Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
We report a novel 1:1 cocrystal of β-alanine with DL-tartaric acid, C3H7NO2·C4H6O6, (II), and three new mol­ecular salts of DL-tartaric acid with β-alanine {3-aza­niumyl­propanoic acid–3-aza­niumyl­propano­ate DL-tartaric acid–DL-tartrate, [H(C3H7NO2)2]+·[H(C4H5O6)2], (III)}, γ-amino­butyric acid [3-carb­oxy­pro­pan­aminium DL-tartrate, C4H10NO2+·C4H5O6, (IV)] and DL-α-amino­butyric acid {DL-2-aza­niumyl­butanoic acid–DL-2-aza­niumyl­butano­ate DL-tartaric acid–DL-tartrate, [H(C4H9NO2)2]+·[H(C4H5O6)2], (V)}. The crystal structures of binary crystals of DL-tartaric acid with glycine, (I), β-alanine, (II) and (III), GABA, (IV), and DL-AABA, (V), have similar mol­ecular packing and crystallographic motifs. The shortest amino acid (i.e. glycine) forms a cocrystal, (I), with DL-tartaric acid, whereas the larger amino acids form mol­ecular salts, viz. (IV) and (V). β-Alanine is the only amino acid capable of forming both a cocrystal [i.e. (II)] and a mol­ecular salt [i.e. (III)] with DL-tartaric acid. The cocrystals of glycine and β-alanine with DL-tartaric acid, i.e. (I) and (II), respectively, contain chains of amino acid zwitterions, similar to the structure of pure glycine. In the structures of the mol­ecular salts of amino acids, the amino acid cations form isolated dimers [of β-alanine in (III), GABA in (IV) and DL-AABA in (V)], which are linked by strong O—H...O hydrogen bonds. Moreover, the three crystal structures comprise different types of dimeric cations, i.e. (A...A)+ in (III) and (V), and A+...A+ in (IV). Mol­ecular salts (IV) and (V) are the first examples of mol­ecular salts of GABA and DL-AABA that contain dimers of amino acid cations. The geometry of each investigated amino acid (except DL-AABA) correlates with the melting point of its mixed crystal.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229617017909/sk3677sup1.cif
Contains datablocks global, beta-ala_DL-tart_III, GABA_DL-tart_IV, DL-AABA_DL-tart_V, beta-ala_DL-tart_II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617017909/sk3677beta-ala_DL-tart_IIsup2.hkl
Contains datablock beta-ala_DL-tart_II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617017909/sk3677beta-ala_DL-tart_IIIsup3.hkl
Contains datablock beta-ala_DL-tart_III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617017909/sk3677GABA_DL-tart_IVsup4.hkl
Contains datablock GABA_DL-tart_IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617017909/sk3677DL-AABA_DL-tart_Vsup5.hkl
Contains datablock DL-AABA_DL-tart_V

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229617017909/sk3677sup6.pdf
FT-IR data and spectra, hydrogen-bond details and hot-stage microscopy information and figures

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229617017909/sk3677sup7.cif
Additional CIF for (III)

CCDC references: 1583099; 1544294; 1540017; 1585722

Computing details top

For all structures, data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014). Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for beta-ala_DL-tart_II; SHELXS (Sheldrick, 2008) for beta-ala_DL-tart_III; SHELXT (Sheldrick, 2015a) for DL-AABA_DL-tart_V. For all structures, program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

β-Alanine–DL-tartaric acid (1/1) (beta-ala_DL-tart_II) top
Crystal data top
C3H7NO2·C4H6O6F(000) = 504
Mr = 239.18Dx = 1.626 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 4.88596 (17) ÅCell parameters from 4805 reflections
b = 9.4420 (2) Åθ = 1.9–27.7°
c = 21.7319 (6) ŵ = 0.15 mm1
β = 103.021 (3)°T = 293 K
V = 976.78 (5) Å3Block, colourless
Z = 40.86 × 0.12 × 0.08 mm
Data collection top
Agilent Xcalibur Ruby Gemini ultra
diffractometer
1996 independent reflections
Radiation source: Enhance (Mo) X-ray Source1889 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 10.3457 pixels mm-1θmax = 26.4°, θmin = 1.9°
ω scansh = 66
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1111
Tmin = 0.791, Tmax = 1.000l = 2727
12471 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0381P)2 + 0.1523P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1996 reflectionsΔρmax = 0.21 e Å3
151 parametersΔρmin = 0.17 e Å3
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.2841 (2)0.64658 (11)0.00115 (6)0.0347 (3)
H40.3668350.5846570.0246190.042*
O30.7265 (2)0.61737 (11)0.06679 (5)0.0292 (2)
H30.8917060.6283040.0488730.035*
O60.8728 (3)0.87259 (11)0.05260 (5)0.0376 (3)
H60.9962360.8760410.0851390.045*
O10.1750 (3)0.86171 (12)0.11791 (5)0.0400 (3)
H10.0444200.8643700.1491120.048*
C40.7182 (3)0.76069 (15)0.05370 (6)0.0257 (3)
C30.4722 (3)0.75774 (15)0.00302 (7)0.0250 (3)
H3A0.3702680.8474560.0041760.030*
O50.7605 (3)0.66850 (13)0.09322 (5)0.0406 (3)
O70.7307 (2)0.58365 (11)0.30080 (5)0.0311 (3)
O80.7092 (3)0.38062 (11)0.35126 (5)0.0401 (3)
O20.2879 (2)0.66539 (11)0.16318 (5)0.0333 (3)
C20.5776 (3)0.74545 (14)0.06436 (6)0.0227 (3)
H20.7027720.8253500.0667540.027*
C50.6129 (3)0.46909 (14)0.30895 (6)0.0236 (3)
C10.3293 (3)0.75113 (14)0.12109 (7)0.0229 (3)
C60.3351 (3)0.43399 (15)0.26446 (7)0.0252 (3)
H6A0.3615250.3520960.2394700.030*
H6B0.2013230.4079290.2893770.030*
N10.3915 (3)0.58754 (13)0.17552 (6)0.0334 (3)
H1A0.3259840.6648110.1536560.050*
H1B0.3904680.5154430.1490880.050*
H1C0.5664310.6031810.1971640.050*
C70.2106 (3)0.55276 (16)0.22007 (7)0.0269 (3)
H7A0.0258270.5249540.1962860.032*
H7B0.1889290.6363010.2445170.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0258 (6)0.0374 (6)0.0372 (6)0.0056 (5)0.0006 (5)0.0099 (5)
O30.0207 (5)0.0295 (5)0.0336 (6)0.0058 (4)0.0016 (5)0.0020 (4)
O60.0412 (7)0.0329 (6)0.0307 (6)0.0072 (5)0.0088 (5)0.0021 (5)
O10.0421 (7)0.0389 (6)0.0300 (6)0.0191 (6)0.0107 (5)0.0073 (5)
C40.0262 (8)0.0275 (7)0.0221 (7)0.0022 (6)0.0028 (6)0.0025 (6)
C30.0233 (7)0.0250 (7)0.0247 (7)0.0005 (6)0.0012 (6)0.0003 (6)
O50.0439 (7)0.0447 (7)0.0285 (6)0.0035 (6)0.0019 (5)0.0113 (5)
O70.0262 (6)0.0301 (5)0.0317 (6)0.0083 (4)0.0046 (5)0.0018 (5)
O80.0394 (7)0.0309 (6)0.0386 (6)0.0017 (5)0.0153 (6)0.0095 (5)
O20.0324 (6)0.0318 (6)0.0304 (6)0.0031 (5)0.0042 (5)0.0077 (5)
C20.0214 (8)0.0211 (6)0.0236 (7)0.0004 (5)0.0007 (6)0.0005 (5)
C50.0228 (7)0.0225 (6)0.0231 (7)0.0026 (6)0.0001 (6)0.0032 (5)
C10.0226 (8)0.0221 (7)0.0226 (7)0.0001 (6)0.0021 (6)0.0022 (5)
C60.0236 (7)0.0253 (7)0.0240 (7)0.0025 (6)0.0003 (6)0.0020 (6)
N10.0447 (9)0.0279 (6)0.0291 (7)0.0077 (6)0.0117 (6)0.0038 (5)
C70.0218 (7)0.0302 (8)0.0260 (8)0.0005 (6)0.0005 (6)0.0007 (6)
Geometric parameters (Å, º) top
O4—H40.8200O2—C11.2041 (17)
O4—C31.4112 (18)C2—H20.9800
O3—H30.8200C2—C11.5231 (19)
O3—C21.4185 (17)C5—C61.515 (2)
O6—H60.8200C6—H6A0.9700
O6—C41.3024 (18)C6—H6B0.9700
O1—H10.8200C6—C71.515 (2)
O1—C11.2990 (17)N1—H1A0.8900
C4—C31.516 (2)N1—H1B0.8900
C4—O51.2075 (17)N1—H1C0.8900
C3—H3A0.9800N1—C71.487 (2)
C3—C21.5381 (19)C7—H7A0.9700
O7—C51.2564 (17)C7—H7B0.9700
O8—C51.2528 (17)
C3—O4—H4109.5O1—C1—C2110.56 (12)
C2—O3—H3109.5O2—C1—O1125.49 (14)
C4—O6—H6109.5O2—C1—C2123.93 (13)
C1—O1—H1109.5C5—C6—H6A108.6
O6—C4—C3110.93 (12)C5—C6—H6B108.6
O5—C4—O6126.21 (14)H6A—C6—H6B107.6
O5—C4—C3122.86 (13)C7—C6—C5114.71 (12)
O4—C3—C4111.72 (12)C7—C6—H6A108.6
O4—C3—H3A108.1C7—C6—H6B108.6
O4—C3—C2110.46 (12)H1A—N1—H1B109.5
C4—C3—H3A108.1H1A—N1—H1C109.5
C4—C3—C2110.32 (12)H1B—N1—H1C109.5
C2—C3—H3A108.1C7—N1—H1A109.5
O3—C2—C3111.79 (11)C7—N1—H1B109.5
O3—C2—H2108.8C7—N1—H1C109.5
O3—C2—C1108.75 (11)C6—C7—H7A109.3
C3—C2—H2108.8C6—C7—H7B109.3
C1—C2—C3109.74 (11)N1—C7—C6111.44 (12)
C1—C2—H2108.8N1—C7—H7A109.3
O7—C5—C6118.12 (12)N1—C7—H7B109.3
O8—C5—O7124.70 (13)H7A—C7—H7B108.0
O8—C5—C6117.18 (12)
O4—C3—C2—O361.53 (15)C3—C2—C1—O152.44 (15)
O4—C3—C2—C159.22 (14)C3—C2—C1—O2128.76 (15)
O3—C2—C1—O1175.01 (13)O5—C4—C3—O48.0 (2)
O3—C2—C1—O26.18 (19)O5—C4—C3—C2115.30 (16)
O6—C4—C3—O4173.00 (13)O7—C5—C6—C78.10 (19)
O6—C4—C3—C263.73 (15)O8—C5—C6—C7172.23 (14)
C4—C3—C2—O362.47 (14)C5—C6—C7—N164.50 (16)
C4—C3—C2—C1176.77 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O3i0.822.212.8778 (15)139
O3—H3···O4ii0.821.992.8048 (15)175
O6—H6···O8iii0.821.762.5728 (15)173
O1—H1···O7iv0.821.742.5240 (16)160
N1—H1A···O8v0.892.052.8477 (17)149
N1—H1C···O70.892.222.8508 (17)127
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x+2, y+1/2, z+1/2; (iv) x1, y+3/2, z1/2; (v) x+1, y+1/2, z+1/2.
3-Azaniumylpropanoic acid–3-azaniumylpropanoate DL-tartaric acid–DL-tartrate (beta-ala_DL-tart_III) top
Crystal data top
C6H15N2O4+·C8H11O12Z = 1
Mr = 478.37F(000) = 252
Triclinic, P1Dx = 1.655 Mg m3
a = 4.9216 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.5949 (6) ÅCell parameters from 2996 reflections
c = 12.1187 (7) Åθ = 1.8–27.8°
α = 108.610 (6)°µ = 0.15 mm1
β = 97.243 (5)°T = 293 K
γ = 92.752 (5)°Block, colourless
V = 479.82 (6) Å30.3 × 0.14 × 0.12 mm
Data collection top
Xcalibur, Ruby, Gemini ultra
diffractometer
1962 independent reflections
Radiation source: Enhance (Mo) X-ray Source1626 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 10.3457 pixels mm-1θmax = 26.4°, θmin = 1.8°
ω scansh = 66
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1010
Tmin = 0.965, Tmax = 1.000l = 1515
6002 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0499P)2 + 0.2341P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1962 reflectionsΔρmax = 0.25 e Å3
154 parametersΔρmin = 0.27 e Å3
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.2694 (3)0.99355 (16)0.13191 (12)0.0259 (3)
O60.1929 (3)0.59451 (15)0.06566 (11)0.0291 (3)
O40.7460 (2)0.84652 (15)0.02993 (11)0.0265 (3)
H40.9011380.8775810.0668360.032*
O10.8831 (3)0.97686 (15)0.31713 (11)0.0294 (3)
H10.9985201.0493210.3610660.035*
O50.3221 (3)0.63581 (17)0.09339 (11)0.0332 (3)
O80.4355 (3)0.85520 (15)0.44061 (12)0.0337 (3)
O20.6977 (3)1.18792 (16)0.27615 (14)0.0404 (4)
C30.5851 (3)0.77953 (19)0.09600 (14)0.0188 (4)
H3A0.7010020.7190590.1367260.023*
C20.4658 (3)0.91587 (19)0.18716 (14)0.0194 (4)
H20.3739110.8660920.2366300.023*
N10.2081 (3)0.36309 (18)0.23089 (14)0.0285 (4)
H1A0.3149040.3651750.1772310.043*
H1B0.0335100.3384850.1966600.043*
H1C0.2579380.2871900.2631260.043*
O70.7675 (3)0.77751 (18)0.54905 (14)0.0481 (4)
C50.5866 (4)0.7502 (2)0.46338 (16)0.0260 (4)
C10.6937 (3)1.0436 (2)0.26560 (14)0.0213 (4)
C40.3501 (3)0.6606 (2)0.01279 (15)0.0202 (4)
C70.2382 (4)0.5271 (2)0.32363 (16)0.0263 (4)
H7A0.1363490.5221220.3861310.032*
H7B0.1627040.6075910.2906200.032*
C60.5368 (4)0.5792 (2)0.37317 (17)0.0288 (4)
H6A0.6387300.5758520.3090830.035*
H6B0.6075830.5007980.4093620.035*
H60.0000000.5000000.0000000.091 (15)*
H80.5000001.0000000.5000000.122 (19)*
H30.319 (7)1.027 (4)0.086 (3)0.093 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0200 (6)0.0286 (7)0.0282 (7)0.0037 (5)0.0019 (5)0.0100 (6)
O60.0252 (7)0.0309 (7)0.0275 (7)0.0118 (5)0.0017 (5)0.0086 (6)
O40.0186 (6)0.0319 (7)0.0278 (7)0.0072 (5)0.0034 (5)0.0092 (5)
O10.0245 (7)0.0267 (7)0.0295 (7)0.0029 (5)0.0103 (5)0.0050 (5)
O50.0260 (7)0.0457 (8)0.0215 (7)0.0083 (6)0.0025 (5)0.0062 (6)
O80.0428 (8)0.0224 (7)0.0303 (7)0.0035 (6)0.0040 (6)0.0044 (6)
O20.0362 (8)0.0218 (7)0.0553 (10)0.0054 (6)0.0131 (7)0.0102 (6)
C30.0156 (8)0.0189 (8)0.0216 (8)0.0020 (6)0.0008 (6)0.0078 (6)
C20.0175 (8)0.0194 (8)0.0202 (8)0.0014 (6)0.0010 (6)0.0067 (6)
N10.0238 (8)0.0234 (8)0.0306 (8)0.0019 (6)0.0038 (6)0.0017 (6)
O70.0507 (9)0.0316 (8)0.0470 (9)0.0099 (7)0.0270 (7)0.0068 (7)
C50.0253 (9)0.0241 (9)0.0256 (9)0.0053 (7)0.0013 (7)0.0069 (7)
C10.0191 (8)0.0234 (9)0.0187 (8)0.0010 (7)0.0002 (7)0.0047 (7)
C40.0162 (8)0.0185 (8)0.0237 (9)0.0010 (6)0.0003 (6)0.0051 (7)
C70.0219 (9)0.0232 (9)0.0264 (9)0.0016 (7)0.0007 (7)0.0004 (7)
C60.0228 (9)0.0256 (9)0.0315 (10)0.0006 (7)0.0016 (8)0.0027 (8)
Geometric parameters (Å, º) top
O3—C21.419 (2)C3—C41.528 (2)
O3—H30.76 (3)C2—H20.9800
O6—C41.283 (2)C2—C11.521 (2)
O6—H61.2317 (11)N1—H1A0.8900
O4—H40.8200N1—H1B0.8900
O4—C31.4178 (19)N1—H1C0.8900
O1—H10.8200N1—C71.483 (2)
O1—C11.312 (2)O7—C51.232 (2)
O5—C41.224 (2)C5—C61.512 (2)
O8—C51.271 (2)C7—H7A0.9700
O8—H81.2249 (12)C7—H7B0.9700
O2—C11.204 (2)C7—C61.505 (2)
C3—H3A0.9800C6—H6A0.9700
C3—C21.530 (2)C6—H6B0.9700
C2—O3—H3115 (3)C7—N1—H1C109.5
C4—O6—H6114.32 (12)O8—C5—C6114.91 (16)
C3—O4—H4109.5O7—C5—O8125.87 (17)
C1—O1—H1109.5O7—C5—C6119.21 (17)
C5—O8—H8116.71 (13)O1—C1—C2111.95 (14)
O4—C3—H3A109.1O2—C1—O1125.10 (15)
O4—C3—C2110.97 (13)O2—C1—C2122.94 (16)
O4—C3—C4109.37 (13)O6—C4—C3113.48 (14)
C2—C3—H3A109.1O5—C4—O6125.53 (15)
C4—C3—H3A109.1O5—C4—C3120.98 (15)
C4—C3—C2109.30 (13)N1—C7—H7A109.6
O3—C2—C3111.15 (13)N1—C7—H7B109.6
O3—C2—H2108.4N1—C7—C6110.22 (15)
O3—C2—C1109.77 (13)H7A—C7—H7B108.1
C3—C2—H2108.4C6—C7—H7A109.6
C1—C2—C3110.57 (13)C6—C7—H7B109.6
C1—C2—H2108.4C5—C6—H6A108.9
H1A—N1—H1B109.5C5—C6—H6B108.9
H1A—N1—H1C109.5C7—C6—C5113.50 (15)
H1B—N1—H1C109.5C7—C6—H6A108.9
C7—N1—H1A109.5C7—C6—H6B108.9
C7—N1—H1B109.5H6A—C6—H6B107.7
O3—C2—C1—O1178.92 (14)C3—C2—C1—O2122.88 (19)
O3—C2—C1—O20.1 (2)C2—C3—C4—O658.10 (18)
O4—C3—C2—O367.20 (16)C2—C3—C4—O5121.42 (17)
O4—C3—C2—C154.98 (18)N1—C7—C6—C5176.51 (15)
O4—C3—C4—O6179.77 (14)O7—C5—C6—C7143.16 (19)
O4—C3—C4—O50.2 (2)C4—C3—C2—O353.49 (17)
O8—C5—C6—C738.2 (2)C4—C3—C2—C1175.68 (13)
C3—C2—C1—O155.93 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O3i0.821.972.7653 (17)165
O1—H1···O7ii0.821.792.6092 (18)174
N1—H1A···O4iii0.892.563.142 (2)124
N1—H1A···O5iii0.892.163.017 (2)161
N1—H1B···O5iv0.892.082.916 (2)155
N1—H1B···O2v0.892.523.064 (2)121
N1—H1C···O2vi0.892.372.986 (2)127
O6—H6···O6iv1.231.232.464 (2)180
O8—H8···O8vii1.221.222.4498 (19)180
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+2, z+1; (iii) x+1, y+1, z; (iv) x, y+1, z; (v) x1, y1, z; (vi) x, y1, z; (vii) x+1, y+2, z+1.
3-Carboxypropanaminium DL-tartrate (GABA_DL-tart_IV) top
Crystal data top
C4H10NO2+·C4H5O6Z = 4
Mr = 253.21F(000) = 536
Triclinic, P1Dx = 1.531 Mg m3
a = 9.5645 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.6521 (7) ÅCell parameters from 3135 reflections
c = 14.3793 (8) Åθ = 2.5–27.9°
α = 100.043 (6)°µ = 0.14 mm1
β = 99.159 (6)°T = 293 K
γ = 118.841 (8)°Block, colourless
V = 1098.50 (16) Å30.50 × 0.19 × 0.04 mm
Data collection top
Xcalibur, Ruby, Gemini ultra
diffractometer
4471 independent reflections
Radiation source: Enhance (Mo) X-ray Source3662 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 10.3457 pixels mm-1θmax = 26.4°, θmin = 2.5°
ω scansh = 1110
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1112
Tmin = 0.837, Tmax = 1.000l = 1617
7048 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.3075P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4471 reflectionsΔρmax = 0.34 e Å3
317 parametersΔρmin = 0.43 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O270.2335 (2)0.3689 (2)0.92438 (10)0.0559 (5)
H270.2349250.4531190.9487000.067*
O280.3116 (3)0.2105 (2)0.97021 (11)0.0611 (5)
N210.15229 (19)0.48352 (18)1.29836 (11)0.0315 (3)
H21A0.0814460.5055811.2661980.047*
H21B0.2011270.5518801.3593020.047*
H21C0.0973340.3796261.3007240.047*
C250.2971 (2)0.3285 (2)0.99280 (13)0.0333 (4)
C260.3525 (2)0.4299 (2)1.09787 (13)0.0343 (4)
H26A0.4168040.5460621.1017090.041*
H26B0.4248710.4048181.1371520.041*
C270.2082 (2)0.3992 (2)1.14145 (12)0.0287 (4)
H27A0.1363240.4269411.1042870.034*
H27B0.1428970.2835471.1386690.034*
C280.2799 (2)0.5059 (2)1.24674 (13)0.0331 (4)
H28A0.3557210.4803581.2818450.040*
H28B0.3435260.6208781.2479880.040*
O170.2916 (2)0.78703 (18)0.89978 (11)0.0528 (4)
H170.2882670.7078470.8650980.063*
O180.2343 (3)0.63217 (19)1.00016 (12)0.0670 (6)
N110.18466 (18)0.96254 (17)1.30101 (11)0.0300 (3)
H11A0.0997360.8601861.2902290.045*
H11B0.1619381.0345841.3314300.045*
H11C0.2760630.9755141.3385660.045*
C150.2619 (2)0.7581 (2)0.98005 (13)0.0322 (4)
C160.2598 (3)0.8926 (2)1.04874 (14)0.0396 (5)
H16A0.1721930.9062331.0162060.048*
H16B0.3646930.9954641.0618570.048*
C170.2329 (2)0.8619 (2)1.14583 (13)0.0322 (4)
H17A0.1346560.7536521.1334850.039*
H17B0.3274820.8625861.1828860.039*
C180.2117 (3)0.9914 (2)1.20568 (14)0.0347 (4)
H18A0.3101741.0994841.2179990.042*
H18B0.1175220.9909061.1683340.042*
O210.45891 (15)0.33231 (15)0.54409 (9)0.0289 (3)
H210.4691310.2702250.5027730.035*
O220.24110 (16)0.26931 (16)0.42271 (9)0.0343 (3)
O230.17396 (15)0.46887 (14)0.53599 (9)0.0277 (3)
H230.1019370.3865060.4912660.033*
O240.08990 (14)0.18626 (13)0.61368 (9)0.0278 (3)
H240.1184480.1202570.5971920.033*
O250.05168 (15)0.38627 (15)0.74327 (9)0.0305 (3)
O260.31479 (15)0.59350 (14)0.77576 (9)0.0313 (3)
C210.3294 (2)0.33719 (19)0.50715 (12)0.0215 (3)
C220.2927 (2)0.43689 (19)0.58254 (12)0.0211 (3)
H220.3961020.5429660.6167120.025*
C230.23280 (19)0.34588 (19)0.65918 (12)0.0218 (3)
H23A0.3219420.3354730.6947510.026*
C240.1933 (2)0.4480 (2)0.73227 (11)0.0224 (3)
O110.67246 (17)0.09112 (15)0.20349 (10)0.0416 (4)
H110.6930060.1270990.1548930.050*
O120.93554 (16)0.11821 (16)0.24006 (10)0.0373 (3)
O130.89270 (14)0.30379 (13)0.37845 (9)0.0265 (3)
H130.8630970.3670610.3992220.032*
O140.80716 (15)0.02295 (15)0.45153 (9)0.0296 (3)
H140.8690320.1021850.5004020.035*
O150.71741 (16)0.20586 (15)0.55839 (9)0.0335 (3)
O160.51851 (14)0.15786 (14)0.42978 (9)0.0287 (3)
C110.7995 (2)0.0580 (2)0.25300 (12)0.0259 (4)
C120.75111 (19)0.14582 (19)0.32773 (12)0.0224 (3)
H120.6638500.1592660.2927170.027*
C130.6861 (2)0.04870 (19)0.40067 (12)0.0218 (3)
H13A0.5863400.0589920.3640980.026*
C140.6386 (2)0.14525 (19)0.47132 (12)0.0219 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O270.1109 (14)0.0599 (10)0.0257 (7)0.0668 (10)0.0182 (8)0.0108 (7)
O280.1201 (15)0.0574 (10)0.0379 (8)0.0673 (11)0.0296 (9)0.0155 (7)
N210.0350 (8)0.0316 (8)0.0281 (8)0.0166 (7)0.0165 (7)0.0050 (6)
C250.0484 (11)0.0333 (10)0.0278 (9)0.0250 (9)0.0198 (9)0.0115 (8)
C260.0341 (10)0.0454 (11)0.0249 (9)0.0226 (9)0.0115 (8)0.0051 (8)
C270.0299 (9)0.0312 (9)0.0236 (9)0.0154 (8)0.0095 (7)0.0054 (7)
C280.0267 (9)0.0421 (11)0.0254 (9)0.0155 (8)0.0113 (8)0.0024 (8)
O170.1020 (13)0.0450 (9)0.0354 (8)0.0490 (9)0.0381 (9)0.0166 (7)
O180.1423 (17)0.0533 (10)0.0511 (10)0.0712 (11)0.0570 (11)0.0296 (8)
N110.0324 (8)0.0296 (8)0.0272 (8)0.0159 (7)0.0131 (6)0.0032 (6)
C150.0437 (11)0.0312 (9)0.0297 (10)0.0236 (9)0.0165 (8)0.0092 (8)
C160.0651 (14)0.0327 (10)0.0344 (11)0.0313 (10)0.0267 (10)0.0115 (8)
C170.0448 (11)0.0334 (10)0.0285 (9)0.0259 (9)0.0170 (8)0.0091 (8)
C180.0498 (12)0.0331 (10)0.0312 (10)0.0264 (9)0.0205 (9)0.0094 (8)
O210.0315 (7)0.0365 (7)0.0247 (6)0.0249 (6)0.0074 (5)0.0008 (5)
O220.0416 (7)0.0415 (7)0.0228 (6)0.0291 (6)0.0034 (6)0.0012 (5)
O230.0343 (7)0.0292 (6)0.0258 (6)0.0238 (6)0.0051 (5)0.0035 (5)
O240.0285 (6)0.0223 (6)0.0350 (7)0.0161 (5)0.0118 (5)0.0029 (5)
O250.0305 (7)0.0343 (7)0.0317 (7)0.0202 (6)0.0141 (5)0.0061 (5)
O260.0325 (7)0.0288 (7)0.0254 (6)0.0130 (6)0.0097 (5)0.0007 (5)
C210.0243 (8)0.0206 (8)0.0212 (8)0.0128 (7)0.0088 (7)0.0047 (6)
C220.0242 (8)0.0224 (8)0.0212 (8)0.0160 (7)0.0074 (7)0.0036 (6)
C230.0223 (8)0.0243 (8)0.0219 (8)0.0155 (7)0.0059 (7)0.0042 (6)
C240.0295 (9)0.0293 (9)0.0153 (7)0.0199 (7)0.0084 (7)0.0068 (6)
O110.0441 (8)0.0315 (7)0.0363 (8)0.0132 (6)0.0189 (6)0.0057 (6)
O120.0338 (7)0.0406 (7)0.0393 (8)0.0210 (6)0.0189 (6)0.0030 (6)
O130.0267 (6)0.0206 (6)0.0334 (7)0.0141 (5)0.0121 (5)0.0022 (5)
O140.0351 (7)0.0299 (6)0.0301 (7)0.0244 (6)0.0052 (5)0.0041 (5)
O150.0446 (8)0.0368 (7)0.0233 (7)0.0273 (6)0.0064 (6)0.0031 (5)
O160.0266 (6)0.0349 (7)0.0295 (7)0.0214 (6)0.0088 (5)0.0031 (5)
C110.0316 (9)0.0275 (9)0.0219 (8)0.0184 (8)0.0091 (7)0.0047 (7)
C120.0228 (8)0.0239 (8)0.0230 (8)0.0148 (7)0.0077 (7)0.0034 (6)
C130.0227 (8)0.0203 (8)0.0251 (8)0.0137 (7)0.0079 (7)0.0043 (6)
C140.0241 (8)0.0198 (8)0.0256 (9)0.0125 (7)0.0127 (7)0.0073 (6)
Geometric parameters (Å, º) top
O27—H270.8200C18—H18A0.9700
O27—C251.289 (2)C18—H18B0.9700
O28—C251.209 (2)O21—H210.8200
N21—H21A0.8900O21—C211.2943 (19)
N21—H21B0.8900O22—C211.216 (2)
N21—H21C0.8900O23—H230.8200
N21—C281.475 (2)O23—C221.4151 (18)
C25—C261.500 (2)O24—H240.8200
C26—H26A0.9700O24—C231.4149 (19)
C26—H26B0.9700O25—C241.240 (2)
C26—C271.527 (2)O26—C241.265 (2)
C27—H27A0.9700C21—C221.519 (2)
C27—H27B0.9700C22—H220.9800
C27—C281.506 (2)C22—C231.539 (2)
C28—H28A0.9700C23—H23A0.9800
C28—H28B0.9700C23—C241.531 (2)
O17—H170.8200O11—H110.8200
O17—C151.277 (2)O11—C111.317 (2)
O18—C151.211 (2)O12—C111.204 (2)
N11—H11A0.8900O13—H130.8200
N11—H11B0.8900O13—C121.4130 (19)
N11—H11C0.8900O14—H140.8200
N11—C181.483 (2)O14—C131.4171 (19)
C15—C161.499 (2)O15—C141.223 (2)
C16—H16A0.9700O16—C141.278 (2)
C16—H16B0.9700C11—C121.519 (2)
C16—C171.513 (3)C12—H120.9800
C17—H17A0.9700C12—C131.534 (2)
C17—H17B0.9700C13—H13A0.9800
C17—C181.507 (2)C13—C141.527 (2)
C25—O27—H27109.5C18—C17—H17B109.4
H21A—N21—H21B109.5N11—C18—C17111.94 (15)
H21A—N21—H21C109.5N11—C18—H18A109.2
H21B—N21—H21C109.5N11—C18—H18B109.2
C28—N21—H21A109.5C17—C18—H18A109.2
C28—N21—H21B109.5C17—C18—H18B109.2
C28—N21—H21C109.5H18A—C18—H18B107.9
O27—C25—C26119.29 (16)C21—O21—H21109.5
O28—C25—O27118.87 (17)C22—O23—H23109.5
O28—C25—C26121.83 (18)C23—O24—H24109.5
C25—C26—H26A108.9O21—C21—C22112.46 (13)
C25—C26—H26B108.9O22—C21—O21126.04 (15)
C25—C26—C27113.19 (15)O22—C21—C22121.49 (14)
H26A—C26—H26B107.8O23—C22—C21110.75 (13)
C27—C26—H26A108.9O23—C22—H22108.3
C27—C26—H26B108.9O23—C22—C23110.91 (13)
C26—C27—H27A110.1C21—C22—H22108.3
C26—C27—H27B110.1C21—C22—C23110.27 (12)
H27A—C27—H27B108.4C23—C22—H22108.3
C28—C27—C26108.01 (14)O24—C23—C22111.18 (13)
C28—C27—H27A110.1O24—C23—H23A109.0
C28—C27—H27B110.1O24—C23—C24109.88 (13)
N21—C28—C27113.32 (14)C22—C23—H23A109.0
N21—C28—H28A108.9C24—C23—C22108.69 (12)
N21—C28—H28B108.9C24—C23—H23A109.0
C27—C28—H28A108.9O25—C24—O26126.30 (15)
C27—C28—H28B108.9O25—C24—C23119.82 (15)
H28A—C28—H28B107.7O26—C24—C23113.87 (14)
C15—O17—H17109.5C11—O11—H11109.5
H11A—N11—H11B109.5C12—O13—H13109.5
H11A—N11—H11C109.5C13—O14—H14109.5
H11B—N11—H11C109.5O11—C11—C12110.99 (14)
C18—N11—H11A109.5O12—C11—O11124.74 (15)
C18—N11—H11B109.5O12—C11—C12124.27 (15)
C18—N11—H11C109.5O13—C12—C11108.03 (13)
O17—C15—C16114.47 (16)O13—C12—H12108.9
O18—C15—O17124.07 (17)O13—C12—C13110.25 (13)
O18—C15—C16121.44 (17)C11—C12—H12108.9
C15—C16—H16A108.7C11—C12—C13111.91 (13)
C15—C16—H16B108.7C13—C12—H12108.9
C15—C16—C17114.38 (15)O14—C13—C12110.84 (13)
H16A—C16—H16B107.6O14—C13—H13A108.8
C17—C16—H16A108.7O14—C13—C14111.66 (13)
C17—C16—H16B108.7C12—C13—H13A108.8
C16—C17—H17A109.4C14—C13—C12107.91 (12)
C16—C17—H17B109.4C14—C13—H13A108.8
H17A—C17—H17B108.0O15—C14—O16126.40 (15)
C18—C17—C16111.31 (15)O15—C14—C13119.69 (14)
C18—C17—H17A109.4O16—C14—C13113.87 (14)
O27—C25—C26—C2775.0 (2)C21—C22—C23—O2457.58 (16)
O28—C25—C26—C27105.7 (2)C21—C22—C23—C24178.66 (12)
C25—C26—C27—C28179.31 (16)C22—C23—C24—O25121.65 (16)
C26—C27—C28—N21178.20 (15)C22—C23—C24—O2657.62 (17)
O17—C15—C16—C17177.19 (18)O11—C11—C12—O13179.60 (14)
O18—C15—C16—C174.1 (3)O11—C11—C12—C1358.04 (19)
C15—C16—C17—C18173.17 (18)O12—C11—C12—O131.4 (2)
C16—C17—C18—N11179.80 (16)O12—C11—C12—C13122.93 (18)
O21—C21—C22—O23167.67 (13)O13—C12—C13—O1461.98 (16)
O21—C21—C22—C2369.19 (17)O13—C12—C13—C1460.57 (16)
O22—C21—C22—O2313.6 (2)O14—C13—C14—O158.4 (2)
O22—C21—C22—C23109.58 (17)O14—C13—C14—O16173.69 (13)
O23—C22—C23—O2465.47 (16)C11—C12—C13—O1458.29 (17)
O23—C22—C23—C2455.61 (16)C11—C12—C13—C14179.16 (13)
O24—C23—C24—O250.2 (2)C12—C13—C14—O15113.65 (16)
O24—C23—C24—O26179.49 (13)C12—C13—C14—O1664.26 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O27—H27···O180.821.762.5805 (19)179
N21—H21A···O25i0.892.002.828 (2)154
N21—H21B···O15ii0.892.112.8651 (19)142
N21—H21C···O12iii0.892.132.966 (2)155
O17—H17···O260.821.682.4663 (17)161
N11—H11A···O25i0.892.012.8813 (19)166
N11—H11B···O22iv0.892.102.9105 (19)151
N11—H11C···O15ii0.892.503.1013 (19)126
N11—H11C···O16iv0.892.122.8760 (19)143
O21—H21···O160.821.662.4740 (16)172
O23—H23···O13v0.822.062.7519 (17)142
O24—H24···O14vi0.821.922.7346 (16)174
O11—H11···O28vi0.821.822.6220 (19)165
O13—H13···O23vii0.821.912.7190 (15)171
O14—H14···O24viii0.822.142.7986 (17)138
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+1, z+2; (iii) x1, y, z+1; (iv) x, y+1, z+1; (v) x1, y, z; (vi) x+1, y, z+1; (vii) x+1, y+1, z+1; (viii) x+1, y, z.
DL-2-Azaniumylbutanoic acid–DL-2-azaniumylbutanoate DL-tartaric acid–DL-tartrate (DL-AABA_DL-tart_V) top
Crystal data top
C8H19N2O4+·C8H11O12Z = 1
Mr = 506.42F(000) = 268
Triclinic, P1Dx = 1.577 Mg m3
a = 4.9336 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.0324 (7) ÅCell parameters from 3350 reflections
c = 11.3232 (7) Åθ = 1.9–28.0°
α = 103.464 (6)°µ = 0.14 mm1
β = 94.310 (5)°T = 293 K
γ = 99.766 (5)°Block, colourless
V = 533.29 (6) Å30.35 × 0.06 × 0.05 mm
Data collection top
Agilent Xcalibur Ruby Gemini ultra
diffractometer
2175 independent reflections
Radiation source: Enhance (Mo) X-ray Source1874 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 10.3457 pixels mm-1θmax = 26.4°, θmin = 1.9°
ω scansh = 66
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1212
Tmin = 0.976, Tmax = 1.000l = 1414
6684 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0403P)2 + 0.1383P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2175 reflectionsΔρmax = 0.25 e Å3
191 parametersΔρmin = 0.18 e Å3
23 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O40.75632 (19)0.32598 (10)1.01072 (9)0.0255 (2)
H40.8976820.3388730.9778630.031*
O81.3362 (2)0.40774 (11)0.42712 (9)0.0280 (2)
O30.2374 (2)0.37769 (11)0.90602 (10)0.0297 (3)
H30.3155930.4581900.9114710.036*
O50.4124 (2)0.17297 (12)1.11607 (9)0.0334 (3)
O20.6681 (2)0.48190 (11)0.79870 (10)0.0346 (3)
O71.0746 (2)0.37688 (12)0.57402 (9)0.0336 (3)
O60.1444 (2)0.06657 (11)0.94098 (9)0.0338 (3)
O10.6739 (2)0.26841 (11)0.68302 (10)0.0356 (3)
H10.7891650.3110310.6497960.043*
N10.9600 (3)0.28541 (15)0.24398 (12)0.0282 (4)0.929 (2)
H1A0.8072420.2589480.1906550.042*0.929 (2)
H1B1.0829130.2329090.2185710.042*0.929 (2)
H1C1.0316320.3746410.2498480.042*0.929 (2)
C51.1146 (3)0.35785 (14)0.46582 (12)0.0212 (3)
C30.5533 (3)0.22179 (14)0.92920 (12)0.0202 (3)
H3A0.6457560.1522540.8810100.024*
C20.3900 (3)0.28414 (14)0.84129 (12)0.0210 (3)
H20.2609830.2080030.7831010.025*
C40.3585 (3)0.15024 (14)1.00450 (12)0.0213 (3)
C10.5908 (3)0.35722 (15)0.77114 (12)0.0229 (3)
C60.8900 (3)0.26824 (14)0.36602 (12)0.0222 (3)
H6A0.7158110.3004980.3804650.027*
C70.8473 (3)0.11414 (16)0.36772 (15)0.0268 (4)0.929 (2)
H7A0.7626720.1026020.4402090.032*0.929 (2)
H7B0.7195850.0597290.2969610.032*0.929 (2)
C81.1142 (5)0.0565 (2)0.3669 (2)0.0375 (5)0.929 (2)
H8A1.1979860.0659410.2947020.056*0.929 (2)
H8B1.0728980.0403210.3674340.056*0.929 (2)
H8C1.2398460.1077500.4380850.056*0.929 (2)
N1A0.836 (3)0.3589 (18)0.2746 (14)0.0219 (19)0.071 (2)
H1AA0.6984690.3115350.2169600.033*0.071 (2)
H1AB0.9889110.3790340.2399570.033*0.071 (2)
H1AC0.7903580.4377590.3147620.033*0.071 (2)
C8A1.006 (6)0.066 (3)0.376 (2)0.025 (2)0.071 (2)
H8AA1.1133710.1211080.4507880.038*0.071 (2)
H8AB1.1003090.0058380.3380880.038*0.071 (2)
H8AC0.8279120.0242950.3928400.038*0.071 (2)
C7A0.975 (4)0.141 (2)0.3067 (19)0.0248 (12)0.071 (2)
H7AA0.8367220.0897390.2386680.030*0.071 (2)
H7AB1.1480220.1643390.2740370.030*0.071 (2)
H81.5000000.5000000.5000000.087 (11)*
H60.0000000.0000001.0000000.128 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0172 (5)0.0317 (6)0.0247 (5)0.0050 (4)0.0030 (4)0.0084 (4)
O80.0209 (5)0.0341 (6)0.0230 (5)0.0046 (4)0.0042 (4)0.0023 (4)
O30.0265 (5)0.0270 (5)0.0400 (6)0.0069 (4)0.0147 (5)0.0123 (5)
O50.0285 (6)0.0457 (7)0.0241 (5)0.0075 (5)0.0017 (4)0.0159 (5)
O20.0443 (7)0.0258 (6)0.0340 (6)0.0013 (5)0.0141 (5)0.0111 (5)
O70.0312 (6)0.0435 (6)0.0219 (5)0.0018 (5)0.0079 (4)0.0048 (5)
O60.0300 (6)0.0382 (6)0.0274 (6)0.0144 (5)0.0002 (4)0.0129 (5)
O10.0430 (7)0.0322 (6)0.0336 (6)0.0039 (5)0.0212 (5)0.0090 (5)
N10.0278 (7)0.0307 (8)0.0237 (7)0.0032 (6)0.0036 (5)0.0106 (6)
C50.0204 (6)0.0211 (7)0.0221 (7)0.0041 (5)0.0036 (5)0.0051 (5)
C30.0178 (6)0.0201 (7)0.0218 (7)0.0003 (5)0.0043 (5)0.0059 (5)
C20.0200 (7)0.0213 (7)0.0210 (7)0.0000 (5)0.0042 (5)0.0062 (5)
C40.0212 (7)0.0206 (7)0.0229 (7)0.0010 (5)0.0033 (5)0.0086 (5)
C10.0233 (7)0.0273 (7)0.0195 (7)0.0029 (6)0.0031 (5)0.0098 (6)
C60.0168 (6)0.0263 (7)0.0234 (7)0.0020 (5)0.0033 (5)0.0073 (6)
C70.0267 (8)0.0241 (8)0.0279 (8)0.0016 (7)0.0023 (7)0.0078 (6)
C80.0407 (12)0.0313 (10)0.0431 (11)0.0151 (10)0.0014 (10)0.0100 (8)
N1A0.018 (4)0.027 (3)0.019 (4)0.001 (3)0.003 (3)0.004 (3)
C8A0.018 (4)0.027 (4)0.027 (4)0.003 (4)0.001 (4)0.002 (4)
C7A0.019 (2)0.028 (2)0.026 (2)0.0018 (19)0.003 (2)0.0044 (19)
Geometric parameters (Å, º) top
O4—H40.8200C2—H20.9800
O4—C31.4157 (16)C2—C11.5142 (18)
O8—C51.2750 (16)C6—H6A0.9800
O8—H81.2170 (9)C6—C71.529 (2)
O3—H30.8200C6—N1A1.565 (16)
O3—C21.4098 (16)C6—C7A1.44 (2)
O5—C41.2301 (16)C7—H7A0.9700
O2—C11.2025 (17)C7—H7B0.9700
O7—C51.2315 (16)C7—C81.525 (3)
O6—C41.2813 (16)C8—H8A0.9600
O6—H61.2322 (9)C8—H8B0.9600
O1—H10.8200C8—H8C0.9600
O1—C11.3148 (17)N1A—H1AA0.8900
N1—H1A0.8900N1A—H1AB0.8900
N1—H1B0.8900N1A—H1AC0.8900
N1—H1C0.8900C8A—H8AA0.9600
N1—C61.4902 (18)C8A—H8AB0.9600
C5—C61.5214 (18)C8A—H8AC0.9600
C3—H3A0.9800C8A—C7A1.22 (4)
C3—C21.5400 (18)C7A—H7AA0.9700
C3—C41.5297 (17)C7A—H7AB0.9700
C3—O4—H4109.5C5—C6—C7111.67 (11)
C5—O8—H8116.90 (10)C5—C6—N1A106.9 (6)
C2—O3—H3109.5C7—C6—H6A108.2
C4—O6—H6114.10 (10)C7A—C6—C5110.5 (8)
C1—O1—H1109.5C7A—C6—N1A112.0 (10)
H1A—N1—H1B109.5C6—C7—H7A108.8
H1A—N1—H1C109.5C6—C7—H7B108.8
H1B—N1—H1C109.5H7A—C7—H7B107.7
C6—N1—H1A109.5C8—C7—C6113.72 (14)
C6—N1—H1B109.5C8—C7—H7A108.8
C6—N1—H1C109.5C8—C7—H7B108.8
O8—C5—C6114.66 (11)C7—C8—H8A109.5
O7—C5—O8125.25 (13)C7—C8—H8B109.5
O7—C5—C6120.10 (12)C7—C8—H8C109.5
O4—C3—H3A108.8H8A—C8—H8B109.5
O4—C3—C2111.44 (11)H8A—C8—H8C109.5
O4—C3—C4108.41 (10)H8B—C8—H8C109.5
C2—C3—H3A108.8C6—N1A—H1AA109.5
C4—C3—H3A108.8C6—N1A—H1AB109.5
C4—C3—C2110.64 (11)C6—N1A—H1AC109.5
O3—C2—C3110.81 (11)H1AA—N1A—H1AB109.5
O3—C2—H2108.8H1AA—N1A—H1AC109.5
O3—C2—C1110.71 (11)H1AB—N1A—H1AC109.5
C3—C2—H2108.8H8AA—C8A—H8AB109.5
C1—C2—C3108.97 (11)H8AA—C8A—H8AC109.5
C1—C2—H2108.8H8AB—C8A—H8AC109.5
O5—C4—O6124.93 (12)C7A—C8A—H8AA109.5
O5—C4—C3120.95 (12)C7A—C8A—H8AB109.5
O6—C4—C3114.12 (11)C7A—C8A—H8AC109.5
O2—C1—O1125.78 (13)C6—C7A—H7AA109.0
O2—C1—C2122.08 (13)C6—C7A—H7AB109.0
O1—C1—C2112.08 (12)C8A—C7A—C6113 (2)
N1—C6—C5110.10 (11)C8A—C7A—H7AA109.0
N1—C6—H6A108.2C8A—C7A—H7AB109.0
N1—C6—C7110.26 (12)H7AA—C7A—H7AB107.8
C5—C6—H6A108.2
O4—C3—C2—O364.28 (13)O7—C5—C6—N1A125.5 (7)
O4—C3—C2—C157.77 (14)O7—C5—C6—C7A112.4 (9)
O4—C3—C4—O59.52 (18)N1—C6—C7—C871.12 (17)
O4—C3—C4—O6171.22 (12)C5—C6—C7—C851.63 (18)
O8—C5—C6—N112.38 (17)C5—C6—C7A—C8A64 (2)
O8—C5—C6—C7110.46 (14)C3—C2—C1—O2100.37 (15)
O8—C5—C6—N1A54.6 (7)C3—C2—C1—O177.04 (14)
O8—C5—C6—C7A67.5 (9)C2—C3—C4—O5132.00 (14)
O3—C2—C1—O221.74 (18)C2—C3—C4—O648.74 (16)
O3—C2—C1—O1160.85 (12)C4—C3—C2—O356.41 (14)
O7—C5—C6—N1167.80 (13)C4—C3—C2—C1178.47 (11)
O7—C5—C6—C769.36 (17)N1A—C6—C7A—C8A176.9 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O3i0.821.942.7567 (13)177
O3—H3···O4ii0.822.242.8961 (14)138
O1—H1···O70.821.812.6228 (14)169
N1—H1A···O4iii0.892.302.8969 (16)125
N1—H1A···O5iii0.892.022.8785 (16)161
N1—H1B···O5iv0.892.152.9887 (19)156
N1—H1C···O2v0.892.082.8733 (16)148
N1A—H1AA···O5iii0.891.892.761 (16)165
N1A—H1AB···O2v0.892.142.970 (16)154
N1A—H1AC···O7v0.891.962.745 (17)146
C7A—H7AA···O6vi0.972.283.03 (2)133
O6—H6···O6vii1.231.232.4644 (19)180
O8—H8···O8viii1.221.222.4341 (19)180
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+2; (iii) x, y, z1; (iv) x+1, y, z1; (v) x+2, y+1, z+1; (vi) x+1, y, z+1; (vii) x, y, z+2; (viii) x+3, y+1, z+1.
Space groups, V3), Z, Z' and V/Z3) for (I), (II), (III), (IV) and (V) top
CompoundSpace groupVZ,Z'V/Z
(I)P21/c900.341225.1
(II)P21/c976.741244.2
(III)P1479.821239.9
(IV)P11098.542274.6
(V)P1533.221266.6
Comparison of the closest coordination sphere of an amino acid in (I), (II), (III), (IV) and (V) top
CompoundPolymorphRefcode (reference)Coordination number of the amino acidn(DL-Tartaric acid)/n(amino acid)
GlycineαGLYCIN28 (Drebushchak, Boldyreva, Seretkin et al., 2002)5n/a
βGLYCIN25 (Drebushchak, Boldyreva, Shutova et al., 2002)6n/a
γGLYCIN33 (Boldyreva et al., 2003)6n/a
Glycine–DL-tartaric acid, (I)(Mohandas et al., 2013)6 (2 gly + 4 tart acid)2
β-AlanineBALNIN01 (Papavinasam et al., 1986)5n/a
β-Alanine–DL-tartaric acid, (II)5 (2 β-ala + 3 tart acid)3/2
β-Alanine-DL–tartaric acid, (III)4 (1 β-ala + 3 tart acid)3
GABAMonoclinicGAMBUT10 (Tomita et al., 1973)5n/a
TetragonalGAMBUT04 (Dobson & Gerkin, 1996)6
GABA–DL-tartaric acid, (IV)5 (1 GABA + 4 tart acid)4
DL-AABATetragonalDLABUT12 (Voogd & Hulscher, 1980)5n/a
Monoclinic (P21/c)DLABUT13 (Görbitz et al., 2012)5n/a
Monoclinic (C2/c)HUWSOI02 (Görbitz et al., 2012)6n/a
DL-AABA–DL-tartaric acid, (V)5 (1 DL-2-AABA + 4 tart acid)4
Melting points (K) of (I), (II), (III), (IV) and (V) determined using a BÜCHI Melting Point M-560 instrument top
CompoundMelting (with decomposition)End of the process
Gly–DL-Tart, (I)434439
β-Ala–DL-Tart, (II)428433
β-Ala–DL-Tart, (III)413420
GABA–DL-Tart, (IV)408418
DL-AABA–DL-Tart, (V)429431
Melting points (K) of the individual components of the mixed crystals (literature data) top
ComponentMelting point
Data from Dawson et al. (1986)Data from Reaxys (Elsevier, 2017)
Glycine565 (decomp.)534 (decomp.)
β-Alanine480 (decomp.)475
GABA476 (decomp.)474
DL-AABA>573 (sublim.)556–558 (decomp.)
DL-Tartaric acid479486
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds