)Bi1—Li1iii2.802 (6)
Li2—Li1x2.918 (8)Bi1—Li2v3.2713 (4)
Li2—Bi1i3.2713 (4)Bi1—Li2iv3.2713 (4)
Li2—Bi1ix3.2713 (4)Bi1—Ce1iv3.2992 (4)
Li2—Bi1viii3.2713 (4)Bi1—Ce1v3.2992 (4)
Li2—Bi13.2713 (4)
Bi1i—Li1—Bi1ii113.2 (4)Li1—Li2—Bi1x126.54 (18)
Bi1i—Li1—Bi1iii113.2 (4)Li1i—Li2—Bi1x53.46 (18)
Bi1ii—Li1—Bi1iii113.2 (4)Li1ix—Li2—Bi1x126.54 (18)
Bi1i—Li1—Li2iv173.2 (8)Li1iii—Li2—Bi1x123.5 (4)
Bi1ii—Li1—Li2iv69.74 (4)Li1x—Li2—Bi1x56.5 (4)
Bi1iii—Li1—Li2iv69.74 (4)Bi1i—Li2—Bi1x88.687 (12)
Bi1i—Li1—Li269.74 (4)Bi1ix—Li2—Bi1x91.313 (12)
Bi1ii—Li1—Li2173.2 (8)Bi1viii—Li2—Bi1x88.687 (11)
Bi1iii—Li1—Li269.74 (4)Bi1—Li2—Bi1x91.314 (12)
Li2iv—Li1—Li2106.6 (4)Bi1iii—Li2—Bi1x180.0
Bi1i—Li1—Li2v69.74 (4)Bi1xi—Ce1—Bi1xii90.326 (12)
Bi1ii—Li1—Li2v69.74 (4)Bi1xi—Ce1—Bi1ix89.674 (12)
Bi1iii—Li1—Li2v173.2 (8)Bi1xii—Ce1—Bi1ix180.0
Li2iv—Li1—Li2v106.6 (4)Bi1xi—Ce1—Bi1180.0
Li2—Li1—Li2v106.6 (4)Bi1xii—Ce1—Bi189.674 (12)
Bi1i—Li1—Bi1105.4 (4)Bi1ix—Ce1—Bi190.326 (12)
Bi1ii—Li1—Bi1105.4 (4)Bi1xi—Ce1—Bi1xiii90.326 (12)
Bi1iii—Li1—Bi1105.4 (4)Bi1xii—Ce1—Bi1xiii90.326 (12)
Li2iv—Li1—Bi167.8 (4)Bi1ix—Ce1—Bi1xiii89.674 (12)
Li2—Li1—Bi167.8 (4)Bi1—Ce1—Bi1xiii89.674 (12)
Li2v—Li1—Bi167.8 (4)Bi1xi—Ce1—Bi1x89.674 (12)
Bi1i—Li1—Li1i54.59 (13)Bi1xii—Ce1—Bi1x89.674 (12)
Bi1ii—Li1—Li1i122.8 (3)Bi1ix—Ce1—Bi1x90.326 (12)
Bi1iii—Li1—Li1i122.8 (3)Bi1—Ce1—Bi1x90.326 (12)
Li2iv—Li1—Li1i118.6 (10)Bi1xiii—Ce1—Bi1x180.0
Li2—Li1—Li1i53.3 (2)Bi1xi—Ce1—Li2125.034 (8)
Li2v—Li1—Li1i53.3 (2)Bi1xii—Ce1—Li2125.034 (8)
Bi1—Li1—Li1i50.8 (6)Bi1ix—Ce1—Li254.966 (8)
Bi1i—Li1—Li1iii122.8 (3)Bi1—Ce1—Li254.966 (8)
Bi1ii—Li1—Li1iii122.8 (3)Bi1xiii—Ce1—Li2125.034 (8)
Bi1iii—Li1—Li1iii54.59 (13)Bi1x—Ce1—Li254.966 (8)
Li2iv—Li1—Li1iii53.3 (2)Bi1xi—Ce1—Li2xiv54.966 (8)
Li2—Li1—Li1iii53.3 (2)Bi1xii—Ce1—Li2xiv54.966 (8)
Li2v—Li1—Li1iii118.6 (10)Bi1ix—Ce1—Li2xiv125.034 (8)
Bi1—Li1—Li1iii50.8 (6)Bi1—Ce1—Li2xiv125.034 (9)
Li1i—Li1—Li1iii84.3 (8)Bi1xiii—Ce1—Li2xiv54.966 (8)
Bi1i—Li1—Li1ii122.8 (3)Bi1x—Ce1—Li2xiv125.034 (8)
Bi1ii—Li1—Li1ii54.59 (13)Li2—Ce1—Li2xiv180.0
Bi1iii—Li1—Li1ii122.8 (3)Bi1xi—Ce1—Li1xv46.06 (4)
Li2iv—Li1—Li1ii53.3 (2)Bi1xii—Ce1—Li1xv100.7 (2)
Li2—Li1—Li1ii118.6 (10)Bi1ix—Ce1—Li1xv79.3 (2)
Li2v—Li1—Li1ii53.3 (2)Bi1—Ce1—Li1xv133.94 (4)
Bi1—Li1—Li1ii50.8 (6)Bi1xiii—Ce1—Li1xv46.06 (4)
Li1i—Li1—Li1ii84.3 (8)Bi1x—Ce1—Li1xv133.94 (4)
Li1iii—Li1—Li1ii84.3 (8)Li2—Ce1—Li1xv134.3 (2)
Bi1i—Li1—Ce1vi58.0 (3)Li2xiv—Ce1—Li1xv45.7 (2)
Bi1ii—Li1—Ce1vi58.0 (3)Bi1xi—Ce1—Li1i133.94 (4)
Bi1iii—Li1—Ce1vi120.3 (7)Bi1xii—Ce1—Li1i79.3 (2)
Li2iv—Li1—Ce1vi126.5 (3)Bi1ix—Ce1—Li1i100.7 (2)
Li2—Li1—Ce1vi126.5 (3)Bi1—Ce1—Li1i46.06 (4)
Li2v—Li1—Ce1vi66.50 (16)Bi1xiii—Ce1—Li1i133.94 (4)
Bi1—Li1—Ce1vi134.3 (2)Bi1x—Ce1—Li1i46.06 (4)
Li1i—Li1—Ce1vi99.5 (3)Li2—Ce1—Li1i45.7 (2)
Li1iii—Li1—Ce1vi174.9 (8)Li2xiv—Ce1—Li1i134.3 (2)
Li1ii—Li1—Ce1vi99.5 (3)Li1xv—Ce1—Li1i180.000 (1)
Bi1i—Li1—Ce1vii120.3 (7)Bi1xi—Ce1—Li1xiv100.7 (2)
Bi1ii—Li1—Ce1vii58.0 (3)Bi1xii—Ce1—Li1xiv46.06 (4)
Bi1iii—Li1—Ce1vii58.0 (3)Bi1ix—Ce1—Li1xiv133.94 (4)
Li2iv—Li1—Ce1vii66.50 (16)Bi1—Ce1—Li1xiv79.3 (2)
Li2—Li1—Ce1vii126.5 (3)Bi1xiii—Ce1—Li1xiv46.06 (4)
Li2v—Li1—Ce1vii126.5 (3)Bi1x—Ce1—Li1xiv133.94 (4)
Bi1—Li1—Ce1vii134.3 (2)Li2—Ce1—Li1xiv134.3 (2)
Li1i—Li1—Ce1vii174.9 (8)Li2xiv—Ce1—Li1xiv45.7 (2)
Li1iii—Li1—Ce1vii99.5 (3)Li1xv—Ce1—Li1xiv76.6 (4)
Li1ii—Li1—Ce1vii99.5 (3)Li1i—Ce1—Li1xiv103.4 (4)
Ce1vi—Li1—Ce1vii76.6 (4)Bi1xi—Ce1—Li1viii79.3 (2)
Li1viii—Li2—Li1179.999 (1)Bi1xii—Ce1—Li1viii133.94 (4)
Li1viii—Li2—Li1i106.6 (4)Bi1ix—Ce1—Li1viii46.06 (4)
Li1—Li2—Li1i73.4 (4)Bi1—Ce1—Li1viii100.7 (2)
Li1viii—Li2—Li1ix73.4 (4)Bi1xiii—Ce1—Li1viii133.94 (4)
Li1—Li2—Li1ix106.6 (4)Bi1x—Ce1—Li1viii46.06 (4)
Li1i—Li2—Li1ix180.0Li2—Ce1—Li1viii45.7 (2)
Li1viii—Li2—Li1iii106.6 (4)Li2xiv—Ce1—Li1viii134.3 (2)
Li1—Li2—Li1iii73.4 (4)Li1xv—Ce1—Li1viii103.4 (4)
Li1i—Li2—Li1iii106.6 (4)Li1i—Ce1—Li1viii76.6 (4)
Li1ix—Li2—Li1iii73.4 (4)Li1xiv—Ce1—Li1viii180.0
Li1viii—Li2—Li1x73.4 (4)Li1i—Bi1—Li1ii113.2 (4)
Li1—Li2—Li1x106.6 (4)Li1i—Bi1—Li1iii113.2 (4)
Li1i—Li2—Li1x73.4 (4)Li1ii—Bi1—Li1iii113.2 (4)
Li1ix—Li2—Li1x106.6 (4)Li1i—Bi1—Li174.6 (4)
Li1iii—Li2—Li1x180.0Li1ii—Bi1—Li174.6 (4)
Li1viii—Li2—Bi1i126.54 (18)Li1iii—Bi1—Li174.6 (4)
Li1—Li2—Bi1i53.46 (18)Li1i—Bi1—Li2v56.8 (2)
Li1i—Li2—Bi1i56.5 (4)Li1ii—Bi1—Li2v56.8 (2)
Li1ix—Li2—Bi1i123.5 (4)Li1iii—Bi1—Li2v130.3 (4)
Li1iii—Li2—Bi1i126.54 (18)Li1—Bi1—Li2v55.670 (8)
Li1x—Li2—Bi1i53.46 (18)Li1i—Bi1—Li2iv130.3 (4)
Li1viii—Li2—Bi1ix53.46 (18)Li1ii—Bi1—Li2iv56.8 (2)
Li1—Li2—Bi1ix126.54 (18)Li1iii—Bi1—Li2iv56.8 (2)
Li1i—Li2—Bi1ix123.5 (4)Li1—Bi1—Li2iv55.670 (8)
Li1ix—Li2—Bi1ix56.5 (4)Li2v—Bi1—Li2iv91.313 (12)
Li1iii—Li2—Bi1ix53.46 (18)Li1i—Bi1—Li256.8 (2)
Li1x—Li2—Bi1ix126.54 (18)Li1ii—Bi1—Li2130.3 (4)
Bi1i—Li2—Bi1ix180.0Li1iii—Bi1—Li256.8 (2)
Li1viii—Li2—Bi1viii56.5 (4)Li1—Bi1—Li255.670 (9)
Li1—Li2—Bi1viii123.5 (4)Li2v—Bi1—Li291.313 (12)
Li1i—Li2—Bi1viii126.54 (18)Li2iv—Bi1—Li291.313 (12)
Li1ix—Li2—Bi1viii53.46 (18)Li1i—Bi1—Ce1iv160.3 (4)
Li1iii—Li2—Bi1viii126.54 (18)Li1ii—Bi1—Ce1iv76.0 (3)
Li1x—Li2—Bi1viii53.46 (18)Li1iii—Bi1—Ce1iv76.0 (3)
Bi1i—Li2—Bi1viii91.314 (11)Li1—Bi1—Ce1iv125.034 (8)
Bi1ix—Li2—Bi1viii88.686 (12)Li2v—Bi1—Ce1iv131.440 (4)
Li1viii—Li2—Bi1123.5 (4)Li2iv—Bi1—Ce1iv69.364 (14)
Li1—Li2—Bi156.5 (4)Li2—Bi1—Ce1iv131.440 (4)
Li1i—Li2—Bi153.46 (18)Li1i—Bi1—Ce176.0 (3)
Li1ix—Li2—Bi1126.54 (18)Li1ii—Bi1—Ce1160.3 (4)
Li1iii—Li2—Bi153.46 (18)Li1iii—Bi1—Ce176.0 (3)
Li1x—Li2—Bi1126.54 (18)Li1—Bi1—Ce1125.034 (9)
Bi1i—Li2—Bi188.686 (11)Li2v—Bi1—Ce1131.440 (4)
Bi1ix—Li2—Bi191.314 (11)Li2iv—Bi1—Ce1131.440 (4)
Bi1viii—Li2—Bi1180.0Li2—Bi1—Ce169.364 (14)
Li1viii—Li2—Bi1iii126.54 (18)Ce1iv—Bi1—Ce190.326 (11)
Li1—Li2—Bi1iii53.46 (18)Li1i—Bi1—Ce1v76.0 (3)
Li1i—Li2—Bi1iii126.54 (18)Li1ii—Bi1—Ce1v76.0 (3)
Li1ix—Li2—Bi1iii53.46 (18)Li1iii—Bi1—Ce1v160.3 (4)
Li1iii—Li2—Bi1iii56.5 (4)Li1—Bi1—Ce1v125.034 (8)
Li1x—Li2—Bi1iii123.5 (4)Li2v—Bi1—Ce1v69.364 (14)
Bi1i—Li2—Bi1iii91.313 (12)Li2iv—Bi1—Ce1v131.440 (4)
Bi1ix—Li2—Bi1iii88.687 (12)Li2—Bi1—Ce1v131.440 (4)
Bi1viii—Li2—Bi1iii91.313 (11)Ce1iv—Bi1—Ce1v90.326 (12)
Bi1—Li2—Bi1iii88.686 (12)Ce1—Bi1—Ce1v90.326 (12)
Li1viii—Li2—Bi1x53.46 (18)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x, y+1, z+1; (iv) x, y+1, z; (v) x+1, y+1, z; (vi) x+1, y+1, z+1; (vii) x, y+1, z+1; (viii) x, y, z+1; (ix) x1, y1, z; (x) x, y1, z; (xi) x, y, z; (xii) x+1, y+1, z; (xiii) x, y+1, z; (xiv) x, y, z1; (xv) x1, y1, z1.
(PrLi3Bi2) Praseodymium trilithium dibismuthide top
Crystal data top
PrLi3Bi2Dx = 6.863 Mg m3
Mr = 579.69Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3m1Cell parameters from 1110 reflections
a = 4.6672 (7) Åθ = 2.7–30.0°
c = 7.435 (2) ŵ = 70.94 mm1
V = 140.26 (5) Å3T = 200 K
Z = 1Irregular, silver
F(000) = 2340.04 × 0.04 × 0.04 mm
Data collection top
Bruker APEXII CCD
diffractometer
198 independent reflections
Radiation source: fine-focus sealed tube193 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 30.7°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 66
Tmin = 0.155, Tmax = 0.184k = 66
2042 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.015 w = 1/[σ2(Fo2) + (0.0069P)2 + 0.7531P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.027(Δ/σ)max < 0.001
S = 1.22Δρmax = 1.62 e Å3
198 reflectionsΔρmin = 2.50 e Å3
9 parametersExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0016 (5)
Crystal data top
PrLi3Bi2Z = 1
Mr = 579.69Mo Kα radiation
Trigonal, P3m1µ = 70.94 mm1
a = 4.6672 (7) ÅT = 200 K
c = 7.435 (2) Å0.04 × 0.04 × 0.04 mm
V = 140.26 (5) Å3
Data collection top
Bruker APEXII CCD
diffractometer
198 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
193 reflections with I > 2σ(I)
Tmin = 0.155, Tmax = 0.184Rint = 0.029
2042 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0159 parameters
wR(F2) = 0.0270 restraints
S = 1.22Δρmax = 1.62 e Å3
198 reflectionsΔρmin = 2.50 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Li10.33330.66670.644 (3)0.030 (4)*
Li20.00000.00000.50000.030 (4)*
Pr10.00000.00000.00000.00744 (16)
Bi10.33330.66670.25219 (5)0.00778 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr10.0072 (2)0.0072 (2)0.0080 (3)0.00358 (10)0.0000.000
Bi10.00705 (14)0.00705 (14)0.00923 (19)0.00353 (7)0.0000.000
Geometric parameters (Å, º) top
Li1—Bi1i2.802 (6)Li2—Bi1iii3.2644 (5)
Li1—Bi1ii2.802 (6)Li2—Bi1x3.2644 (5)
Li1—Bi1iii2.802 (6)Pr1—Bi1xi3.2828 (5)
Li1—Li2iv2.901 (9)Pr1—Bi13.2828 (5)
Li1—Li22.901 (9)Pr1—Bi1xii3.2828 (5)
Li1—Li2v2.901 (9)Pr1—Bi1ix3.2828 (5)
Li1—Bi12.92 (2)Pr1—Bi1xiii3.2828 (5)
Li1—Li1i3.45 (3)Pr1—Bi1x3.2828 (5)
Li1—Li1iii3.45 (3)Pr1—Li2xiv3.7177 (10)
Li1—Li1ii3.45 (3)Pr1—Li1xv3.775 (16)
Li1—Pr1vi3.775 (16)Pr1—Li1i3.775 (16)
Li1—Pr1vii3.775 (16)Pr1—Li1xiv3.775 (16)
Li2—Li1viii2.901 (9)Pr1—Li1viii3.775 (16)
Li2—Li1i2.901 (9)Bi1—Li1i2.802 (6)
Li2—Li1ix2.901 (9)Bi1—Li1ii2.802 (6)
Li2—Li1iii2.901 (9)Bi1—Li1iii2.802 (6)
Li2—Li1x2.901 (9)Bi1—Li2v3.2643 (5)
Li2—Bi1i3.2643 (5)Bi1—Li2iv3.2643 (5)
Li2—Bi1ix3.2643 (5)Bi1—Pr1iv3.2828 (5)
Li2—Bi1viii3.2643 (5)Bi1—Pr1v3.2828 (5)
Li2—Bi13.2643 (5)
Bi1i—Li1—Bi1ii112.8 (4)Li1i—Li2—Bi1x53.7 (2)
Bi1i—Li1—Bi1iii112.8 (4)Li1ix—Li2—Bi1x126.3 (2)
Bi1ii—Li1—Bi1iii112.8 (4)Li1—Li2—Bi1x126.3 (2)
Bi1i—Li1—Li2iv174.2 (9)Li1iii—Li2—Bi1x123.9 (4)
Bi1ii—Li1—Li2iv69.81 (4)Li1x—Li2—Bi1x56.1 (4)
Bi1iii—Li1—Li2iv69.81 (4)Bi1i—Li2—Bi1x88.734 (13)
Bi1i—Li1—Li269.81 (4)Bi1ix—Li2—Bi1x91.266 (14)
Bi1ii—Li1—Li2174.2 (9)Bi1viii—Li2—Bi1x88.734 (13)
Bi1iii—Li1—Li269.81 (4)Bi1—Li2—Bi1x91.266 (13)
Li2iv—Li1—Li2107.1 (5)Bi1iii—Li2—Bi1x180.0
Bi1i—Li1—Li2v69.81 (4)Bi1xi—Pr1—Bi1180.0
Bi1ii—Li1—Li2v69.81 (4)Bi1xi—Pr1—Bi1xii90.609 (14)
Bi1iii—Li1—Li2v174.2 (9)Bi1—Pr1—Bi1xii89.391 (13)
Li2iv—Li1—Li2v107.1 (5)Bi1xi—Pr1—Bi1ix89.391 (14)
Li2—Li1—Li2v107.1 (5)Bi1—Pr1—Bi1ix90.609 (13)
Bi1i—Li1—Bi1105.9 (5)Bi1xii—Pr1—Bi1ix180.0
Bi1ii—Li1—Bi1105.9 (5)Bi1xi—Pr1—Bi1xiii90.608 (13)
Bi1iii—Li1—Bi1105.9 (5)Bi1—Pr1—Bi1xiii89.391 (14)
Li2iv—Li1—Bi168.3 (4)Bi1xii—Pr1—Bi1xiii90.608 (13)
Li2—Li1—Bi168.3 (4)Bi1ix—Pr1—Bi1xiii89.392 (13)
Li2v—Li1—Bi168.3 (4)Bi1xi—Pr1—Bi1x89.392 (13)
Bi1i—Li1—Li1i54.48 (15)Bi1—Pr1—Bi1x90.609 (14)
Bi1ii—Li1—Li1i123.2 (3)Bi1xii—Pr1—Bi1x89.392 (13)
Bi1iii—Li1—Li1i123.2 (3)Bi1ix—Pr1—Bi1x90.608 (13)
Li2iv—Li1—Li1i119.7 (10)Bi1xiii—Pr1—Bi1x180.0
Li2—Li1—Li1i53.6 (2)Bi1xi—Pr1—Li2124.833 (10)
Li2v—Li1—Li1i53.6 (2)Bi1—Pr1—Li255.167 (10)
Bi1—Li1—Li1i51.4 (6)Bi1xii—Pr1—Li2124.833 (9)
Bi1i—Li1—Li1iii123.2 (3)Bi1ix—Pr1—Li255.167 (9)
Bi1ii—Li1—Li1iii123.2 (3)Bi1xiii—Pr1—Li2124.833 (9)
Bi1iii—Li1—Li1iii54.48 (15)Bi1x—Pr1—Li255.167 (10)
Li2iv—Li1—Li1iii53.6 (2)Bi1xi—Pr1—Li2xiv55.167 (10)
Li2—Li1—Li1iii53.6 (2)Bi1—Pr1—Li2xiv124.833 (10)
Li2v—Li1—Li1iii119.7 (10)Bi1xii—Pr1—Li2xiv55.167 (9)
Bi1—Li1—Li1iii51.4 (6)Bi1ix—Pr1—Li2xiv124.833 (9)
Li1i—Li1—Li1iii85.3 (9)Bi1xiii—Pr1—Li2xiv55.167 (10)
Bi1i—Li1—Li1ii123.2 (3)Bi1x—Pr1—Li2xiv124.833 (9)
Bi1ii—Li1—Li1ii54.48 (15)Li2—Pr1—Li2xiv180.0
Bi1iii—Li1—Li1ii123.2 (3)Bi1xi—Pr1—Li1xv46.13 (4)
Li2iv—Li1—Li1ii53.6 (2)Bi1—Pr1—Li1xv133.87 (4)
Li2—Li1—Li1ii119.7 (10)Bi1xii—Pr1—Li1xv100.7 (3)
Li2v—Li1—Li1ii53.6 (2)Bi1ix—Pr1—Li1xv79.3 (3)
Bi1—Li1—Li1ii51.4 (6)Bi1xiii—Pr1—Li1xv46.13 (4)
Li1i—Li1—Li1ii85.3 (9)Bi1x—Pr1—Li1xv133.87 (4)
Li1iii—Li1—Li1ii85.3 (9)Li2—Pr1—Li1xv134.5 (3)
Bi1i—Li1—Pr1vi57.6 (3)Li2xiv—Pr1—Li1xv45.5 (3)
Bi1ii—Li1—Pr1vi57.6 (3)Bi1xi—Pr1—Li1i133.87 (4)
Bi1iii—Li1—Pr1vi119.6 (7)Bi1—Pr1—Li1i46.13 (4)
Li2iv—Li1—Pr1vi126.2 (3)Bi1xii—Pr1—Li1i79.3 (3)
Li2—Li1—Pr1vi126.2 (3)Bi1ix—Pr1—Li1i100.7 (3)
Li2v—Li1—Pr1vi66.18 (18)Bi1xiii—Pr1—Li1i133.87 (4)
Bi1—Li1—Pr1vi134.5 (3)Bi1x—Pr1—Li1i46.13 (4)
Li1i—Li1—Pr1vi99.1 (3)Li2—Pr1—Li1i45.5 (3)
Li1iii—Li1—Pr1vi174.1 (9)Li2xiv—Pr1—Li1i134.5 (3)
Li1ii—Li1—Pr1vi99.1 (3)Li1xv—Pr1—Li1i180.000 (1)
Bi1i—Li1—Pr1vii119.6 (7)Bi1xi—Pr1—Li1xiv100.7 (3)
Bi1ii—Li1—Pr1vii57.6 (3)Bi1—Pr1—Li1xiv79.3 (3)
Bi1iii—Li1—Pr1vii57.6 (3)Bi1xii—Pr1—Li1xiv46.13 (4)
Li2iv—Li1—Pr1vii66.18 (18)Bi1ix—Pr1—Li1xiv133.87 (4)
Li2—Li1—Pr1vii126.2 (3)Bi1xiii—Pr1—Li1xiv46.13 (4)
Li2v—Li1—Pr1vii126.2 (3)Bi1x—Pr1—Li1xiv133.87 (4)
Bi1—Li1—Pr1vii134.5 (3)Li2—Pr1—Li1xiv134.5 (3)
Li1i—Li1—Pr1vii174.1 (9)Li2xiv—Pr1—Li1xiv45.5 (3)
Li1iii—Li1—Pr1vii99.1 (3)Li1xv—Pr1—Li1xiv76.4 (4)
Li1ii—Li1—Pr1vii99.1 (3)Li1i—Pr1—Li1xiv103.6 (4)
Pr1vi—Li1—Pr1vii76.4 (4)Bi1xi—Pr1—Li1viii79.3 (3)
Li1viii—Li2—Li1i107.1 (5)Bi1—Pr1—Li1viii100.7 (3)
Li1viii—Li2—Li1ix72.9 (5)Bi1xii—Pr1—Li1viii133.87 (4)
Li1i—Li2—Li1ix180.000 (1)Bi1ix—Pr1—Li1viii46.13 (4)
Li1viii—Li2—Li1180.000 (2)Bi1xiii—Pr1—Li1viii133.87 (4)
Li1i—Li2—Li172.9 (5)Bi1x—Pr1—Li1viii46.13 (4)
Li1ix—Li2—Li1107.1 (5)Li2—Pr1—Li1viii45.5 (3)
Li1viii—Li2—Li1iii107.1 (5)Li2xiv—Pr1—Li1viii134.5 (3)
Li1i—Li2—Li1iii107.1 (5)Li1xv—Pr1—Li1viii103.6 (4)
Li1ix—Li2—Li1iii72.9 (5)Li1i—Pr1—Li1viii76.4 (4)
Li1—Li2—Li1iii72.9 (5)Li1xiv—Pr1—Li1viii180.0
Li1viii—Li2—Li1x72.9 (5)Li1i—Bi1—Li1ii112.8 (4)
Li1i—Li2—Li1x72.9 (5)Li1i—Bi1—Li1iii112.8 (4)
Li1ix—Li2—Li1x107.1 (5)Li1ii—Bi1—Li1iii112.8 (4)
Li1—Li2—Li1x107.1 (5)Li1i—Bi1—Li174.1 (5)
Li1iii—Li2—Li1x180.0Li1ii—Bi1—Li174.1 (5)
Li1viii—Li2—Bi1i126.3 (2)Li1iii—Bi1—Li174.1 (5)
Li1i—Li2—Bi1i56.1 (4)Li1i—Bi1—Li2v56.5 (2)
Li1ix—Li2—Bi1i123.9 (4)Li1ii—Bi1—Li2v56.5 (2)
Li1—Li2—Bi1i53.7 (2)Li1iii—Bi1—Li2v129.7 (5)
Li1iii—Li2—Bi1i126.3 (2)Li1—Bi1—Li2v55.636 (10)
Li1x—Li2—Bi1i53.7 (2)Li1i—Bi1—Li2iv129.7 (5)
Li1viii—Li2—Bi1ix53.7 (2)Li1ii—Bi1—Li2iv56.5 (2)
Li1i—Li2—Bi1ix123.9 (4)Li1iii—Bi1—Li2iv56.5 (2)
Li1ix—Li2—Bi1ix56.1 (4)Li1—Bi1—Li2iv55.636 (10)
Li1—Li2—Bi1ix126.3 (2)Li2v—Bi1—Li2iv91.266 (14)
Li1iii—Li2—Bi1ix53.7 (2)Li1i—Bi1—Li256.5 (2)
Li1x—Li2—Bi1ix126.3 (2)Li1ii—Bi1—Li2129.7 (5)
Bi1i—Li2—Bi1ix180.0Li1iii—Bi1—Li256.5 (2)
Li1viii—Li2—Bi1viii56.1 (4)Li1—Bi1—Li255.636 (9)
Li1i—Li2—Bi1viii126.3 (2)Li2v—Bi1—Li291.266 (13)
Li1ix—Li2—Bi1viii53.7 (2)Li2iv—Bi1—Li291.266 (13)
Li1—Li2—Bi1viii123.9 (4)Li1i—Bi1—Pr1iv161.1 (5)
Li1iii—Li2—Bi1viii126.3 (2)Li1ii—Bi1—Pr1iv76.2 (3)
Li1x—Li2—Bi1viii53.7 (2)Li1iii—Bi1—Pr1iv76.2 (3)
Bi1i—Li2—Bi1viii91.267 (13)Li1—Bi1—Pr1iv124.833 (10)
Bi1ix—Li2—Bi1viii88.733 (13)Li2v—Bi1—Pr1iv131.390 (5)
Li1viii—Li2—Bi1123.9 (4)Li2iv—Bi1—Pr1iv69.197 (17)
Li1i—Li2—Bi153.7 (2)Li2—Bi1—Pr1iv131.390 (5)
Li1ix—Li2—Bi1126.3 (2)Li1i—Bi1—Pr176.2 (3)
Li1—Li2—Bi156.1 (4)Li1ii—Bi1—Pr1161.1 (5)
Li1iii—Li2—Bi153.7 (2)Li1iii—Bi1—Pr176.2 (3)
Li1x—Li2—Bi1126.3 (2)Li1—Bi1—Pr1124.833 (10)
Bi1i—Li2—Bi188.734 (13)Li2v—Bi1—Pr1131.390 (5)
Bi1ix—Li2—Bi191.266 (13)Li2iv—Bi1—Pr1131.390 (5)
Bi1viii—Li2—Bi1180.000 (10)Li2—Bi1—Pr169.197 (17)
Li1viii—Li2—Bi1iii126.3 (2)Pr1iv—Bi1—Pr190.609 (14)
Li1i—Li2—Bi1iii126.3 (2)Li1i—Bi1—Pr1v76.2 (3)
Li1ix—Li2—Bi1iii53.7 (2)Li1ii—Bi1—Pr1v76.2 (3)
Li1—Li2—Bi1iii53.7 (2)Li1iii—Bi1—Pr1v161.1 (5)
Li1iii—Li2—Bi1iii56.1 (4)Li1—Bi1—Pr1v124.833 (9)
Li1x—Li2—Bi1iii123.9 (4)Li2v—Bi1—Pr1v69.197 (17)
Bi1i—Li2—Bi1iii91.266 (13)Li2iv—Bi1—Pr1v131.390 (5)
Bi1ix—Li2—Bi1iii88.734 (13)Li2—Bi1—Pr1v131.390 (5)
Bi1viii—Li2—Bi1iii91.266 (13)Pr1iv—Bi1—Pr1v90.609 (14)
Bi1—Li2—Bi1iii88.734 (13)Pr1—Bi1—Pr1v90.609 (14)
Li1viii—Li2—Bi1x53.7 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x, y+1, z+1; (iv) x, y+1, z; (v) x+1, y+1, z; (vi) x+1, y+1, z+1; (vii) x, y+1, z+1; (viii) x, y, z+1; (ix) x1, y1, z; (x) x, y1, z; (xi) x, y, z; (xii) x+1, y+1, z; (xiii) x, y+1, z; (xiv) x, y, z1; (xv) x1, y1, z1.
(NdLi3Bi2) Neodymium trilithium dibismuthide top
Crystal data top
NdLi3Bi2Dx = 6.937 Mg m3
Mr = 583.02Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3m1Cell parameters from 643 reflections
a = 4.6596 (8) Åθ = 2.7–25.2°
c = 7.422 (2) ŵ = 71.88 mm1
V = 139.55 (6) Å3T = 200 K
Z = 1Irregular, silver
F(000) = 2350.04 × 0.03 × 0.02 mm
Data collection top
Bruker APEXII CCD
diffractometer
191 independent reflections
Radiation source: fine-focus sealed tube179 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
φ and ω scansθmax = 30.3°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 66
Tmin = 0.166, Tmax = 0.392k = 66
2078 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2) + (0.0162P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.042(Δ/σ)max < 0.001
S = 1.13Δρmax = 1.80 e Å3
191 reflectionsΔρmin = 1.74 e Å3
9 parametersExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0125 (12)
Crystal data top
NdLi3Bi2Z = 1
Mr = 583.02Mo Kα radiation
Trigonal, P3m1µ = 71.88 mm1
a = 4.6596 (8) ÅT = 200 K
c = 7.422 (2) Å0.04 × 0.03 × 0.02 mm
V = 139.55 (6) Å3
Data collection top
Bruker APEXII CCD
diffractometer
191 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
179 reflections with I > 2σ(I)
Tmin = 0.166, Tmax = 0.392Rint = 0.065
2078 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0229 parameters
wR(F2) = 0.0420 restraints
S = 1.13Δρmax = 1.80 e Å3
191 reflectionsΔρmin = 1.74 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Li10.33330.66670.641 (5)0.036 (7)*
Li20.00000.00000.50000.036 (7)*
Nd10.00000.00000.00000.0097 (3)
Bi10.33330.66670.25062 (7)0.0104 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.0100 (4)0.0100 (4)0.0092 (5)0.00500 (18)0.0000.000
Bi10.0104 (3)0.0104 (3)0.0105 (3)0.00518 (13)0.0000.000
Geometric parameters (Å, º) top
Li1—Bi1i2.809 (11)Li2—Bi1iii3.2654 (6)
Li1—Bi1ii2.809 (11)Li2—Bi1x3.2654 (6)
Li1—Bi1iii2.809 (11)Nd1—Bi1xi3.2706 (6)
Li1—Li2iv2.885 (14)Nd1—Bi1xii3.2706 (6)
Li1—Li22.885 (14)Nd1—Bi1ix3.2706 (6)
Li1—Li2v2.885 (14)Nd1—Bi13.2706 (6)
Li1—Bi12.89 (4)Nd1—Bi1xiii3.2706 (6)
Li1—Li1i3.40 (5)Nd1—Bi1x3.2706 (6)
Li1—Li1iii3.40 (5)Nd1—Li2xiv3.7109 (12)
Li1—Li1ii3.40 (5)Nd1—Li1xv3.79 (3)
Li1—Nd1vi3.79 (3)Nd1—Li1i3.79 (3)
Li1—Nd1vii3.79 (3)Nd1—Li1xiv3.79 (3)
Li2—Li1viii2.885 (14)Nd1—Li1viii3.79 (3)
Li2—Li1i2.885 (14)Bi1—Li1i2.809 (11)
Li2—Li1ix2.885 (14)Bi1—Li1ii2.809 (11)
Li2—Li1iii2.885 (14)Bi1—Li1iii2.809 (11)
Li2—Li1x2.885 (14)Bi1—Li2v3.2654 (6)
Li2—Bi1i3.2654 (6)Bi1—Li2iv3.2654 (6)
Li2—Bi1ix3.2654 (6)Bi1—Nd1iv3.2706 (6)
Li2—Bi1viii3.2654 (6)Bi1—Nd1v3.2706 (6)
Li2—Bi13.2654 (6)
Bi1i—Li1—Bi1ii112.1 (7)Li1i—Li2—Bi1x53.9 (3)
Bi1i—Li1—Bi1iii112.1 (7)Li1ix—Li2—Bi1x126.1 (3)
Bi1ii—Li1—Bi1iii112.1 (7)Li1—Li2—Bi1x126.1 (3)
Bi1i—Li1—Li2iv175.5 (14)Li1iii—Li2—Bi1x124.3 (7)
Bi1ii—Li1—Li2iv69.97 (5)Li1x—Li2—Bi1x55.7 (7)
Bi1iii—Li1—Li2iv69.97 (5)Bi1i—Li2—Bi1x88.963 (18)
Bi1i—Li1—Li269.97 (5)Bi1ix—Li2—Bi1x91.037 (18)
Bi1ii—Li1—Li2175.5 (14)Bi1viii—Li2—Bi1x88.963 (18)
Bi1iii—Li1—Li269.97 (5)Bi1—Li2—Bi1x91.037 (18)
Li2iv—Li1—Li2107.7 (7)Bi1iii—Li2—Bi1x180.0
Bi1i—Li1—Li2v69.97 (5)Bi1xi—Nd1—Bi1xii90.852 (18)
Bi1ii—Li1—Li2v69.97 (5)Bi1xi—Nd1—Bi1ix89.148 (18)
Bi1iii—Li1—Li2v175.5 (14)Bi1xii—Nd1—Bi1ix180.0
Li2iv—Li1—Li2v107.7 (7)Bi1xi—Nd1—Bi1180.0
Li2—Li1—Li2v107.7 (7)Bi1xii—Nd1—Bi189.148 (18)
Bi1i—Li1—Bi1106.7 (7)Bi1ix—Nd1—Bi190.852 (18)
Bi1ii—Li1—Bi1106.7 (7)Bi1xi—Nd1—Bi1xiii90.852 (18)
Bi1iii—Li1—Bi1106.7 (7)Bi1xii—Nd1—Bi1xiii90.852 (18)
Li2iv—Li1—Bi168.8 (7)Bi1ix—Nd1—Bi1xiii89.148 (18)
Li2—Li1—Bi168.8 (7)Bi1—Nd1—Bi1xiii89.148 (18)
Li2v—Li1—Bi168.8 (7)Bi1xi—Nd1—Bi1x89.148 (18)
Bi1i—Li1—Li1i54.5 (3)Bi1xii—Nd1—Bi1x89.148 (18)
Bi1ii—Li1—Li1i123.7 (5)Bi1ix—Nd1—Bi1x90.852 (18)
Bi1iii—Li1—Li1i123.7 (5)Bi1—Nd1—Bi1x90.852 (18)
Li2iv—Li1—Li1i121.0 (17)Bi1xiii—Nd1—Bi1x180.0
Li2—Li1—Li1i53.8 (4)Bi1xi—Nd1—Li2124.660 (12)
Li2v—Li1—Li1i53.8 (4)Bi1xii—Nd1—Li2124.660 (13)
Bi1—Li1—Li1i52.2 (10)Bi1ix—Nd1—Li255.340 (13)
Bi1i—Li1—Li1iii123.7 (5)Bi1—Nd1—Li255.340 (13)
Bi1ii—Li1—Li1iii123.7 (5)Bi1xiii—Nd1—Li2124.660 (12)
Bi1iii—Li1—Li1iii54.5 (3)Bi1x—Nd1—Li255.340 (12)
Li2iv—Li1—Li1iii53.8 (4)Bi1xi—Nd1—Li2xiv55.340 (12)
Li2—Li1—Li1iii53.8 (4)Bi1xii—Nd1—Li2xiv55.340 (13)
Li2v—Li1—Li1iii121.0 (17)Bi1ix—Nd1—Li2xiv124.660 (13)
Bi1—Li1—Li1iii52.2 (10)Bi1—Nd1—Li2xiv124.660 (13)
Li1i—Li1—Li1iii86.4 (15)Bi1xiii—Nd1—Li2xiv55.340 (12)
Bi1i—Li1—Li1ii123.7 (5)Bi1x—Nd1—Li2xiv124.660 (12)
Bi1ii—Li1—Li1ii54.5 (3)Li2—Nd1—Li2xiv180.0
Bi1iii—Li1—Li1ii123.7 (5)Bi1xi—Nd1—Li1xv46.17 (7)
Li2iv—Li1—Li1ii53.8 (4)Bi1xii—Nd1—Li1xv100.6 (4)
Li2—Li1—Li1ii121.0 (17)Bi1ix—Nd1—Li1xv79.4 (4)
Li2v—Li1—Li1ii53.8 (4)Bi1—Nd1—Li1xv133.83 (6)
Bi1—Li1—Li1ii52.2 (10)Bi1xiii—Nd1—Li1xv46.17 (7)
Li1i—Li1—Li1ii86.4 (15)Bi1x—Nd1—Li1xv133.83 (7)
Li1iii—Li1—Li1ii86.4 (15)Li2—Nd1—Li1xv134.8 (4)
Bi1i—Li1—Nd1vi57.1 (4)Li2xiv—Nd1—Li1xv45.2 (4)
Bi1ii—Li1—Nd1vi57.1 (4)Bi1xi—Nd1—Li1i133.83 (7)
Bi1iii—Li1—Nd1vi118.5 (11)Bi1xii—Nd1—Li1i79.4 (4)
Li2iv—Li1—Nd1vi125.8 (5)Bi1ix—Nd1—Li1i100.6 (4)
Li2—Li1—Nd1vi125.8 (5)Bi1—Nd1—Li1i46.17 (6)
Li2v—Li1—Nd1vi66.0 (3)Bi1xiii—Nd1—Li1i133.83 (7)
Bi1—Li1—Nd1vi134.8 (4)Bi1x—Nd1—Li1i46.17 (7)
Li1i—Li1—Nd1vi98.7 (5)Li2—Nd1—Li1i45.2 (4)
Li1iii—Li1—Nd1vi173.0 (14)Li2xiv—Nd1—Li1i134.8 (4)
Li1ii—Li1—Nd1vi98.7 (5)Li1xv—Nd1—Li1i180.000 (1)
Bi1i—Li1—Nd1vii118.5 (11)Bi1xi—Nd1—Li1xiv100.6 (4)
Bi1ii—Li1—Nd1vii57.1 (4)Bi1xii—Nd1—Li1xiv46.17 (7)
Bi1iii—Li1—Nd1vii57.1 (4)Bi1ix—Nd1—Li1xiv133.83 (7)
Li2iv—Li1—Nd1vii66.0 (3)Bi1—Nd1—Li1xiv79.4 (4)
Li2—Li1—Nd1vii125.8 (5)Bi1xiii—Nd1—Li1xiv46.17 (7)
Li2v—Li1—Nd1vii125.8 (5)Bi1x—Nd1—Li1xiv133.83 (7)
Bi1—Li1—Nd1vii134.8 (4)Li2—Nd1—Li1xiv134.8 (4)
Li1i—Li1—Nd1vii173.0 (14)Li2xiv—Nd1—Li1xiv45.2 (4)
Li1iii—Li1—Nd1vii98.7 (5)Li1xv—Nd1—Li1xiv75.9 (6)
Li1ii—Li1—Nd1vii98.7 (5)Li1i—Nd1—Li1xiv104.1 (6)
Nd1vi—Li1—Nd1vii75.9 (6)Bi1xi—Nd1—Li1viii79.4 (4)
Li1viii—Li2—Li1i107.7 (7)Bi1xii—Nd1—Li1viii133.83 (7)
Li1viii—Li2—Li1ix72.3 (7)Bi1ix—Nd1—Li1viii46.17 (7)
Li1i—Li2—Li1ix180.000 (1)Bi1—Nd1—Li1viii100.6 (4)
Li1viii—Li2—Li1180.000 (1)Bi1xiii—Nd1—Li1viii133.83 (7)
Li1i—Li2—Li172.3 (7)Bi1x—Nd1—Li1viii46.17 (7)
Li1ix—Li2—Li1107.7 (7)Li2—Nd1—Li1viii45.2 (4)
Li1viii—Li2—Li1iii107.7 (7)Li2xiv—Nd1—Li1viii134.8 (4)
Li1i—Li2—Li1iii107.7 (7)Li1xv—Nd1—Li1viii104.1 (6)
Li1ix—Li2—Li1iii72.3 (7)Li1i—Nd1—Li1viii75.9 (6)
Li1—Li2—Li1iii72.3 (7)Li1xiv—Nd1—Li1viii180.0 (8)
Li1viii—Li2—Li1x72.3 (7)Li1i—Bi1—Li1ii112.1 (7)
Li1i—Li2—Li1x72.3 (7)Li1i—Bi1—Li1iii112.1 (7)
Li1ix—Li2—Li1x107.7 (7)Li1ii—Bi1—Li1iii112.1 (7)
Li1—Li2—Li1x107.7 (7)Li1i—Bi1—Li173.3 (7)
Li1iii—Li2—Li1x180.0 (14)Li1ii—Bi1—Li173.3 (7)
Li1viii—Li2—Bi1i126.1 (3)Li1iii—Bi1—Li173.3 (7)
Li1i—Li2—Bi1i55.7 (7)Li1i—Bi1—Li2v56.1 (4)
Li1ix—Li2—Bi1i124.3 (7)Li1ii—Bi1—Li2v56.1 (4)
Li1—Li2—Bi1i53.9 (3)Li1iii—Bi1—Li2v128.8 (7)
Li1iii—Li2—Bi1i126.1 (3)Li1—Bi1—Li2v55.472 (13)
Li1x—Li2—Bi1i53.9 (3)Li1i—Bi1—Li2iv128.8 (7)
Li1viii—Li2—Bi1ix53.9 (3)Li1ii—Bi1—Li2iv56.1 (4)
Li1i—Li2—Bi1ix124.3 (7)Li1iii—Bi1—Li2iv56.1 (4)
Li1ix—Li2—Bi1ix55.7 (7)Li1—Bi1—Li2iv55.472 (13)
Li1—Li2—Bi1ix126.1 (3)Li2v—Bi1—Li2iv91.037 (18)
Li1iii—Li2—Bi1ix53.9 (3)Li1i—Bi1—Li256.1 (4)
Li1x—Li2—Bi1ix126.1 (3)Li1ii—Bi1—Li2128.8 (7)
Bi1i—Li2—Bi1ix180.0Li1iii—Bi1—Li256.1 (4)
Li1viii—Li2—Bi1viii55.7 (7)Li1—Bi1—Li255.472 (13)
Li1i—Li2—Bi1viii126.1 (3)Li2v—Bi1—Li291.037 (18)
Li1ix—Li2—Bi1viii53.9 (3)Li2iv—Bi1—Li291.037 (18)
Li1—Li2—Bi1viii124.3 (7)Li1i—Bi1—Nd176.7 (5)
Li1iii—Li2—Bi1viii126.1 (3)Li1ii—Bi1—Nd1162.1 (7)
Li1x—Li2—Bi1viii53.9 (3)Li1iii—Bi1—Nd176.7 (5)
Bi1i—Li2—Bi1viii91.038 (18)Li1—Bi1—Nd1124.660 (13)
Bi1ix—Li2—Bi1viii88.962 (18)Li2v—Bi1—Nd1131.389 (6)
Li1viii—Li2—Bi1124.3 (7)Li2iv—Bi1—Nd1131.389 (6)
Li1i—Li2—Bi153.9 (3)Li2—Bi1—Nd169.187 (19)
Li1ix—Li2—Bi1126.1 (3)Li1i—Bi1—Nd1iv162.1 (7)
Li1—Li2—Bi155.7 (7)Li1ii—Bi1—Nd1iv76.7 (5)
Li1iii—Li2—Bi153.9 (3)Li1iii—Bi1—Nd1iv76.7 (5)
Li1x—Li2—Bi1126.1 (3)Li1—Bi1—Nd1iv124.660 (13)
Bi1i—Li2—Bi188.963 (18)Li2v—Bi1—Nd1iv131.389 (6)
Bi1ix—Li2—Bi191.037 (18)Li2iv—Bi1—Nd1iv69.19 (2)
Bi1viii—Li2—Bi1180.0Li2—Bi1—Nd1iv131.389 (6)
Li1viii—Li2—Bi1iii126.1 (3)Nd1—Bi1—Nd1iv90.852 (18)
Li1i—Li2—Bi1iii126.1 (3)Li1i—Bi1—Nd1v76.7 (5)
Li1ix—Li2—Bi1iii53.9 (3)Li1ii—Bi1—Nd1v76.7 (5)
Li1—Li2—Bi1iii53.9 (3)Li1iii—Bi1—Nd1v162.1 (7)
Li1iii—Li2—Bi1iii55.7 (7)Li1—Bi1—Nd1v124.660 (13)
Li1x—Li2—Bi1iii124.3 (7)Li2v—Bi1—Nd1v69.187 (19)
Bi1i—Li2—Bi1iii91.037 (18)Li2iv—Bi1—Nd1v131.389 (6)
Bi1ix—Li2—Bi1iii88.963 (18)Li2—Bi1—Nd1v131.389 (6)
Bi1viii—Li2—Bi1iii91.037 (18)Nd1—Bi1—Nd1v90.852 (18)
Bi1—Li2—Bi1iii88.963 (18)Nd1iv—Bi1—Nd1v90.852 (18)
Li1viii—Li2—Bi1x53.9 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x, y+1, z+1; (iv) x, y+1, z; (v) x+1, y+1, z; (vi) x+1, y+1, z+1; (vii) x, y+1, z+1; (viii) x, y, z+1; (ix) x1, y1, z; (x) x, y1, z; (xi) x, y, z; (xii) x+1, y+1, z; (xiii) x, y+1, z; (xiv) x, y, z1; (xv) x1, y1, z1.
(SmLi3Bi2) Samarium trilithium dibismuthide top
Crystal data top
SmLi3Bi2Dx = 7.127 Mg m3
Mr = 589.13Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3m1Cell parameters from 1075 reflections
a = 4.6398 (5) Åθ = 2.8–30.8°
c = 7.3624 (16) ŵ = 74.32 mm1
V = 137.26 (4) Å3T = 200 K
Z = 1Irregular, silver
F(000) = 2370.07 × 0.06 × 0.04 mm
Data collection top
Bruker APEXII CCD
diffractometer
192 independent reflections
Radiation source: fine-focus sealed tube187 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
φ and ω scansθmax = 30.4°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 66
Tmin = 0.083, Tmax = 0.160k = 66
2112 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.015 w = 1/[σ2(Fo2) + (0.0139P)2 + 0.7111P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.034(Δ/σ)max < 0.001
S = 1.17Δρmax = 1.11 e Å3
192 reflectionsΔρmin = 1.88 e Å3
9 parametersExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0159 (12)
Crystal data top
SmLi3Bi2Z = 1
Mr = 589.13Mo Kα radiation
Trigonal, P3m1µ = 74.32 mm1
a = 4.6398 (5) ÅT = 200 K
c = 7.3624 (16) Å0.07 × 0.06 × 0.04 mm
V = 137.26 (4) Å3
Data collection top
Bruker APEXII CCD
diffractometer
192 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
187 reflections with I > 2σ(I)
Tmin = 0.083, Tmax = 0.160Rint = 0.037
2112 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0159 parameters
wR(F2) = 0.0340 restraints
S = 1.17Δρmax = 1.11 e Å3
192 reflectionsΔρmin = 1.88 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Li10.33330.66670.648 (3)0.028 (4)*
Li20.00000.00000.50000.028 (4)*
Sm10.00000.00000.00000.00680 (18)
Bi10.33330.66670.24792 (5)0.00736 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm10.0071 (2)0.0071 (2)0.0062 (3)0.00355 (12)0.0000.000
Bi10.00720 (18)0.00720 (18)0.0077 (2)0.00360 (9)0.0000.000
Geometric parameters (Å, º) top
Li1—Bi1i2.787 (7)Li2—Bi1iii3.2589 (4)
Li1—Bi1ii2.787 (7)Li2—Bi1x3.2589 (4)
Li1—Bi1iii2.787 (7)Sm1—Bi1xi3.2415 (4)
Li1—Li2iv2.891 (10)Sm1—Bi1xii3.2415 (4)
Li1—Li22.891 (10)Sm1—Bi1ix3.2415 (4)
Li1—Li2v2.891 (10)Sm1—Bi13.2415 (4)
Li1—Bi12.94 (3)Sm1—Bi1xiii3.2415 (4)
Li1—Li1i3.45 (3)Sm1—Bi1x3.2415 (4)
Li1—Li1iii3.45 (3)Sm1—Li2xiv3.6812 (8)
Li1—Li1ii3.45 (3)Sm1—Li1xv3.728 (18)
Li1—Sm1vi3.728 (18)Sm1—Li1i3.728 (18)
Li1—Sm1vii3.728 (18)Sm1—Li1xiv3.728 (18)
Li2—Li1viii2.891 (10)Sm1—Li1viii3.728 (18)
Li2—Li1i2.891 (10)Bi1—Li1i2.787 (7)
Li2—Li1ix2.891 (10)Bi1—Li1ii2.787 (7)
Li2—Li1iii2.891 (10)Bi1—Li1iii2.787 (7)
Li2—Li1x2.891 (10)Bi1—Sm1iv3.2415 (4)
Li2—Bi1i3.2589 (4)Bi1—Sm1v3.2415 (4)
Li2—Bi1ix3.2589 (4)Bi1—Li2iv3.2589 (4)
Li2—Bi1viii3.2589 (4)Bi1—Li2v3.2589 (4)
Li2—Bi13.2589 (4)
Bi1i—Li1—Bi1ii112.7 (4)Li1i—Li2—Bi1x53.5 (2)
Bi1i—Li1—Bi1iii112.7 (4)Li1ix—Li2—Bi1x126.5 (2)
Bi1ii—Li1—Bi1iii112.7 (4)Li1—Li2—Bi1x126.5 (2)
Bi1i—Li1—Li2iv173.9 (10)Li1iii—Li2—Bi1x123.2 (5)
Bi1ii—Li1—Li2iv70.02 (5)Li1x—Li2—Bi1x56.8 (5)
Bi1iii—Li1—Li2iv70.02 (5)Bi1i—Li2—Bi1x89.226 (12)
Bi1i—Li1—Li270.02 (5)Bi1ix—Li2—Bi1x90.774 (12)
Bi1ii—Li1—Li2173.9 (10)Bi1viii—Li2—Bi1x89.226 (12)
Bi1iii—Li1—Li270.02 (5)Bi1—Li2—Bi1x90.774 (12)
Li2iv—Li1—Li2106.7 (5)Bi1iii—Li2—Bi1x180.0
Bi1i—Li1—Li2v70.02 (5)Bi1xi—Sm1—Bi1xii91.398 (12)
Bi1ii—Li1—Li2v70.02 (5)Bi1xi—Sm1—Bi1ix88.602 (12)
Bi1iii—Li1—Li2v173.9 (10)Bi1xii—Sm1—Bi1ix180.0
Li2iv—Li1—Li2v106.7 (5)Bi1xi—Sm1—Bi1180.0
Li2—Li1—Li2v106.7 (5)Bi1xii—Sm1—Bi188.602 (12)
Bi1i—Li1—Bi1106.0 (5)Bi1ix—Sm1—Bi191.398 (12)
Bi1ii—Li1—Bi1106.0 (5)Bi1xi—Sm1—Bi1xiii91.398 (12)
Bi1iii—Li1—Bi1106.0 (5)Bi1xii—Sm1—Bi1xiii91.398 (12)
Li2iv—Li1—Bi167.9 (5)Bi1ix—Sm1—Bi1xiii88.602 (12)
Li2—Li1—Bi167.9 (5)Bi1—Sm1—Bi1xiii88.602 (12)
Li2v—Li1—Bi167.9 (5)Bi1xi—Sm1—Bi1x88.602 (12)
Bi1i—Li1—Li1i55.08 (15)Bi1xii—Sm1—Bi1x88.602 (12)
Bi1ii—Li1—Li1i123.1 (4)Bi1ix—Sm1—Bi1x91.398 (12)
Bi1iii—Li1—Li1i123.1 (4)Bi1—Sm1—Bi1x91.398 (12)
Li2iv—Li1—Li1i118.8 (11)Bi1xiii—Sm1—Bi1x180.0
Li2—Li1—Li1i53.4 (3)Bi1xi—Sm1—Li2124.270 (9)
Li2v—Li1—Li1i53.4 (3)Bi1xii—Sm1—Li2124.270 (9)
Bi1—Li1—Li1i50.9 (7)Bi1ix—Sm1—Li255.730 (9)
Bi1i—Li1—Li1iii123.1 (4)Bi1—Sm1—Li255.730 (9)
Bi1ii—Li1—Li1iii123.1 (4)Bi1xiii—Sm1—Li2124.269 (9)
Bi1iii—Li1—Li1iii55.08 (16)Bi1x—Sm1—Li255.731 (9)
Li2iv—Li1—Li1iii53.4 (3)Bi1xi—Sm1—Li2xiv55.730 (8)
Li2—Li1—Li1iii53.4 (3)Bi1xii—Sm1—Li2xiv55.730 (9)
Li2v—Li1—Li1iii118.8 (11)Bi1ix—Sm1—Li2xiv124.270 (9)
Bi1—Li1—Li1iii50.9 (7)Bi1—Sm1—Li2xiv124.270 (9)
Li1i—Li1—Li1iii84.5 (10)Bi1xiii—Sm1—Li2xiv55.731 (9)
Bi1i—Li1—Li1ii123.1 (4)Bi1x—Sm1—Li2xiv124.269 (9)
Bi1ii—Li1—Li1ii55.08 (15)Li2—Sm1—Li2xiv180.0
Bi1iii—Li1—Li1ii123.1 (4)Bi1xi—Sm1—Li1xv46.49 (5)
Li2iv—Li1—Li1ii53.4 (3)Bi1xii—Sm1—Li1xv101.7 (3)
Li2—Li1—Li1ii118.8 (11)Bi1ix—Sm1—Li1xv78.3 (3)
Li2v—Li1—Li1ii53.4 (3)Bi1—Sm1—Li1xv133.51 (5)
Bi1—Li1—Li1ii50.9 (7)Bi1xiii—Sm1—Li1xv46.49 (5)
Li1i—Li1—Li1ii84.5 (10)Bi1x—Sm1—Li1xv133.51 (5)
Li1iii—Li1—Li1ii84.5 (10)Li2—Sm1—Li1xv134.1 (3)
Bi1i—Li1—Sm1vi57.5 (3)Li2xiv—Sm1—Li1xv45.9 (3)
Bi1ii—Li1—Sm1vi57.5 (3)Bi1xi—Sm1—Li1i133.51 (5)
Bi1iii—Li1—Sm1vi119.9 (8)Bi1xii—Sm1—Li1i78.3 (3)
Li2iv—Li1—Sm1vi126.5 (3)Bi1ix—Sm1—Li1i101.7 (3)
Li2—Li1—Sm1vi126.5 (3)Bi1—Sm1—Li1i46.49 (5)
Li2v—Li1—Sm1vi66.18 (19)Bi1xiii—Sm1—Li1i133.51 (5)
Bi1—Li1—Sm1vi134.1 (3)Bi1x—Sm1—Li1i46.49 (5)
Li1i—Li1—Sm1vi99.2 (3)Li2—Sm1—Li1i45.9 (3)
Li1iii—Li1—Sm1vi175.0 (9)Li2xiv—Sm1—Li1i134.1 (3)
Li1ii—Li1—Sm1vi99.2 (3)Li1xv—Sm1—Li1i180.000 (1)
Bi1i—Li1—Sm1vii119.9 (8)Bi1xi—Sm1—Li1xiv101.7 (3)
Bi1ii—Li1—Sm1vii57.5 (3)Bi1xii—Sm1—Li1xiv46.49 (5)
Bi1iii—Li1—Sm1vii57.5 (3)Bi1ix—Sm1—Li1xiv133.51 (5)
Li2iv—Li1—Sm1vii66.18 (19)Bi1—Sm1—Li1xiv78.3 (3)
Li2—Li1—Sm1vii126.5 (3)Bi1xiii—Sm1—Li1xiv46.49 (5)
Li2v—Li1—Sm1vii126.5 (3)Bi1x—Sm1—Li1xiv133.51 (5)
Bi1—Li1—Sm1vii134.1 (3)Li2—Sm1—Li1xiv134.1 (3)
Li1i—Li1—Sm1vii175.0 (9)Li2xiv—Sm1—Li1xiv45.9 (3)
Li1iii—Li1—Sm1vii99.2 (3)Li1xv—Sm1—Li1xiv77.0 (4)
Li1ii—Li1—Sm1vii99.2 (3)Li1i—Sm1—Li1xiv103.0 (4)
Sm1vi—Li1—Sm1vii77.0 (4)Bi1xi—Sm1—Li1viii78.3 (3)
Li1viii—Li2—Li1i106.7 (5)Bi1xii—Sm1—Li1viii133.51 (5)
Li1viii—Li2—Li1ix73.3 (5)Bi1ix—Sm1—Li1viii46.49 (5)
Li1i—Li2—Li1ix180.000 (1)Bi1—Sm1—Li1viii101.7 (3)
Li1viii—Li2—Li1179.999 (1)Bi1xiii—Sm1—Li1viii133.51 (5)
Li1i—Li2—Li173.3 (5)Bi1x—Sm1—Li1viii46.49 (5)
Li1ix—Li2—Li1106.7 (5)Li2—Sm1—Li1viii45.9 (3)
Li1viii—Li2—Li1iii106.7 (5)Li2xiv—Sm1—Li1viii134.1 (3)
Li1i—Li2—Li1iii106.7 (5)Li1xv—Sm1—Li1viii103.0 (4)
Li1ix—Li2—Li1iii73.3 (5)Li1i—Sm1—Li1viii77.0 (4)
Li1—Li2—Li1iii73.3 (5)Li1xiv—Sm1—Li1viii180.0
Li1viii—Li2—Li1x73.3 (5)Li1i—Bi1—Li1ii112.7 (4)
Li1i—Li2—Li1x73.3 (5)Li1i—Bi1—Li1iii112.7 (4)
Li1ix—Li2—Li1x106.7 (5)Li1ii—Bi1—Li1iii112.7 (4)
Li1—Li2—Li1x106.7 (5)Li1i—Bi1—Li174.0 (5)
Li1iii—Li2—Li1x180.0Li1ii—Bi1—Li174.0 (5)
Li1viii—Li2—Bi1i126.5 (2)Li1iii—Bi1—Li174.0 (5)
Li1i—Li2—Bi1i56.8 (5)Li1i—Bi1—Sm176.0 (3)
Li1ix—Li2—Bi1i123.2 (5)Li1ii—Bi1—Sm1161.7 (5)
Li1—Li2—Bi1i53.5 (2)Li1iii—Bi1—Sm176.0 (3)
Li1iii—Li2—Bi1i126.5 (2)Li1—Bi1—Sm1124.270 (9)
Li1x—Li2—Bi1i53.5 (2)Li1i—Bi1—Sm1iv161.7 (5)
Li1viii—Li2—Bi1ix53.5 (2)Li1ii—Bi1—Sm1iv76.0 (3)
Li1i—Li2—Bi1ix123.2 (5)Li1iii—Bi1—Sm1iv76.0 (3)
Li1ix—Li2—Bi1ix56.8 (5)Li1—Bi1—Sm1iv124.270 (9)
Li1—Li2—Bi1ix126.5 (2)Sm1—Bi1—Sm1iv91.398 (12)
Li1iii—Li2—Bi1ix53.5 (2)Li1i—Bi1—Sm1v76.0 (3)
Li1x—Li2—Bi1ix126.5 (2)Li1ii—Bi1—Sm1v76.0 (3)
Bi1i—Li2—Bi1ix180.0Li1iii—Bi1—Sm1v161.7 (5)
Li1viii—Li2—Bi1viii56.8 (5)Li1—Bi1—Sm1v124.270 (9)
Li1i—Li2—Bi1viii126.5 (2)Sm1—Bi1—Sm1v91.398 (12)
Li1ix—Li2—Bi1viii53.5 (2)Sm1iv—Bi1—Sm1v91.398 (12)
Li1—Li2—Bi1viii123.2 (5)Li1i—Bi1—Li2iv129.3 (5)
Li1iii—Li2—Bi1viii126.5 (2)Li1ii—Bi1—Li2iv56.5 (3)
Li1x—Li2—Bi1viii53.5 (2)Li1iii—Bi1—Li2iv56.5 (3)
Bi1i—Li2—Bi1viii90.774 (12)Li1—Bi1—Li2iv55.285 (9)
Bi1ix—Li2—Bi1viii89.226 (12)Sm1—Bi1—Li2iv131.325 (4)
Li1viii—Li2—Bi1123.2 (5)Sm1iv—Bi1—Li2iv68.985 (12)
Li1i—Li2—Bi153.5 (2)Sm1v—Bi1—Li2iv131.325 (4)
Li1ix—Li2—Bi1126.5 (2)Li1i—Bi1—Li2v56.5 (3)
Li1—Li2—Bi156.8 (5)Li1ii—Bi1—Li2v56.5 (3)
Li1iii—Li2—Bi153.5 (2)Li1iii—Bi1—Li2v129.3 (5)
Li1x—Li2—Bi1126.5 (2)Li1—Bi1—Li2v55.285 (9)
Bi1i—Li2—Bi189.226 (12)Sm1—Bi1—Li2v131.325 (4)
Bi1ix—Li2—Bi190.774 (12)Sm1iv—Bi1—Li2v131.325 (4)
Bi1viii—Li2—Bi1180.0Sm1v—Bi1—Li2v68.985 (13)
Li1viii—Li2—Bi1iii126.5 (2)Li2iv—Bi1—Li2v90.774 (12)
Li1i—Li2—Bi1iii126.5 (2)Li1i—Bi1—Li256.5 (3)
Li1ix—Li2—Bi1iii53.5 (2)Li1ii—Bi1—Li2129.3 (5)
Li1—Li2—Bi1iii53.5 (2)Li1iii—Bi1—Li256.5 (3)
Li1iii—Li2—Bi1iii56.8 (5)Li1—Bi1—Li255.285 (9)
Li1x—Li2—Bi1iii123.2 (5)Sm1—Bi1—Li268.985 (13)
Bi1i—Li2—Bi1iii90.774 (12)Sm1iv—Bi1—Li2131.325 (4)
Bi1ix—Li2—Bi1iii89.226 (12)Sm1v—Bi1—Li2131.325 (4)
Bi1viii—Li2—Bi1iii90.774 (12)Li2iv—Bi1—Li290.774 (12)
Bi1—Li2—Bi1iii89.226 (12)Li2v—Bi1—Li290.774 (12)
Li1viii—Li2—Bi1x53.5 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x, y+1, z+1; (iv) x, y+1, z; (v) x+1, y+1, z; (vi) x+1, y+1, z+1; (vii) x, y+1, z+1; (viii) x, y, z+1; (ix) x1, y1, z; (x) x, y1, z; (xi) x, y, z; (xii) x+1, y+1, z; (xiii) x, y+1, z; (xiv) x, y, z1; (xv) x1, y1, z1.
(GdLi3Bi2) Gadolinium trilithium dibismuthide top
Crystal data top
GdLi3Bi2Dx = 7.310 Mg m3
Mr = 596.03Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3m1Cell parameters from 547 reflections
a = 4.6188 (7) Åθ = 2.8–24.7°
c = 7.328 (2) ŵ = 76.75 mm1
V = 135.39 (5) Å3T = 200 K
Z = 1Irregular, silver
F(000) = 2390.02 × 0.02 × 0.02 mm
Data collection top
Bruker APEXII CCD
diffractometer
192 independent reflections
Radiation source: fine-focus sealed tube177 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
φ and ω scansθmax = 30.6°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 66
Tmin = 0.283, Tmax = 0.373k = 66
2067 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0225P)2 + 0.9138P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.048(Δ/σ)max < 0.001
S = 1.08Δρmax = 2.57 e Å3
192 reflectionsΔρmin = 1.45 e Å3
9 parametersExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0016 (10)
Crystal data top
GdLi3Bi2Z = 1
Mr = 596.03Mo Kα radiation
Trigonal, P3m1µ = 76.75 mm1
a = 4.6188 (7) ÅT = 200 K
c = 7.328 (2) Å0.02 × 0.02 × 0.02 mm
V = 135.39 (5) Å3
Data collection top
Bruker APEXII CCD
diffractometer
192 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
177 reflections with I > 2σ(I)
Tmin = 0.283, Tmax = 0.373Rint = 0.051
2067 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0239 parameters
wR(F2) = 0.0480 restraints
S = 1.08Δρmax = 2.57 e Å3
192 reflectionsΔρmin = 1.45 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Li10.33330.66670.643 (5)0.033 (7)*
Li20.00000.00000.50000.033 (7)*
Gd10.00000.00000.00000.0099 (3)
Bi10.33330.66670.24612 (8)0.0109 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Gd10.0102 (3)0.0102 (3)0.0092 (5)0.00512 (17)0.0000.000
Bi10.0105 (3)0.0105 (3)0.0118 (3)0.00525 (13)0.0000.000
Geometric parameters (Å, º) top
Li1—Bi1i2.788 (11)Li2—Bi1iii3.2515 (6)
Li1—Bi1ii2.788 (11)Li2—Bi1x3.2515 (6)
Li1—Bi1iii2.788 (11)Gd1—Bi1xi3.2193 (5)
Li1—Li2iv2.865 (14)Gd1—Bi1xii3.2193 (6)
Li1—Li22.865 (14)Gd1—Bi1ix3.2193 (6)
Li1—Li2v2.865 (14)Gd1—Bi13.2193 (6)
Li1—Bi12.91 (4)Gd1—Bi1xiii3.2193 (6)
Li1—Li1i3.39 (5)Gd1—Bi1x3.2193 (6)
Li1—Li1iii3.39 (5)Gd1—Li2xiv3.6640 (10)
Li1—Li1ii3.39 (5)Gd1—Li1xv3.74 (3)
Li1—Gd1vi3.74 (3)Gd1—Li1i3.74 (3)
Li1—Gd1vii3.74 (3)Gd1—Li1xiv3.74 (3)
Li2—Li1viii2.865 (14)Gd1—Li1viii3.74 (3)
Li2—Li1i2.865 (14)Bi1—Li1i2.788 (11)
Li2—Li1ix2.865 (14)Bi1—Li1ii2.788 (11)
Li2—Li1iii2.865 (14)Bi1—Li1iii2.788 (11)
Li2—Li1x2.865 (14)Bi1—Gd1iv3.2193 (6)
Li2—Bi1i3.2515 (6)Bi1—Gd1v3.2193 (6)
Li2—Bi1ix3.2515 (6)Bi1—Li2iv3.2515 (6)
Li2—Bi1viii3.2515 (6)Bi1—Li2v3.2515 (6)
Li2—Bi13.2515 (6)
Bi1i—Li1—Bi1ii111.9 (7)Li1i—Li2—Bi1x53.8 (3)
Bi1i—Li1—Bi1iii111.9 (7)Li1ix—Li2—Bi1x126.2 (3)
Bi1ii—Li1—Bi1iii111.9 (7)Li1—Li2—Bi1x126.2 (3)
Bi1i—Li1—Li2iv175.5 (15)Li1iii—Li2—Bi1x123.6 (7)
Bi1ii—Li1—Li2iv70.21 (5)Li1x—Li2—Bi1x56.4 (7)
Bi1iii—Li1—Li2iv70.21 (5)Bi1i—Li2—Bi1x89.489 (17)
Bi1i—Li1—Li270.21 (5)Bi1ix—Li2—Bi1x90.511 (17)
Bi1ii—Li1—Li2175.5 (15)Bi1viii—Li2—Bi1x89.489 (17)
Bi1iii—Li1—Li270.21 (5)Bi1—Li2—Bi1x90.511 (17)
Li2iv—Li1—Li2107.4 (8)Bi1iii—Li2—Bi1x180.0
Bi1i—Li1—Li2v70.21 (5)Bi1xi—Gd1—Bi1xii91.674 (17)
Bi1ii—Li1—Li2v70.21 (5)Bi1xi—Gd1—Bi1ix88.326 (17)
Bi1iii—Li1—Li2v175.5 (15)Bi1xii—Gd1—Bi1ix180.0
Li2iv—Li1—Li2v107.4 (8)Bi1xi—Gd1—Bi1180.0
Li2—Li1—Li2v107.4 (8)Bi1xii—Gd1—Bi188.326 (17)
Bi1i—Li1—Bi1107.0 (7)Bi1ix—Gd1—Bi191.674 (17)
Bi1ii—Li1—Bi1107.0 (7)Bi1xi—Gd1—Bi1xiii91.674 (17)
Bi1iii—Li1—Bi1107.0 (7)Bi1xii—Gd1—Bi1xiii91.674 (17)
Li2iv—Li1—Bi168.6 (7)Bi1ix—Gd1—Bi1xiii88.326 (17)
Li2—Li1—Bi168.6 (7)Bi1—Gd1—Bi1xiii88.326 (17)
Li2v—Li1—Bi168.6 (7)Bi1xi—Gd1—Bi1x88.326 (17)
Bi1i—Li1—Li1i55.1 (3)Bi1xii—Gd1—Bi1x88.326 (17)
Bi1ii—Li1—Li1i123.8 (5)Bi1ix—Gd1—Bi1x91.674 (17)
Bi1iii—Li1—Li1i123.8 (5)Bi1—Gd1—Bi1x91.674 (17)
Li2iv—Li1—Li1i120.4 (17)Bi1xiii—Gd1—Bi1x180.0
Li2—Li1—Li1i53.7 (4)Bi1xi—Gd1—Li2124.072 (12)
Li2v—Li1—Li1i53.7 (4)Bi1xii—Gd1—Li2124.072 (12)
Bi1—Li1—Li1i51.8 (10)Bi1ix—Gd1—Li255.928 (12)
Bi1i—Li1—Li1iii123.8 (5)Bi1—Gd1—Li255.928 (12)
Bi1ii—Li1—Li1iii123.8 (5)Bi1xiii—Gd1—Li2124.071 (12)
Bi1iii—Li1—Li1iii55.1 (3)Bi1x—Gd1—Li255.929 (12)
Li2iv—Li1—Li1iii53.7 (4)Bi1xi—Gd1—Li2xiv55.928 (12)
Li2—Li1—Li1iii53.7 (4)Bi1xii—Gd1—Li2xiv55.928 (12)
Li2v—Li1—Li1iii120.4 (17)Bi1ix—Gd1—Li2xiv124.072 (12)
Bi1—Li1—Li1iii51.8 (10)Bi1—Gd1—Li2xiv124.072 (12)
Li1i—Li1—Li1iii85.8 (15)Bi1xiii—Gd1—Li2xiv55.929 (12)
Bi1i—Li1—Li1ii123.8 (5)Bi1x—Gd1—Li2xiv124.071 (12)
Bi1ii—Li1—Li1ii55.1 (3)Li2—Gd1—Li2xiv180.0
Bi1iii—Li1—Li1ii123.8 (5)Bi1xi—Gd1—Li1xv46.53 (6)
Li2iv—Li1—Li1ii53.7 (4)Bi1xii—Gd1—Li1xv101.5 (4)
Li2—Li1—Li1ii120.4 (17)Bi1ix—Gd1—Li1xv78.5 (4)
Li2v—Li1—Li1ii53.7 (4)Bi1—Gd1—Li1xv133.47 (6)
Bi1—Li1—Li1ii51.8 (10)Bi1xiii—Gd1—Li1xv46.53 (6)
Li1i—Li1—Li1ii85.8 (15)Bi1x—Gd1—Li1xv133.47 (6)
Li1iii—Li1—Li1ii85.8 (15)Li2—Gd1—Li1xv134.5 (4)
Bi1i—Li1—Gd1vi56.9 (4)Li2xiv—Gd1—Li1xv45.5 (4)
Bi1ii—Li1—Gd1vi56.9 (4)Bi1xi—Gd1—Li1i133.47 (6)
Bi1iii—Li1—Gd1vi118.6 (12)Bi1xii—Gd1—Li1i78.5 (4)
Li2iv—Li1—Gd1vi126.0 (5)Bi1ix—Gd1—Li1i101.5 (4)
Li2—Li1—Gd1vi126.0 (5)Bi1—Gd1—Li1i46.53 (6)
Li2v—Li1—Gd1vi65.9 (3)Bi1xiii—Gd1—Li1i133.47 (6)
Bi1—Li1—Gd1vi134.5 (4)Bi1x—Gd1—Li1i46.53 (6)
Li1i—Li1—Gd1vi98.7 (5)Li2—Gd1—Li1i45.5 (4)
Li1iii—Li1—Gd1vi173.7 (14)Li2xiv—Gd1—Li1i134.5 (4)
Li1ii—Li1—Gd1vi98.7 (5)Li1xv—Gd1—Li1i180.000 (1)
Bi1i—Li1—Gd1vii118.6 (12)Bi1xi—Gd1—Li1xiv101.5 (4)
Bi1ii—Li1—Gd1vii56.9 (4)Bi1xii—Gd1—Li1xiv46.53 (6)
Bi1iii—Li1—Gd1vii56.9 (4)Bi1ix—Gd1—Li1xiv133.47 (6)
Li2iv—Li1—Gd1vii65.9 (3)Bi1—Gd1—Li1xiv78.5 (4)
Li2—Li1—Gd1vii126.0 (5)Bi1xiii—Gd1—Li1xiv46.53 (6)
Li2v—Li1—Gd1vii126.0 (5)Bi1x—Gd1—Li1xiv133.47 (6)
Bi1—Li1—Gd1vii134.5 (4)Li2—Gd1—Li1xiv134.5 (4)
Li1i—Li1—Gd1vii173.7 (14)Li2xiv—Gd1—Li1xiv45.5 (4)
Li1iii—Li1—Gd1vii98.7 (5)Li1xv—Gd1—Li1xiv76.4 (6)
Li1ii—Li1—Gd1vii98.7 (5)Li1i—Gd1—Li1xiv103.6 (6)
Gd1vi—Li1—Gd1vii76.4 (6)Bi1xi—Gd1—Li1viii78.5 (4)
Li1viii—Li2—Li1i107.4 (8)Bi1xii—Gd1—Li1viii133.47 (6)
Li1viii—Li2—Li1ix72.6 (8)Bi1ix—Gd1—Li1viii46.53 (6)
Li1i—Li2—Li1ix180.000 (1)Bi1—Gd1—Li1viii101.5 (4)
Li1viii—Li2—Li1179.999 (1)Bi1xiii—Gd1—Li1viii133.47 (6)
Li1i—Li2—Li172.6 (8)Bi1x—Gd1—Li1viii46.53 (6)
Li1ix—Li2—Li1107.4 (8)Li2—Gd1—Li1viii45.5 (4)
Li1viii—Li2—Li1iii107.4 (8)Li2xiv—Gd1—Li1viii134.5 (4)
Li1i—Li2—Li1iii107.4 (8)Li1xv—Gd1—Li1viii103.6 (6)
Li1ix—Li2—Li1iii72.6 (8)Li1i—Gd1—Li1viii76.4 (6)
Li1—Li2—Li1iii72.6 (8)Li1xiv—Gd1—Li1viii180.0
Li1viii—Li2—Li1x72.6 (8)Li1i—Bi1—Li1ii111.9 (7)
Li1i—Li2—Li1x72.6 (8)Li1i—Bi1—Li1iii111.9 (7)
Li1ix—Li2—Li1x107.4 (8)Li1ii—Bi1—Li1iii111.9 (7)
Li1—Li2—Li1x107.4 (8)Li1i—Bi1—Li173.1 (7)
Li1iii—Li2—Li1x180.0 (14)Li1ii—Bi1—Li173.1 (7)
Li1viii—Li2—Bi1i126.2 (3)Li1iii—Bi1—Li173.1 (8)
Li1i—Li2—Bi1i56.4 (7)Li1i—Bi1—Gd1iv162.9 (7)
Li1ix—Li2—Bi1i123.6 (7)Li1ii—Bi1—Gd1iv76.5 (5)
Li1—Li2—Bi1i53.8 (3)Li1iii—Bi1—Gd1iv76.5 (5)
Li1iii—Li2—Bi1i126.2 (3)Li1—Bi1—Gd1iv124.072 (12)
Li1x—Li2—Bi1i53.8 (3)Li1i—Bi1—Gd176.5 (5)
Li1viii—Li2—Bi1ix53.8 (3)Li1ii—Bi1—Gd1162.9 (7)
Li1i—Li2—Bi1ix123.6 (7)Li1iii—Bi1—Gd176.5 (5)
Li1ix—Li2—Bi1ix56.4 (7)Li1—Bi1—Gd1124.072 (12)
Li1—Li2—Bi1ix126.2 (3)Gd1iv—Bi1—Gd191.674 (17)
Li1iii—Li2—Bi1ix53.8 (3)Li1i—Bi1—Gd1v76.5 (5)
Li1x—Li2—Bi1ix126.2 (3)Li1ii—Bi1—Gd1v76.5 (5)
Bi1i—Li2—Bi1ix180.0Li1iii—Bi1—Gd1v162.9 (7)
Li1viii—Li2—Bi1viii56.4 (7)Li1—Bi1—Gd1v124.072 (13)
Li1i—Li2—Bi1viii126.2 (3)Gd1iv—Bi1—Gd1v91.674 (17)
Li1ix—Li2—Bi1viii53.8 (3)Gd1—Bi1—Gd1v91.674 (17)
Li1—Li2—Bi1viii123.6 (7)Li1i—Bi1—Li2iv128.1 (7)
Li1iii—Li2—Bi1viii126.2 (3)Li1ii—Bi1—Li2iv56.0 (4)
Li1x—Li2—Bi1viii53.8 (3)Li1iii—Bi1—Li2iv56.0 (4)
Bi1i—Li2—Bi1viii90.511 (17)Li1—Bi1—Li2iv55.098 (12)
Bi1ix—Li2—Bi1viii89.489 (17)Gd1iv—Bi1—Li2iv68.974 (17)
Li1viii—Li2—Bi1123.6 (7)Gd1—Bi1—Li2iv131.317 (5)
Li1i—Li2—Bi153.8 (3)Gd1v—Bi1—Li2iv131.317 (5)
Li1ix—Li2—Bi1126.2 (3)Li1i—Bi1—Li2v56.0 (4)
Li1—Li2—Bi156.4 (7)Li1ii—Bi1—Li2v56.0 (4)
Li1iii—Li2—Bi153.8 (3)Li1iii—Bi1—Li2v128.1 (7)
Li1x—Li2—Bi1126.2 (3)Li1—Bi1—Li2v55.098 (12)
Bi1i—Li2—Bi189.489 (17)Gd1iv—Bi1—Li2v131.317 (5)
Bi1ix—Li2—Bi190.511 (17)Gd1—Bi1—Li2v131.317 (5)
Bi1viii—Li2—Bi1180.0Gd1v—Bi1—Li2v68.974 (17)
Li1viii—Li2—Bi1iii126.2 (3)Li2iv—Bi1—Li2v90.511 (17)
Li1i—Li2—Bi1iii126.2 (3)Li1i—Bi1—Li256.0 (4)
Li1ix—Li2—Bi1iii53.8 (3)Li1ii—Bi1—Li2128.1 (7)
Li1—Li2—Bi1iii53.8 (3)Li1iii—Bi1—Li256.0 (4)
Li1iii—Li2—Bi1iii56.4 (7)Li1—Bi1—Li255.098 (12)
Li1x—Li2—Bi1iii123.6 (7)Gd1iv—Bi1—Li2131.317 (5)
Bi1i—Li2—Bi1iii90.511 (17)Gd1—Bi1—Li268.974 (17)
Bi1ix—Li2—Bi1iii89.489 (17)Gd1v—Bi1—Li2131.317 (5)
Bi1viii—Li2—Bi1iii90.511 (17)Li2iv—Bi1—Li290.511 (17)
Bi1—Li2—Bi1iii89.489 (17)Li2v—Bi1—Li290.511 (17)
Li1viii—Li2—Bi1x53.8 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x, y+1, z+1; (iv) x, y+1, z; (v) x+1, y+1, z; (vi) x+1, y+1, z+1; (vii) x, y+1, z+1; (viii) x, y, z+1; (ix) x1, y1, z; (x) x, y1, z; (xi) x, y, z; (xii) x+1, y+1, z; (xiii) x, y+1, z; (xiv) x, y, z1; (xv) x1, y1, z1.
(TbLi3Bi2) Terbium trilithium dibismuthide top
Crystal data top
TbLi3Bi2Dx = 7.358 Mg m3
Mr = 597.70Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3m1Cell parameters from 1076 reflections
a = 4.6165 (9) Åθ = 2.8–30.1°
c = 7.3087 (14) ŵ = 77.84 mm1
V = 134.90 (5) Å3T = 200 K
Z = 1Irregular, silver
F(000) = 2400.06 × 0.05 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
185 independent reflections
Radiation source: fine-focus sealed tube183 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
φ and ω scansθmax = 30.3°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 66
Tmin = 0.088, Tmax = 0.124k = 66
2012 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018 w = 1/[σ2(Fo2) + (0.0188P)2 + 0.6736P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.039(Δ/σ)max < 0.001
S = 1.17Δρmax = 1.17 e Å3
185 reflectionsΔρmin = 3.33 e Å3
9 parametersExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0260 (17)
Crystal data top
TbLi3Bi2Z = 1
Mr = 597.70Mo Kα radiation
Trigonal, P3m1µ = 77.84 mm1
a = 4.6165 (9) ÅT = 200 K
c = 7.3087 (14) Å0.06 × 0.05 × 0.05 mm
V = 134.90 (5) Å3
Data collection top
Bruker APEXII CCD
diffractometer
185 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
183 reflections with I > 2σ(I)
Tmin = 0.088, Tmax = 0.124Rint = 0.037
2012 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0189 parameters
wR(F2) = 0.0390 restraints
S = 1.17Δρmax = 1.17 e Å3
185 reflectionsΔρmin = 3.33 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Li10.33330.66670.647 (3)0.017 (4)*
Li20.00000.00000.50000.017 (4)*
Tb10.00000.00000.00000.0068 (2)
Bi10.33330.66670.24492 (6)0.0072 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tb10.0074 (3)0.0074 (3)0.0058 (4)0.00368 (13)0.0000.000
Bi10.0072 (2)0.0072 (2)0.0073 (3)0.00359 (11)0.0000.000
Geometric parameters (Å, º) top
Li1—Bi1i2.779 (7)Li2—Bi1iii3.2527 (5)
Li1—Bi1ii2.779 (7)Li2—Bi1x3.2527 (5)
Li1—Bi1iii2.779 (7)Tb1—Bi1xi3.2106 (5)
Li1—Li2iv2.874 (9)Tb1—Bi1xii3.2106 (5)
Li1—Li22.874 (9)Tb1—Bi1ix3.2106 (5)
Li1—Li2v2.874 (9)Tb1—Bi13.2106 (5)
Li1—Bi12.94 (2)Tb1—Bi1xiii3.2107 (5)
Li1—Li1i3.43 (3)Tb1—Bi1x3.2107 (5)
Li1—Li1iii3.43 (3)Tb1—Li2xiv3.6544 (7)
Li1—Li1ii3.43 (3)Tb1—Li1xv3.708 (17)
Li1—Tb1vi3.708 (17)Tb1—Li1i3.708 (17)
Li1—Tb1vii3.708 (17)Tb1—Li1xiv3.708 (17)
Li2—Li1viii2.874 (9)Tb1—Li1viii3.708 (17)
Li2—Li1i2.874 (9)Bi1—Li1i2.779 (7)
Li2—Li1ix2.874 (9)Bi1—Li1ii2.779 (7)
Li2—Li1iii2.874 (9)Bi1—Li1iii2.779 (7)
Li2—Li1x2.874 (9)Bi1—Tb1iv3.2106 (5)
Li2—Bi1i3.2526 (5)Bi1—Tb1v3.2106 (5)
Li2—Bi1ix3.2526 (5)Bi1—Li2v3.2526 (5)
Li2—Bi1viii3.2526 (5)Bi1—Li2iv3.2526 (5)
Li2—Bi13.2526 (5)
Bi1i—Li1—Bi1ii112.3 (4)Li1i—Li2—Bi1x53.5 (2)
Bi1i—Li1—Bi1iii112.3 (4)Li1ix—Li2—Bi1x126.5 (2)
Bi1ii—Li1—Bi1iii112.3 (4)Li1—Li2—Bi1x126.5 (2)
Bi1i—Li1—Li2iv174.5 (9)Li1iii—Li2—Bi1x123.0 (4)
Bi1ii—Li1—Li2iv70.22 (4)Li1x—Li2—Bi1x57.0 (4)
Bi1iii—Li1—Li2iv70.22 (4)Bi1i—Li2—Bi1x89.587 (13)
Bi1i—Li1—Li270.22 (4)Bi1ix—Li2—Bi1x90.413 (13)
Bi1ii—Li1—Li2174.5 (9)Bi1viii—Li2—Bi1x89.587 (13)
Bi1iii—Li1—Li270.22 (4)Bi1—Li2—Bi1x90.414 (13)
Li2iv—Li1—Li2106.8 (5)Bi1iii—Li2—Bi1x180.0
Bi1i—Li1—Li2v70.22 (4)Bi1xi—Tb1—Bi1xii91.934 (13)
Bi1ii—Li1—Li2v70.22 (4)Bi1xi—Tb1—Bi1ix88.066 (13)
Bi1iii—Li1—Li2v174.5 (9)Bi1xii—Tb1—Bi1ix180.0
Li2iv—Li1—Li2v106.8 (5)Bi1xi—Tb1—Bi1180.0
Li2—Li1—Li2v106.8 (5)Bi1xii—Tb1—Bi188.066 (13)
Bi1i—Li1—Bi1106.5 (5)Bi1ix—Tb1—Bi191.934 (13)
Bi1ii—Li1—Bi1106.5 (5)Bi1xi—Tb1—Bi1xiii91.933 (13)
Bi1iii—Li1—Bi1106.5 (5)Bi1xii—Tb1—Bi1xiii91.933 (13)
Li2iv—Li1—Bi168.0 (4)Bi1ix—Tb1—Bi1xiii88.067 (13)
Li2—Li1—Bi168.0 (4)Bi1—Tb1—Bi1xiii88.066 (13)
Li2v—Li1—Bi168.0 (4)Bi1xi—Tb1—Bi1x88.067 (13)
Bi1i—Li1—Li1i55.40 (15)Bi1xii—Tb1—Bi1x88.067 (13)
Bi1ii—Li1—Li1i123.4 (3)Bi1ix—Tb1—Bi1x91.933 (13)
Bi1iii—Li1—Li1i123.4 (3)Bi1—Tb1—Bi1x91.934 (13)
Li2iv—Li1—Li1i119.1 (11)Bi1xiii—Tb1—Bi1x180.0
Li2—Li1—Li1i53.4 (2)Bi1xi—Tb1—Li2123.885 (10)
Li2v—Li1—Li1i53.4 (2)Bi1xii—Tb1—Li2123.885 (9)
Bi1—Li1—Li1i51.1 (6)Bi1ix—Tb1—Li256.115 (9)
Bi1i—Li1—Li1iii123.4 (3)Bi1—Tb1—Li256.115 (9)
Bi1ii—Li1—Li1iii123.4 (3)Bi1xiii—Tb1—Li2123.885 (10)
Bi1iii—Li1—Li1iii55.40 (15)Bi1x—Tb1—Li256.115 (10)
Li2iv—Li1—Li1iii53.4 (2)Bi1xi—Tb1—Li2xiv56.115 (10)
Li2—Li1—Li1iii53.4 (2)Bi1xii—Tb1—Li2xiv56.115 (9)
Li2v—Li1—Li1iii119.1 (11)Bi1ix—Tb1—Li2xiv123.885 (9)
Bi1—Li1—Li1iii51.1 (6)Bi1—Tb1—Li2xiv123.885 (9)
Li1i—Li1—Li1iii84.7 (9)Bi1xiii—Tb1—Li2xiv56.115 (10)
Bi1i—Li1—Li1ii123.4 (3)Bi1x—Tb1—Li2xiv123.885 (10)
Bi1ii—Li1—Li1ii55.40 (15)Li2—Tb1—Li2xiv180.0
Bi1iii—Li1—Li1ii123.4 (3)Bi1xi—Tb1—Li1xv46.69 (4)
Li2iv—Li1—Li1ii53.4 (2)Bi1xii—Tb1—Li1xv102.1 (3)
Li2—Li1—Li1ii119.1 (11)Bi1ix—Tb1—Li1xv77.9 (3)
Li2v—Li1—Li1ii53.4 (2)Bi1—Tb1—Li1xv133.31 (4)
Bi1—Li1—Li1ii51.1 (6)Bi1xiii—Tb1—Li1xv46.69 (4)
Li1i—Li1—Li1ii84.7 (9)Bi1x—Tb1—Li1xv133.31 (4)
Li1iii—Li1—Li1ii84.7 (9)Li2—Tb1—Li1xv134.0 (3)
Bi1i—Li1—Tb1vi57.2 (3)Li2xiv—Tb1—Li1xv46.0 (3)
Bi1ii—Li1—Tb1vi57.2 (3)Bi1xi—Tb1—Li1i133.31 (4)
Bi1iii—Li1—Tb1vi119.5 (7)Bi1xii—Tb1—Li1i77.9 (3)
Li2iv—Li1—Tb1vi126.4 (3)Bi1ix—Tb1—Li1i102.1 (3)
Li2—Li1—Tb1vi126.4 (3)Bi1—Tb1—Li1i46.69 (4)
Li2v—Li1—Tb1vi66.04 (18)Bi1xiii—Tb1—Li1i133.31 (4)
Bi1—Li1—Tb1vi134.0 (3)Bi1x—Tb1—Li1i46.69 (4)
Li1i—Li1—Tb1vi99.0 (3)Li2—Tb1—Li1i46.0 (3)
Li1iii—Li1—Tb1vi174.9 (9)Li2xiv—Tb1—Li1i134.0 (3)
Li1ii—Li1—Tb1vi99.0 (3)Li1xv—Tb1—Li1i180.000 (1)
Bi1i—Li1—Tb1vii119.5 (7)Bi1xi—Tb1—Li1xiv102.1 (3)
Bi1ii—Li1—Tb1vii57.2 (3)Bi1xii—Tb1—Li1xiv46.69 (4)
Bi1iii—Li1—Tb1vii57.2 (3)Bi1ix—Tb1—Li1xiv133.31 (4)
Li2iv—Li1—Tb1vii66.04 (18)Bi1—Tb1—Li1xiv77.9 (3)
Li2—Li1—Tb1vii126.4 (3)Bi1xiii—Tb1—Li1xiv46.69 (4)
Li2v—Li1—Tb1vii126.4 (3)Bi1x—Tb1—Li1xiv133.31 (4)
Bi1—Li1—Tb1vii134.0 (3)Li2—Tb1—Li1xiv134.0 (3)
Li1i—Li1—Tb1vii174.9 (9)Li2xiv—Tb1—Li1xiv46.0 (3)
Li1iii—Li1—Tb1vii99.0 (3)Li1xv—Tb1—Li1xiv77.0 (4)
Li1ii—Li1—Tb1vii99.0 (3)Li1i—Tb1—Li1xiv103.0 (4)
Tb1vi—Li1—Tb1vii77.0 (4)Bi1xi—Tb1—Li1viii77.9 (3)
Li1viii—Li2—Li1i106.8 (5)Bi1xii—Tb1—Li1viii133.31 (4)
Li1viii—Li2—Li1ix73.2 (5)Bi1ix—Tb1—Li1viii46.69 (4)
Li1i—Li2—Li1ix180.000 (1)Bi1—Tb1—Li1viii102.1 (3)
Li1viii—Li2—Li1180.000 (1)Bi1xiii—Tb1—Li1viii133.31 (4)
Li1i—Li2—Li173.2 (5)Bi1x—Tb1—Li1viii46.69 (4)
Li1ix—Li2—Li1106.8 (5)Li2—Tb1—Li1viii46.0 (3)
Li1viii—Li2—Li1iii106.8 (5)Li2xiv—Tb1—Li1viii134.0 (3)
Li1i—Li2—Li1iii106.8 (5)Li1xv—Tb1—Li1viii103.0 (4)
Li1ix—Li2—Li1iii73.2 (5)Li1i—Tb1—Li1viii77.0 (4)
Li1—Li2—Li1iii73.2 (5)Li1xiv—Tb1—Li1viii180.0 (5)
Li1viii—Li2—Li1x73.2 (5)Li1i—Bi1—Li1ii112.3 (4)
Li1i—Li2—Li1x73.2 (5)Li1i—Bi1—Li1iii112.3 (4)
Li1ix—Li2—Li1x106.8 (5)Li1ii—Bi1—Li1iii112.3 (4)
Li1—Li2—Li1x106.8 (5)Li1i—Bi1—Li173.5 (5)
Li1iii—Li2—Li1x180.0Li1ii—Bi1—Li173.5 (5)
Li1viii—Li2—Bi1i126.5 (2)Li1iii—Bi1—Li173.5 (5)
Li1i—Li2—Bi1i57.0 (4)Li1i—Bi1—Tb1iv162.6 (5)
Li1ix—Li2—Bi1i123.0 (4)Li1ii—Bi1—Tb1iv76.1 (3)
Li1—Li2—Bi1i53.5 (2)Li1iii—Bi1—Tb1iv76.1 (3)
Li1iii—Li2—Bi1i126.5 (2)Li1—Bi1—Tb1iv123.885 (10)
Li1x—Li2—Bi1i53.5 (2)Li1i—Bi1—Tb176.1 (3)
Li1viii—Li2—Bi1ix53.5 (2)Li1ii—Bi1—Tb1162.6 (5)
Li1i—Li2—Bi1ix123.0 (4)Li1iii—Bi1—Tb176.1 (3)
Li1ix—Li2—Bi1ix57.0 (4)Li1—Bi1—Tb1123.885 (9)
Li1—Li2—Bi1ix126.5 (2)Tb1iv—Bi1—Tb191.934 (13)
Li1iii—Li2—Bi1ix53.5 (2)Li1i—Bi1—Tb1v76.1 (3)
Li1x—Li2—Bi1ix126.5 (2)Li1ii—Bi1—Tb1v76.1 (3)
Bi1i—Li2—Bi1ix180.0Li1iii—Bi1—Tb1v162.6 (5)
Li1viii—Li2—Bi1viii57.0 (4)Li1—Bi1—Tb1v123.885 (10)
Li1i—Li2—Bi1viii126.5 (2)Tb1iv—Bi1—Tb1v91.934 (13)
Li1ix—Li2—Bi1viii53.5 (2)Tb1—Bi1—Tb1v91.934 (13)
Li1—Li2—Bi1viii123.0 (4)Li1i—Bi1—Li2v56.3 (2)
Li1iii—Li2—Bi1viii126.5 (2)Li1ii—Bi1—Li2v56.3 (2)
Li1x—Li2—Bi1viii53.5 (2)Li1iii—Bi1—Li2v128.6 (5)
Bi1i—Li2—Bi1viii90.414 (13)Li1—Bi1—Li2v55.028 (9)
Bi1ix—Li2—Bi1viii89.586 (13)Tb1iv—Bi1—Li2v131.276 (5)
Li1viii—Li2—Bi1123.0 (4)Tb1—Bi1—Li2v131.276 (4)
Li1i—Li2—Bi153.5 (2)Tb1v—Bi1—Li2v68.857 (15)
Li1ix—Li2—Bi1126.5 (2)Li1i—Bi1—Li2iv128.6 (5)
Li1—Li2—Bi157.0 (4)Li1ii—Bi1—Li2iv56.3 (2)
Li1iii—Li2—Bi153.5 (2)Li1iii—Bi1—Li2iv56.3 (2)
Li1x—Li2—Bi1126.5 (2)Li1—Bi1—Li2iv55.028 (9)
Bi1i—Li2—Bi189.586 (13)Tb1iv—Bi1—Li2iv68.857 (15)
Bi1ix—Li2—Bi190.414 (13)Tb1—Bi1—Li2iv131.276 (5)
Bi1viii—Li2—Bi1180.0Tb1v—Bi1—Li2iv131.276 (5)
Li1viii—Li2—Bi1iii126.5 (2)Li2v—Bi1—Li2iv90.413 (13)
Li1i—Li2—Bi1iii126.5 (2)Li1i—Bi1—Li256.3 (2)
Li1ix—Li2—Bi1iii53.5 (2)Li1ii—Bi1—Li2128.6 (5)
Li1—Li2—Bi1iii53.5 (2)Li1iii—Bi1—Li256.3 (2)
Li1iii—Li2—Bi1iii57.0 (4)Li1—Bi1—Li255.028 (10)
Li1x—Li2—Bi1iii123.0 (4)Tb1iv—Bi1—Li2131.276 (5)
Bi1i—Li2—Bi1iii90.413 (13)Tb1—Bi1—Li268.857 (15)
Bi1ix—Li2—Bi1iii89.587 (13)Tb1v—Bi1—Li2131.276 (5)
Bi1viii—Li2—Bi1iii90.413 (13)Li2v—Bi1—Li290.413 (14)
Bi1—Li2—Bi1iii89.586 (13)Li2iv—Bi1—Li290.413 (13)
Li1viii—Li2—Bi1x53.5 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x, y+1, z+1; (iv) x, y+1, z; (v) x+1, y+1, z; (vi) x+1, y+1, z+1; (vii) x, y+1, z+1; (viii) x, y, z+1; (ix) x1, y1, z; (x) x, y1, z; (xi) x, y, z; (xii) x+1, y+1, z; (xiii) x, y+1, z; (xiv) x, y, z1; (xv) x1, y1, z1.

Experimental details

(LaLi3Bi2)(CeLi3Bi2)(PrLi3Bi2)(NdLi3Bi2)
Crystal data
Chemical formulaLaLi3Bi2CeLi3Bi2PrLi3Bi2NdLi3Bi2
Mr577.69578.90579.69583.02
Crystal system, space groupTrigonal, P3m1Trigonal, P3m1Trigonal, P3m1Trigonal, P3m1
Temperature (K)200200200200
a, c (Å)4.7010 (3), 7.5431 (11)4.6790 (6), 7.4776 (17)4.6672 (7), 7.435 (2)4.6596 (8), 7.422 (2)
V3)144.36 (2)141.77 (4)140.26 (5)139.55 (6)
Z1111
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)67.8969.6270.9471.88
Crystal size (mm)0.05 × 0.04 × 0.040.05 × 0.05 × 0.040.04 × 0.04 × 0.040.04 × 0.03 × 0.02
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Bruker APEXII CCD
diffractometer
Bruker APEXII CCD
diffractometer
Bruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Multi-scan
(SADABS; Sheldrick, 2008)
Multi-scan
(SADABS; Sheldrick, 2008)
Multi-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.118, 0.1820.123, 0.1770.155, 0.1840.166, 0.392
No. of measured, independent and
observed [I > 2σ(I)] reflections
2231, 202, 197 2135, 201, 196 2042, 198, 193 2078, 191, 179
Rint0.0320.0280.0290.065
(sin θ/λ)max1)0.7120.7160.7180.709
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.013, 0.026, 1.16 0.013, 0.026, 1.17 0.015, 0.027, 1.22 0.022, 0.042, 1.13
No. of reflections202201198191
No. of parameters9999
Δρmax, Δρmin (e Å3)1.23, 1.211.29, 2.181.62, 2.501.80, 1.74


(SmLi3Bi2)(GdLi3Bi2)(TbLi3Bi2)
Crystal data
Chemical formulaSmLi3Bi2GdLi3Bi2TbLi3Bi2
Mr589.13596.03597.70
Crystal system, space groupTrigonal, P3m1Trigonal, P3m1Trigonal, P3m1
Temperature (K)200200200
a, c (Å)4.6398 (5), 7.3624 (16)4.6188 (7), 7.328 (2)4.6165 (9), 7.3087 (14)
V3)137.26 (4)135.39 (5)134.90 (5)
Z111
Radiation typeMo KαMo KαMo Kα
µ (mm1)74.3276.7577.84
Crystal size (mm)0.07 × 0.06 × 0.040.02 × 0.02 × 0.020.06 × 0.05 × 0.05
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Bruker APEXII CCD
diffractometer
Bruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Multi-scan
(SADABS; Sheldrick, 2008)
Multi-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.083, 0.1600.283, 0.3730.088, 0.124
No. of measured, independent and
observed [I > 2σ(I)] reflections
2112, 192, 187 2067, 192, 177 2012, 185, 183
Rint0.0370.0510.037
(sin θ/λ)max1)0.7120.7160.710
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.034, 1.17 0.023, 0.048, 1.08 0.018, 0.039, 1.17
No. of reflections192192185
No. of parameters999
Δρmax, Δρmin (e Å3)1.11, 1.882.57, 1.451.17, 3.33

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), CrystalMaker (Palmer, 2007), publCIF (Westrip, 2010).

 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds