Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Luminescent CuI com­plexes are an important class of coordination com­pounds due to their relative abundance, low cost and ability to display excellent luminescence. The title Cu2I2P2S2-type binuclear com­plex, di-μ-iodido-bis­[(thio­urea-κS)(tri­phenyl­phosphine-κP)copper(I)], [Cu2I2(CH4N2S)2(C18H15P)2], con­ven­tionally abbreviated as Cu2I2TPP2TU2, where TPP and TU represent tri­phenyl­phosphine and thio­urea, respectively, is described. In this com­plex, each CuI atom adopts a CuI2PS four-coordination mode and pairs of atoms are connected to each other by two μ2-I ligands to form a centrosymmetric binuclear cluster. It was also found that the paper-based film of this com­plex exhibited obvious luminescence light-up sensing for pyridine and 4-methyl­pyri­dine.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229624006983/son3001sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229624006983/son3001Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229624006983/son3001sup3.pdf
Supplementary material

CCDC references: 2371465; 2374669

Computing details top

Di-µ-iodido-bis[(thiourea-κS)(triphenylphosphine-κP)copper(I)] top
Crystal data top
[Cu2I2(CH4N2S)2(C18H15P)2]Z = 1
Mr = 1057.66F(000) = 520
Triclinic, P1Dx = 1.747 Mg m3
a = 8.7405 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.3363 (9) ÅCell parameters from 9860 reflections
c = 14.3558 (13) Åθ = 2.4–27.1°
α = 89.212 (4)°µ = 2.81 mm1
β = 72.987 (4)°T = 170 K
γ = 64.826 (3)°Block, colourless
V = 1005.50 (16) Å30.49 × 0.29 × 0.23 mm
Data collection top
Bruker APEXII CCD
diffractometer
3709 reflections with I > 2σ(I)
φ and ω scansRint = 0.052
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 26.0°, θmin = 2.4°
Tmin = 0.423, Tmax = 0.746h = 910
17531 measured reflectionsk = 1111
3947 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.035P)2 + 4.5581P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3947 reflectionsΔρmax = 2.32 e Å3
230 parametersΔρmin = 1.76 e Å3
6 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I11.89594 (4)1.67987 (4)0.53274 (2)0.03301 (12)
Cu12.14519 (7)1.60348 (7)0.41096 (4)0.02722 (15)
S1A2.3792 (4)1.8210 (4)0.4361 (3)0.0269 (9)0.579 (15)
P12.12866 (14)1.62692 (12)0.25878 (7)0.0191 (2)
N2A2.7090 (10)1.9137 (9)0.4251 (6)0.0269 (9)0.579 (15)
H2AA2.8027331.8946650.4136260.032*0.579 (15)
H2AB2.7174882.0086690.4382450.032*0.579 (15)
N1A2.5694 (9)1.6568 (8)0.4005 (7)0.0269 (9)0.579 (15)
H1AA2.6714311.6799660.3542590.032*0.579 (15)
H1AB2.4807321.5955080.3792920.032*0.579 (15)
C132.3362 (6)1.6591 (5)0.1645 (3)0.0219 (8)
C19A2.5542 (11)1.7988 (9)0.4227 (8)0.0269 (9)0.579 (15)
C12.0928 (6)1.7995 (5)0.2332 (3)0.0212 (8)
C62.1924 (6)1.9419 (5)0.2644 (3)0.0268 (9)
H62.2774351.9465840.2945280.032*
C71.9588 (6)1.4609 (5)0.2233 (3)0.0214 (8)
C121.9797 (6)1.4258 (5)0.1265 (3)0.0250 (9)
H122.0854521.4912250.0752530.030*
C21.9682 (7)1.7954 (6)0.1899 (4)0.0337 (11)
H21.9001441.6996980.1678490.040*
C81.8019 (6)1.3644 (6)0.2966 (3)0.0319 (10)
H81.7866861.3864510.3626640.038*
C142.4228 (6)1.7786 (6)0.0837 (3)0.0284 (9)
H142.3715051.8468270.0747760.034*
C182.4141 (6)1.5605 (6)0.1755 (4)0.0296 (10)
H182.3574871.4795750.2301420.035*
C52.1671 (7)2.0770 (6)0.2514 (3)0.0322 (10)
H52.2376762.1743240.2709000.039*
C42.0408 (8)2.0701 (6)0.2104 (4)0.0388 (12)
H42.0210772.1614950.2041430.047*
C172.5740 (7)1.5791 (6)0.1074 (4)0.0354 (11)
H172.6250991.5098710.1147880.043*
C101.6897 (7)1.2014 (6)0.1795 (4)0.0383 (12)
H101.5981341.1129090.1644600.046*
C162.6582 (7)1.6994 (6)0.0288 (4)0.0368 (11)
H162.7685941.7140440.0171900.044*
C111.8462 (7)1.2956 (6)0.1054 (4)0.0325 (10)
H111.8618171.2706550.0398650.039*
C31.9424 (8)1.9309 (7)0.1785 (4)0.0419 (13)
H31.8571921.9272530.1487620.050*
C152.5825 (7)1.7973 (6)0.0171 (4)0.0363 (11)
H152.6405401.8787290.0373480.044*
C91.6669 (7)1.2361 (6)0.2747 (4)0.0414 (13)
H91.5591641.1723960.3252390.050*
S1B2.4207 (13)1.7895 (11)0.4153 (6)0.067 (2)0.421 (15)
C19B2.589 (2)1.7827 (19)0.4257 (15)0.067 (2)0.421 (15)
N2B2.723 (2)1.906 (2)0.4477 (12)0.067 (2)0.421 (15)
H2BA2.7889081.8719940.4703060.080*0.421 (15)
H2BB2.6815901.9588570.4935060.080*0.421 (15)
N1B2.583 (2)1.6260 (17)0.4327 (11)0.067 (2)0.421 (15)
H1BA2.5485411.5743580.3828950.080*0.421 (15)
H1BB2.6938171.6367000.4278600.080*0.421 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0382 (2)0.02971 (18)0.02997 (18)0.01769 (14)0.00495 (13)0.00112 (12)
Cu10.0290 (3)0.0319 (3)0.0219 (3)0.0123 (2)0.0112 (2)0.0015 (2)
S1A0.0208 (12)0.0247 (12)0.0410 (15)0.0115 (8)0.0157 (9)0.0070 (8)
P10.0200 (5)0.0186 (5)0.0181 (5)0.0076 (4)0.0063 (4)0.0001 (4)
N2A0.0208 (12)0.0247 (12)0.0410 (15)0.0115 (8)0.0157 (9)0.0070 (8)
N1A0.0208 (12)0.0247 (12)0.0410 (15)0.0115 (8)0.0157 (9)0.0070 (8)
C130.022 (2)0.0209 (19)0.0211 (19)0.0070 (16)0.0076 (16)0.0035 (16)
C19A0.0208 (12)0.0247 (12)0.0410 (15)0.0115 (8)0.0157 (9)0.0070 (8)
C10.024 (2)0.0196 (19)0.0196 (19)0.0105 (17)0.0043 (16)0.0008 (15)
C60.030 (2)0.024 (2)0.025 (2)0.0106 (18)0.0080 (18)0.0015 (17)
C70.022 (2)0.0198 (19)0.023 (2)0.0092 (17)0.0088 (17)0.0011 (16)
C120.028 (2)0.023 (2)0.025 (2)0.0110 (18)0.0089 (18)0.0004 (16)
C20.038 (3)0.029 (2)0.044 (3)0.018 (2)0.023 (2)0.008 (2)
C80.028 (2)0.034 (2)0.025 (2)0.006 (2)0.0074 (19)0.0004 (19)
C140.031 (2)0.029 (2)0.026 (2)0.0142 (19)0.0073 (19)0.0005 (18)
C180.029 (2)0.028 (2)0.033 (2)0.0129 (19)0.0090 (19)0.0016 (19)
C50.042 (3)0.022 (2)0.028 (2)0.013 (2)0.005 (2)0.0025 (17)
C40.050 (3)0.032 (3)0.040 (3)0.029 (2)0.005 (2)0.000 (2)
C170.033 (3)0.039 (3)0.045 (3)0.022 (2)0.016 (2)0.013 (2)
C100.034 (3)0.029 (2)0.047 (3)0.003 (2)0.023 (2)0.004 (2)
C160.027 (2)0.043 (3)0.035 (3)0.016 (2)0.003 (2)0.009 (2)
C110.038 (3)0.033 (2)0.033 (2)0.016 (2)0.021 (2)0.009 (2)
C30.048 (3)0.043 (3)0.056 (3)0.031 (3)0.029 (3)0.009 (3)
C150.033 (3)0.040 (3)0.026 (2)0.014 (2)0.001 (2)0.004 (2)
C90.029 (3)0.038 (3)0.039 (3)0.002 (2)0.011 (2)0.004 (2)
S1B0.061 (4)0.065 (3)0.049 (3)0.004 (3)0.032 (2)0.010 (2)
C19B0.061 (4)0.065 (3)0.049 (3)0.004 (3)0.032 (2)0.010 (2)
N2B0.061 (4)0.065 (3)0.049 (3)0.004 (3)0.032 (2)0.010 (2)
N1B0.061 (4)0.065 (3)0.049 (3)0.004 (3)0.032 (2)0.010 (2)
Geometric parameters (Å, º) top
I1—Cu1i2.6192 (7)C8—H80.9500
I1—Cu12.7147 (7)C8—C91.390 (7)
Cu1—Cu1i2.9794 (11)C14—H140.9500
Cu1—S1A2.306 (3)C14—C151.382 (7)
Cu1—P12.2509 (12)C18—H180.9500
Cu1—S1B2.313 (6)C18—C171.392 (7)
S1A—C19A1.586 (7)C5—H50.9500
P1—C131.823 (4)C5—C41.374 (8)
P1—C11.828 (4)C4—H40.9500
P1—C71.824 (4)C4—C31.379 (8)
N2A—H2AA0.8800C17—H170.9500
N2A—H2AB0.8800C17—C161.387 (8)
N2A—C19A1.332 (9)C10—H100.9500
N1A—H1AA0.8814C10—C111.388 (7)
N1A—H1AB0.8815C10—C91.377 (8)
N1A—C19A1.411 (9)C16—H160.9500
C13—C141.402 (6)C16—C151.373 (8)
C13—C181.391 (6)C11—H110.9500
C1—C61.398 (6)C3—H30.9500
C1—C21.391 (7)C15—H150.9500
C6—H60.9500C9—H90.9500
C6—C51.393 (7)S1B—C19B1.545 (12)
C7—C121.401 (6)C19B—N2B1.365 (14)
C7—C81.390 (6)C19B—N1B1.448 (15)
C12—H120.9500N2B—H2BA0.8996
C12—C111.386 (7)N2B—H2BB0.8988
C2—H20.9500N1B—H1BA0.9101
C2—C31.395 (7)N1B—H1BB0.9101
Cu1i—I1—Cu167.89 (2)C3—C2—H2119.7
I1i—Cu1—I1112.11 (2)C7—C8—H8119.6
I1i—Cu1—Cu1i57.58 (2)C7—C8—C9120.9 (4)
I1—Cu1—Cu1i54.53 (2)C9—C8—H8119.6
S1A—Cu1—I1i117.28 (8)C13—C14—H14119.9
S1A—Cu1—I193.22 (9)C15—C14—C13120.2 (5)
S1A—Cu1—Cu1i117.01 (11)C15—C14—H14119.9
P1—Cu1—I1i113.05 (3)C13—C18—H18119.6
P1—Cu1—I1106.81 (4)C13—C18—C17120.8 (4)
P1—Cu1—Cu1i127.42 (4)C17—C18—H18119.6
P1—Cu1—S1A112.28 (11)C6—C5—H5119.8
P1—Cu1—S1B109.21 (15)C4—C5—C6120.3 (5)
S1B—Cu1—I1107.3 (4)C4—C5—H5119.8
S1B—Cu1—Cu1i123.05 (16)C5—C4—H4119.9
C19A—S1A—Cu1115.1 (3)C5—C4—C3120.2 (5)
C13—P1—Cu1111.75 (15)C3—C4—H4119.9
C13—P1—C1104.43 (19)C18—C17—H17120.3
C13—P1—C7103.78 (19)C16—C17—C18119.5 (5)
C1—P1—Cu1112.80 (14)C16—C17—H17120.3
C7—P1—Cu1118.44 (14)C11—C10—H10120.0
C7—P1—C1104.3 (2)C9—C10—H10120.0
H2AA—N2A—H2AB120.0C9—C10—C11120.1 (4)
C19A—N2A—H2AA120.0C17—C16—H16119.9
C19A—N2A—H2AB120.0C15—C16—C17120.2 (5)
H1AA—N1A—H1AB109.3C15—C16—H16119.9
C19A—N1A—H1AA109.5C12—C11—C10120.3 (4)
C19A—N1A—H1AB108.8C12—C11—H11119.8
C14—C13—P1124.0 (3)C10—C11—H11119.8
C18—C13—P1117.3 (3)C2—C3—H3120.0
C18—C13—C14118.6 (4)C4—C3—C2120.0 (5)
N2A—C19A—S1A124.8 (6)C4—C3—H3120.0
N2A—C19A—N1A110.9 (7)C14—C15—H15119.7
N1A—C19A—S1A124.2 (6)C16—C15—C14120.7 (5)
C6—C1—P1116.7 (3)C16—C15—H15119.7
C2—C1—P1124.5 (3)C8—C9—H9120.1
C2—C1—C6118.8 (4)C10—C9—C8119.8 (5)
C1—C6—H6119.9C10—C9—H9120.1
C5—C6—C1120.2 (4)C19B—S1B—Cu1135.4 (7)
C5—C6—H6119.9N2B—C19B—S1B124.5 (13)
C12—C7—P1123.3 (3)N2B—C19B—N1B117.8 (13)
C8—C7—P1117.9 (3)N1B—C19B—S1B116.4 (10)
C8—C7—C12118.8 (4)C19B—N2B—H2BA111.4
C7—C12—H12120.0C19B—N2B—H2BB112.1
C11—C12—C7120.0 (4)H2BA—N2B—H2BB107.6
C11—C12—H12120.0C19B—N1B—H1BA109.3
C1—C2—H2119.7C19B—N1B—H1BB109.1
C1—C2—C3120.5 (5)H1BA—N1B—H1BB109.5
Cu1—S1A—C19A—N2A173.7 (8)C1—P1—C13—C18169.1 (3)
Cu1—S1A—C19A—N1A2.1 (11)C1—P1—C7—C1283.3 (4)
Cu1—P1—C13—C14131.6 (3)C1—P1—C7—C897.2 (4)
Cu1—P1—C13—C1846.8 (4)C1—C6—C5—C41.9 (7)
Cu1—P1—C1—C642.9 (4)C1—C2—C3—C40.1 (9)
Cu1—P1—C1—C2133.7 (4)C6—C1—C2—C30.4 (7)
Cu1—P1—C7—C12150.3 (3)C6—C5—C4—C32.4 (8)
Cu1—P1—C7—C829.2 (4)C7—P1—C13—C1499.6 (4)
Cu1—S1B—C19B—N2B165.0 (13)C7—P1—C13—C1881.9 (4)
Cu1—S1B—C19B—N1B2 (2)C7—P1—C1—C6172.8 (3)
P1—C13—C14—C15178.2 (4)C7—P1—C1—C23.8 (4)
P1—C13—C18—C17179.0 (4)C7—C12—C11—C101.4 (7)
P1—C1—C6—C5177.3 (3)C7—C8—C9—C101.4 (9)
P1—C1—C2—C3176.1 (4)C12—C7—C8—C90.6 (7)
P1—C7—C12—C11178.7 (4)C2—C1—C6—C50.4 (7)
P1—C7—C8—C9179.9 (4)C8—C7—C12—C110.8 (7)
C13—P1—C1—C678.6 (4)C14—C13—C18—C170.5 (7)
C13—P1—C1—C2104.8 (4)C18—C13—C14—C150.2 (7)
C13—P1—C7—C1225.8 (4)C18—C17—C16—C151.3 (8)
C13—P1—C7—C8153.7 (4)C5—C4—C3—C21.5 (9)
C13—C14—C15—C160.2 (8)C17—C16—C15—C140.6 (8)
C13—C18—C17—C161.3 (7)C11—C10—C9—C80.8 (9)
C1—P1—C13—C149.4 (4)C9—C10—C11—C120.6 (8)
Symmetry code: (i) x+4, y3, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···I1ii0.862.933.7738 (4)166
N2—H2A···S1Aiii0.862.763.3753 (3)129
N2—H2B···I1iv0.862.913.7094 (4)153
Symmetry codes: (ii) x, y+1, z+1; (iii) x+1, y, z+1; (iv) x+1, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds