Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Crystals of the title complex, [Cu(CN3O2)2(C3H4N2)4], the structure of which has been determined by single-crystal X-ray diffraction at 304 K, appear to be pseudo-merohedrally twinned. Transformation to a monoclinic C-centred cell was necessary in order to derive the twin law. Twin refinement in a triclinic unit cell significantly reduced the R value. The asymmetric unit of the triclinic cell consists of one mol­ecule in a general position and two half entities with the Cu atom on a centre of inversion. The coordination of the Cu atom is quasi-octa­hedral, with four imidazole N-atom donors in the equatorial plane and two cyano N atoms from the N-nitro­cyanamidate anion in axial positions. Owing to symmetry in the centrosymmetric mol­ecules, the trans imidazole ligands are parallel, while those in the non-centrosymmetric mol­ecule make angles of 22.8 (2) and 77.9 (2)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105004956/sq1193sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105004956/sq1193Isup2.hkl
Contains datablock I

CCDC reference: 269012

Comment top

Non-linear pseudohalides, such as dicyanamide, N(CN)2, tricyanomethananide, C(CN)3, nitrosodicyananomethanide, ONC(CN)2 and cyanamidonitrate (can), O2NN(CN), exhibit a rich variety of bonding modes for coordination in 3d complexes (Jäger et al., 1997; Hvastijová et al., 1998; Kohout et al., 2000; Potočňák et al., 2001, 2002; Kožíšek et al., 2002; Díaz et al., 2003). A comparison of bond distances for compounds of the type [M(NL)4(NO2NCN)2] [where M = Co, Ni and Cu, and NL is a neutral ligand, such as iz (imidazole), pz (pyrazole) or meiz (1- or 5-methylimidazole)] found in the Cambridge Structural Database (CSD; Version 1.6, 2003 release; Allen, 2002) is shown in Table 3. For Ni and Cu compounds, neutral ligands were found in the equatorial plane and anionic (can) ligands in axial positions. In all previously solved crystal structures, except for CSD refcode OFILEU, the molecules are centrosymmetric.

Cell reduction for the crystal structure of the title compound, (I), revealed that the cell could be transformed to a monoclinic C-centred one, but Rint and R(σ) were significantly better for the triclinic case (0.0301 and 0.0375, respectively) than for a monoclinic lattice (0.0570 and 0.0483). The structure could be solved in the triclinic space group P-1 only, with many difficulties. During refinement, large positional shifts led to unreasonable molecular geometry, and additional peaks appeared in the difference map. This behaviour is typical of merohedral and pseudo-merohedral twins, which are formed when the metric symmetry of the unit cell is higher than that of its contents. Under these conditions, a matrix product (monoclinic to triclinic) × (inversion) × (triclinic to monoclinic) (0 0 1 / 0.5 − 0.5 0 / 0.5 0.5 0) × (−1 0 0 / 0 − 1 0 / 0 0 − 1) × (0 − 1 −1 / 0 − 1 1 / −1 0 0) (matrices written by rows) can be expressed as TWIN 1 0 0 0 0 1 0 1 0 in the SHELXL97 code (Sheldrick, 1997).

An interesting feature of the title compound is the presence of one non-centrosymmetric and two centrosymmetric molecules in the crystal structure (Fig. 1). Although the differences in Cu—N(NL) bond distances are small, it might be supposed that the orientation of the imidazole ligands (and so the interaction of π-electron density with CuII d orbitals) could increase the asymmetry on the CuII center, the most pronounced distortion being in the axial direction [2.509 (3) and 2.570 (3) Å]. It can be seen that all Cu—Niz distances that are perpendicular to the cyanamidonitrate/CuII/imidazole `plane' are significantly shorter that the Cu—Niz distances in the `plane' [Cu1—N7 = 1.998 (3) Å, Cu1—N17 = 2.002 (3) Å, Cu34—N35 = 2.015 (3) Å and Cu51—N57 = 2.005 (3) Å]. The greatest deviations from a regular geometry are in the angles that contain atoms that are more tightly bonded (N7, N17, N35 and N57; see Table 2).

In the CSD for chromofore [CuN6], 45 crystal structures were found with monodentate nitrogen ligands and with no restrictions for centrosymmetry. However, only five of these stuctures have a non-centrosymmetric molecule [refcodes LAXTEJ (Otieno et al.,1993), LITVEP (Lipkowski et al.,1999), LOYROG (Dalai et al., 2002), MOGMUQ (Fedin et al., 2002) and SOFCEV (Kožíšek et al., 1991)]. No crystal structure containing both centrosymmetric and non-centrosymmetric moieties was found. The greatest difference between the axial distances is in SOFCEV (2.372 and 2.500 Å).

The crystal structure of (I) (see) is stabilized by a three-dimensional network of hydrogen bonds and van der Vaals interactions (Fig. 2 and Table 2). The closest intermolecular contacts [N9—O49= 2.819 (4) Å, N59—O33 = 2.832 (4) Å and N19—O67 = 2.848 (4) Å] do not indicate significant ππ interaction.

Experimental top

A solution of Cu(NO3)2 (2.0 mmol) in water (3 ml) was mixed with a solution of KNO2NCN (4.0 mmol) in water (10 ml) and with a solution of imidazole (4.0 mmol) in methanol (10 ml). This system was left to stand for a few days and blue crystals of [Cu(NCNNO2)2(iz)4] were isolated. The mid-IR vibrational spectrum was compared with those of NaNO2NCN and free imidazole. The comparison revealed that many vibration bands of the cyanoamidonitrate ligand (e.g. 2196 and 2189 cm−1 for NCN asymmetric stretching vibration, 1171 and 1162 cm−1 for NCN symmetric vibration, 1298 and 1284 cm−1 for NO2 symmetric stretching vibration, 968 and 962 cm−1 for N—N stretching vibration, 551 and 540 cm−1 for C–N torsion, and 511 and 506 cm−1 for NCN bending vibration) are split by only a few wavenumbers. Similar small splittings can also be seen on some imidazole ligand bands. These features may indicate the presence of more than one crystallographically independent molecule in the lattice.

Refinement top

H atoms were positioned geometrically and treated as riding atoms (C—H = 0.93 Å and N—H = 0.86 Å), with Uiso(H) set to 1.2Ueq of the parent atom.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2001); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: program (reference)?.

Figures top
[Figure 1]
[Figure 2]
Fig. 1.

The atom-numbering scheme of (I). Displacement ellipsoids are shown at the 50% probability level.

Fig. 2.

Packing diagram of (I), viewed along the a axis. Hydrogen-bond interactions are indicated by dashed lines.
bis(N-nitrocyanamidato-κN)tetrakis(1H-imidazole-κN3)copper(II) top
Crystal data top
[Cu(CN3O2)2(C3H4N2)4]Z = 4
Mr = 507.95F(000) = 1036
Triclinic, P1Dx = 1.551 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.841 (2) ÅCell parameters from 1076 reflections
b = 15.249 (3) Åθ = 2.4–19.0°
c = 15.234 (3) ŵ = 1.06 mm1
α = 104.17 (2)°T = 304 K
β = 96.65 (2)°Block, blue
γ = 96.86 (2)°0.36 × 0.34 × 0.11 mm
V = 2175.6 (8) Å3
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
8693 independent reflections
Radiation source: fine-focus sealed tube7962 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 26.4°, θmin = 4.2°
Absorption correction: analytical
face-indexed (CrysAlis RED; Oxford Diffraction, 2003)
h = 1112
Tmin = 0.704, Tmax = 0.893k = 1819
14665 measured reflectionsl = 1917
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.036P)2 + 2.2497P]
where P = (Fo2 + 2Fc2)/3
8693 reflections(Δ/σ)max = 0.001
599 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Cu(CN3O2)2(C3H4N2)4]γ = 96.86 (2)°
Mr = 507.95V = 2175.6 (8) Å3
Triclinic, P1Z = 4
a = 9.841 (2) ÅMo Kα radiation
b = 15.249 (3) ŵ = 1.06 mm1
c = 15.234 (3) ÅT = 304 K
α = 104.17 (2)°0.36 × 0.34 × 0.11 mm
β = 96.65 (2)°
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
8693 independent reflections
Absorption correction: analytical
face-indexed (CrysAlis RED; Oxford Diffraction, 2003)
7962 reflections with I > 2σ(I)
Tmin = 0.704, Tmax = 0.893Rint = 0.030
14665 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.05Δρmax = 0.65 e Å3
8693 reflectionsΔρmin = 0.42 e Å3
599 parameters
Special details top

Experimental. Mid-IR spectra in the region 4000–400 cm−1 were measured on a Nicolet Nexus 470 F T–IR spectrometer with the resolution 2 cm−1 in KBr pellet.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C30.8775 (3)0.3811 (2)0.3275 (2)0.0210 (7)
H3A0.80060.33540.31030.025*
C51.0048 (4)0.5156 (2)0.3828 (3)0.0246 (8)
H5A1.03350.57770.40990.029*
C61.0855 (4)0.4528 (2)0.3495 (3)0.0238 (8)
H6A1.18050.46500.35000.029*
C81.1260 (4)0.2465 (3)0.0723 (3)0.0294 (8)
H8A1.19970.21450.07850.035*
C100.9717 (5)0.3153 (4)0.0122 (3)0.0454 (12)
H10A0.91990.33930.02870.054*
C110.9532 (5)0.3174 (3)0.0990 (3)0.0376 (10)
H11A0.88500.34400.12870.045*
C131.2565 (4)0.1106 (2)0.2058 (2)0.0223 (7)
H13A1.33190.14940.24390.027*
C151.1345 (4)0.0055 (3)0.1028 (3)0.0255 (8)
H15A1.10890.06040.05760.031*
C161.0494 (4)0.0525 (3)0.1379 (2)0.0244 (8)
H16A0.95400.04440.12090.029*
C181.1129 (4)0.2746 (2)0.4620 (2)0.0206 (7)
H18A1.15520.33490.47270.025*
C201.0230 (4)0.1459 (3)0.4852 (3)0.0258 (8)
H20A0.99150.10160.51370.031*
C211.0159 (4)0.1362 (2)0.3944 (2)0.0223 (7)
H21A0.97930.08320.34870.027*
C231.4208 (3)0.3737 (2)0.3280 (2)0.0187 (7)
C290.7161 (4)0.1201 (2)0.1931 (2)0.0222 (7)
C360.4270 (4)0.1831 (2)0.4928 (3)0.0259 (8)
H36A0.33680.16700.50230.031*
C380.6120 (5)0.2638 (3)0.4755 (4)0.0424 (11)
H38A0.67520.31210.47040.051*
C390.6343 (5)0.1771 (3)0.4695 (4)0.0424 (11)
H39A0.71690.15520.45950.051*
C410.2384 (4)0.0520 (3)0.3637 (2)0.0240 (7)
H41A0.18890.01860.40510.029*
C430.2860 (4)0.1438 (3)0.2408 (3)0.0289 (8)
H43A0.27750.18470.18330.035*
C440.4026 (4)0.1112 (3)0.3019 (3)0.0274 (8)
H44A0.49000.12550.29270.033*
C460.7779 (3)0.0610 (2)0.3679 (2)0.0204 (7)
C530.3094 (4)0.5626 (3)0.1325 (2)0.0238 (8)
H53A0.23260.53350.08910.029*
C550.4363 (4)0.6447 (3)0.2610 (3)0.0251 (8)
H55A0.46380.68150.32040.030*
C560.5190 (4)0.6110 (3)0.2008 (2)0.0242 (8)
H56A0.61520.62080.21190.029*
C580.4760 (4)0.2980 (2)0.0169 (3)0.0267 (8)
H58A0.44830.28270.07990.032*
C600.5348 (4)0.2845 (3)0.1209 (3)0.0305 (8)
H60A0.55460.25990.17030.037*
C610.5402 (4)0.3736 (3)0.1237 (3)0.0295 (9)
H61A0.56560.42200.17610.035*
C630.8533 (4)0.5748 (3)0.1253 (2)0.0225 (7)
N21.0043 (3)0.36784 (19)0.31482 (19)0.0179 (6)
N40.8741 (3)0.4698 (2)0.3686 (2)0.0222 (6)
H4A0.80180.49300.38320.027*
N71.0511 (3)0.2742 (2)0.1369 (2)0.0230 (6)
N91.0822 (4)0.2704 (2)0.0031 (2)0.0322 (8)
H9A1.11750.25940.05310.039*
N121.1276 (3)0.1264 (2)0.20360 (19)0.0187 (6)
N141.2650 (3)0.0315 (2)0.1461 (2)0.0235 (6)
H14A1.33920.00830.13690.028*
N171.0716 (3)0.21757 (19)0.38050 (19)0.0174 (6)
N191.0854 (3)0.2333 (2)0.5272 (2)0.0232 (6)
H19A1.10380.25750.58530.028*
N221.3201 (3)0.3220 (2)0.3043 (2)0.0249 (6)
N241.5450 (3)0.42621 (19)0.3500 (2)0.0192 (6)
N251.5360 (3)0.51067 (19)0.40017 (19)0.0172 (6)
N280.8172 (3)0.1717 (2)0.2232 (2)0.0266 (7)
N300.5914 (3)0.0705 (2)0.1641 (2)0.0289 (7)
N310.5969 (3)0.0089 (2)0.1032 (2)0.0237 (7)
N350.5168 (3)0.12661 (19)0.4805 (2)0.0202 (6)
N370.4804 (3)0.2666 (2)0.4901 (2)0.0250 (7)
H37A0.43850.31360.49650.030*
N400.3730 (3)0.05358 (19)0.3796 (2)0.0210 (6)
N420.1829 (3)0.1045 (2)0.2806 (2)0.0239 (6)
H42A0.09750.11220.25640.029*
N450.7091 (3)0.0315 (2)0.4198 (2)0.0250 (6)
N470.8735 (3)0.0889 (2)0.31643 (19)0.0229 (6)
N480.8156 (3)0.1486 (2)0.2352 (2)0.0205 (6)
N520.4389 (3)0.5595 (2)0.11962 (19)0.0196 (6)
N540.3036 (3)0.6138 (2)0.2173 (2)0.0264 (7)
H54A0.22950.62500.23990.032*
N570.5018 (3)0.38217 (19)0.03616 (19)0.0193 (6)
N590.4948 (3)0.2372 (2)0.0318 (2)0.0289 (7)
H59A0.48360.17870.01050.035*
N620.7522 (3)0.5435 (2)0.0755 (2)0.0289 (7)
N640.9789 (3)0.6081 (2)0.1735 (2)0.0243 (7)
N650.9724 (3)0.6576 (2)0.25814 (19)0.0198 (6)
O261.4257 (2)0.53353 (18)0.42230 (18)0.0238 (5)
O271.6474 (2)0.56594 (17)0.42459 (18)0.0239 (5)
O320.7060 (3)0.03177 (19)0.0787 (2)0.0322 (7)
O330.4835 (3)0.05920 (18)0.0716 (2)0.0292 (6)
O490.9007 (3)0.17810 (19)0.18511 (17)0.0267 (6)
O500.6903 (3)0.1705 (2)0.21388 (19)0.0338 (6)
O661.0844 (3)0.69203 (19)0.30857 (17)0.0251 (6)
O670.8585 (3)0.66743 (19)0.28479 (17)0.0241 (6)
Cu11.06526 (4)0.24702 (3)0.25921 (3)0.01848 (10)
Cu340.50000.00000.50000.01926 (13)
Cu510.50000.50000.00000.01804 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C30.0163 (16)0.0213 (17)0.0224 (18)0.0008 (13)0.0047 (13)0.0010 (14)
C50.0248 (18)0.0166 (17)0.032 (2)0.0013 (14)0.0039 (15)0.0058 (15)
C60.0188 (17)0.0210 (18)0.032 (2)0.0030 (14)0.0089 (15)0.0061 (15)
C80.032 (2)0.037 (2)0.0217 (19)0.0085 (17)0.0103 (16)0.0080 (16)
C100.048 (3)0.068 (3)0.030 (2)0.020 (2)0.005 (2)0.026 (2)
C110.040 (2)0.054 (3)0.030 (2)0.023 (2)0.0139 (18)0.021 (2)
C130.0225 (17)0.0171 (17)0.0265 (18)0.0022 (14)0.0053 (14)0.0038 (14)
C150.0240 (18)0.0214 (18)0.0272 (19)0.0011 (14)0.0036 (15)0.0005 (15)
C160.0194 (17)0.0258 (19)0.0239 (18)0.0021 (14)0.0016 (14)0.0000 (15)
C180.0230 (17)0.0202 (17)0.0155 (16)0.0042 (14)0.0008 (13)0.0004 (13)
C200.0223 (18)0.029 (2)0.0286 (19)0.0023 (15)0.0042 (15)0.0133 (16)
C210.0230 (17)0.0196 (17)0.0237 (18)0.0008 (14)0.0015 (14)0.0076 (14)
C230.0208 (17)0.0171 (16)0.0210 (17)0.0078 (14)0.0076 (14)0.0059 (13)
C290.0225 (18)0.0194 (17)0.0238 (18)0.0081 (14)0.0016 (14)0.0025 (14)
C360.0253 (18)0.0203 (18)0.035 (2)0.0061 (14)0.0044 (16)0.0107 (16)
C380.037 (2)0.025 (2)0.073 (3)0.0057 (18)0.019 (2)0.022 (2)
C390.035 (2)0.028 (2)0.075 (3)0.0105 (18)0.029 (2)0.022 (2)
C410.0209 (17)0.0295 (19)0.0227 (18)0.0061 (14)0.0060 (14)0.0064 (15)
C430.0282 (19)0.030 (2)0.0250 (19)0.0072 (16)0.0042 (16)0.0009 (16)
C440.0226 (18)0.030 (2)0.0253 (19)0.0067 (15)0.0013 (15)0.0005 (15)
C460.0182 (16)0.0196 (17)0.0228 (18)0.0016 (13)0.0024 (14)0.0054 (14)
C530.0216 (18)0.0291 (19)0.0206 (18)0.0068 (15)0.0043 (14)0.0046 (15)
C550.0294 (19)0.0249 (19)0.0210 (18)0.0085 (15)0.0073 (15)0.0022 (14)
C560.0202 (17)0.0286 (19)0.0225 (18)0.0023 (15)0.0030 (14)0.0048 (15)
C580.034 (2)0.0199 (18)0.0234 (18)0.0026 (15)0.0044 (16)0.0010 (15)
C600.043 (2)0.0243 (19)0.027 (2)0.0120 (17)0.0050 (17)0.0080 (15)
C610.050 (3)0.0209 (19)0.0166 (18)0.0077 (17)0.0050 (17)0.0021 (14)
C630.0250 (18)0.0264 (19)0.0177 (17)0.0077 (15)0.0106 (15)0.0037 (14)
N20.0179 (13)0.0182 (14)0.0174 (14)0.0039 (11)0.0044 (11)0.0032 (11)
N40.0180 (14)0.0207 (15)0.0282 (16)0.0079 (12)0.0049 (12)0.0036 (13)
N70.0250 (16)0.0256 (16)0.0197 (15)0.0040 (12)0.0074 (12)0.0067 (12)
N90.045 (2)0.0373 (19)0.0146 (15)0.0048 (16)0.0104 (14)0.0056 (14)
N120.0162 (13)0.0216 (15)0.0171 (14)0.0032 (11)0.0016 (11)0.0034 (12)
N140.0207 (15)0.0214 (15)0.0287 (17)0.0067 (12)0.0085 (13)0.0034 (13)
N170.0139 (13)0.0180 (14)0.0199 (14)0.0016 (11)0.0026 (11)0.0050 (11)
N190.0267 (16)0.0325 (17)0.0121 (14)0.0102 (13)0.0033 (12)0.0062 (12)
N220.0240 (14)0.0206 (15)0.0271 (16)0.0013 (12)0.0052 (12)0.0010 (12)
N240.0181 (14)0.0151 (14)0.0215 (15)0.0026 (11)0.0024 (11)0.0001 (11)
N250.0140 (13)0.0173 (14)0.0196 (14)0.0027 (11)0.0010 (11)0.0041 (11)
N280.0225 (15)0.0264 (17)0.0258 (16)0.0028 (13)0.0013 (13)0.0002 (13)
N300.0198 (15)0.0223 (16)0.0384 (19)0.0053 (13)0.0072 (14)0.0057 (14)
N310.0199 (15)0.0187 (15)0.0305 (17)0.0029 (12)0.0047 (13)0.0026 (13)
N350.0240 (15)0.0140 (14)0.0223 (15)0.0045 (12)0.0023 (12)0.0040 (11)
N370.0362 (18)0.0147 (15)0.0246 (16)0.0075 (13)0.0012 (13)0.0061 (12)
N400.0213 (14)0.0172 (14)0.0233 (15)0.0027 (11)0.0027 (12)0.0035 (12)
N420.0165 (13)0.0306 (17)0.0241 (16)0.0019 (12)0.0000 (12)0.0083 (13)
N450.0226 (15)0.0244 (16)0.0265 (16)0.0030 (13)0.0049 (13)0.0037 (13)
N470.0178 (14)0.0273 (16)0.0185 (15)0.0025 (12)0.0023 (12)0.0028 (12)
N480.0167 (13)0.0226 (15)0.0227 (15)0.0036 (11)0.0040 (11)0.0062 (12)
N520.0214 (14)0.0213 (15)0.0161 (14)0.0052 (12)0.0039 (12)0.0035 (12)
N540.0219 (15)0.0379 (19)0.0208 (16)0.0113 (14)0.0104 (13)0.0036 (14)
N570.0239 (15)0.0190 (15)0.0155 (14)0.0045 (12)0.0038 (11)0.0048 (11)
N590.0337 (18)0.0168 (15)0.0371 (19)0.0069 (13)0.0096 (15)0.0055 (14)
N620.0255 (17)0.0351 (19)0.0203 (16)0.0025 (14)0.0014 (14)0.0017 (14)
N640.0193 (15)0.0327 (17)0.0157 (15)0.0044 (13)0.0012 (12)0.0032 (13)
N650.0187 (14)0.0241 (15)0.0175 (15)0.0031 (12)0.0037 (12)0.0068 (12)
O260.0170 (12)0.0225 (13)0.0320 (15)0.0050 (10)0.0069 (10)0.0047 (11)
O270.0159 (12)0.0168 (12)0.0340 (14)0.0022 (9)0.0019 (10)0.0002 (10)
O320.0197 (13)0.0303 (15)0.0412 (16)0.0065 (11)0.0096 (12)0.0043 (13)
O330.0193 (14)0.0186 (14)0.0401 (17)0.0022 (11)0.0006 (12)0.0060 (11)
O490.0243 (13)0.0354 (15)0.0204 (13)0.0088 (11)0.0107 (11)0.0023 (11)
O500.0198 (13)0.0439 (17)0.0280 (14)0.0009 (12)0.0001 (11)0.0051 (12)
O660.0172 (12)0.0328 (15)0.0215 (13)0.0015 (11)0.0024 (10)0.0011 (11)
O670.0177 (12)0.0353 (15)0.0202 (13)0.0071 (11)0.0079 (10)0.0050 (11)
Cu10.02147 (19)0.0191 (2)0.0157 (2)0.00730 (16)0.00568 (15)0.00282 (15)
Cu340.0194 (3)0.0125 (3)0.0244 (3)0.0035 (2)0.0006 (3)0.0035 (2)
Cu510.0222 (3)0.0165 (3)0.0152 (3)0.0056 (2)0.0049 (2)0.0015 (2)
Geometric parameters (Å, º) top
C3—N21.315 (4)C55—C561.346 (5)
C3—N41.351 (4)C55—N541.367 (5)
C3—H3A0.9300C55—H55A0.9300
C5—N41.356 (5)C56—N521.385 (5)
C5—C61.357 (5)C56—H56A0.9300
C5—H5A0.9300C58—N571.316 (4)
C6—N21.384 (4)C58—N591.337 (5)
C6—H6A0.9300C58—H58A0.9300
C8—N71.315 (5)C60—C611.344 (5)
C8—N91.328 (5)C60—N591.359 (5)
C8—H8A0.9300C60—H60A0.9300
C10—C111.348 (6)C61—N571.385 (4)
C10—N91.366 (6)C61—H61A0.9300
C10—H10A0.9300C63—N621.152 (5)
C11—N71.381 (5)C63—N621.152 (5)
C11—H11A0.9300C63—N641.335 (5)
C13—N121.317 (4)N2—Cu12.022 (3)
C13—N141.340 (5)N4—H4A0.8600
C13—H13A0.9300N7—Cu11.998 (3)
C15—C161.349 (5)N9—H9A0.8600
C15—N141.360 (5)N12—Cu12.026 (3)
C15—H15A0.9300N14—H14A0.8600
C16—N121.388 (5)N17—Cu12.002 (3)
C16—H16A0.9300N19—H19A0.8600
C18—N171.317 (4)N24—N251.346 (4)
C18—N191.335 (5)N25—O261.237 (3)
C18—H18A0.9300N25—O271.258 (4)
C20—C211.348 (5)N30—N311.344 (4)
C20—N191.364 (5)N31—O321.238 (4)
C20—H20A0.9300N31—O331.247 (4)
C21—N171.370 (4)N35—Cu342.015 (3)
C21—H21A0.9300N37—H37A0.8600
C23—N221.151 (4)N40—Cu342.021 (3)
C23—N221.151 (4)N42—H42A0.8600
C23—N241.337 (4)N47—N481.359 (4)
C29—N281.161 (5)N48—O501.222 (4)
C29—N281.161 (5)N48—O491.247 (4)
C29—N301.328 (5)N52—Cu512.020 (3)
C36—N351.304 (5)N54—H54A0.8600
C36—N371.331 (5)N57—Cu512.005 (3)
C36—H36A0.9300N59—H59A0.8600
C38—N371.343 (5)N64—N651.339 (4)
C38—C391.349 (6)N65—O661.245 (4)
C38—H38A0.9300Cu1—N22.022 (3)
C39—N351.360 (5)Cu1—N71.998 (3)
C39—H39A0.9300Cu1—N122.026 (3)
C41—N401.324 (4)Cu1—N172.002 (3)
C41—N421.336 (5)Cu1—N222.570 (3)
C41—H41A0.9300Cu1—N282.509 (3)
C43—C441.350 (5)Cu34—N352.015 (3)
C43—N421.366 (5)Cu34—N402.021 (3)
C43—H43A0.9300Cu34—N452.548 (4)
C44—N401.375 (5)Cu51—N522.020 (3)
C44—H44A0.9300Cu51—N572.005 (3)
C46—N451.144 (5)Cu51—N622.549 (3)
C46—N451.144 (5)N22—C231.151 (4)
C46—N471.335 (4)N28—C291.161 (5)
C53—N521.316 (4)N45—C461.144 (5)
C53—N541.348 (5)N62—C631.152 (5)
C53—H53A0.9300
N2—C3—N4110.9 (3)C13—N12—Cu1126.2 (2)
N2—C3—H3A124.5C16—N12—Cu1126.5 (2)
N4—C3—H3A124.5C13—N14—C15107.4 (3)
N4—C5—C6106.3 (3)C13—N14—H14A126.3
N4—C5—H5A126.9C15—N14—H14A126.3
C6—C5—H5A126.9C18—N17—C21106.8 (3)
C5—C6—N2109.4 (3)C18—N17—Cu1127.2 (2)
C5—C6—H6A125.3C21—N17—Cu1125.5 (2)
N2—C6—H6A125.3C18—N19—C20107.9 (3)
N7—C8—N9111.0 (3)C18—N19—H19A126.1
N7—C8—H8A124.5C20—N19—H19A126.1
N9—C8—H8A124.5C23—N24—N25110.8 (3)
C11—C10—N9105.6 (4)O26—N25—O27121.1 (3)
C11—C10—H10A127.2O26—N25—N24122.8 (3)
N9—C10—H10A127.2O27—N25—N24116.1 (3)
C10—C11—N7109.5 (4)C29—N30—N31111.5 (3)
C10—C11—H11A125.2O32—N31—O33121.2 (3)
N7—C11—H11A125.2O32—N31—N30123.2 (3)
N12—C13—N14111.3 (3)O33—N31—N30115.6 (3)
N12—C13—H13A124.4C36—N35—C39105.4 (3)
N14—C13—H13A124.4C36—N35—Cu34127.2 (3)
C16—C15—N14106.9 (3)C39—N35—Cu34126.3 (3)
C16—C15—H15A126.5C36—N37—C38107.2 (3)
N14—C15—H15A126.5C36—N37—H37A126.4
C15—C16—N12108.9 (3)C38—N37—H37A126.4
C15—C16—H16A125.6C41—N40—C44105.3 (3)
N12—C16—H16A125.6C41—N40—Cu34126.7 (2)
N17—C18—N19110.2 (3)C44—N40—Cu34127.3 (2)
N17—C18—H18A124.9C41—N42—C43107.8 (3)
N19—C18—H18A124.9C41—N42—H42A126.1
C21—C20—N19106.5 (3)C43—N42—H42A126.1
C21—C20—H20A126.7C46—N47—N48111.9 (3)
N19—C20—H20A126.7O50—N48—O49123.6 (3)
C20—C21—N17108.7 (3)O50—N48—N47122.0 (3)
C20—C21—H21A125.7O49—N48—N47114.4 (3)
N17—C21—H21A125.7C53—N52—C56105.9 (3)
N22—C23—N24173.4 (4)C53—N52—Cu51125.0 (2)
N22—C23—N24173.4 (4)C56—N52—Cu51128.9 (2)
N28—C29—N30172.0 (4)C53—N54—C55108.0 (3)
N28—C29—N30172.0 (4)C53—N54—H54A126.0
N35—C36—N37111.6 (3)C55—N54—H54A126.0
N35—C36—H36A124.2C58—N57—C61105.4 (3)
N37—C36—H36A124.2C58—N57—Cu51128.4 (2)
N37—C38—C39106.5 (4)C61—N57—Cu51126.0 (2)
N37—C38—H38A126.8C58—N59—C60107.8 (3)
C39—C38—H38A126.8C58—N59—H59A126.1
C38—C39—N35109.3 (4)C60—N59—H59A126.1
C38—C39—H39A125.3C63—N64—N65112.0 (3)
N35—C39—H39A125.3O66—N65—O67122.1 (3)
N40—C41—N42111.1 (3)O66—N65—N64116.9 (3)
N40—C41—H41A124.5O67—N65—N64120.9 (3)
N42—C41—H41A124.5N7—Cu1—N17177.74 (12)
C44—C43—N42105.9 (3)N7—Cu1—N290.47 (12)
C44—C43—H43A127.0N17—Cu1—N289.47 (11)
N42—C43—H43A127.0N7—Cu1—N1289.49 (12)
C43—C44—N40109.9 (3)N17—Cu1—N1290.58 (11)
C43—C44—H44A125.1N2—Cu1—N12179.64 (12)
N40—C44—H44A125.1N35i—Cu34—N35180.0
N45—C46—N47171.8 (4)N35i—Cu34—N40i91.91 (11)
N45—C46—N47171.8 (4)N35—Cu34—N40i88.09 (11)
N52—C53—N54110.5 (3)N35i—Cu34—N4088.09 (11)
N52—C53—H53A124.8N35—Cu34—N4091.91 (11)
N54—C53—H53A124.8N40i—Cu34—N40179.999 (1)
C56—C55—N54106.0 (3)N57ii—Cu51—N57180.00 (16)
C56—C55—H55A127.0N57ii—Cu51—N5289.23 (11)
N54—C55—H55A127.0N57—Cu51—N5290.77 (11)
C55—C56—N52109.6 (3)N57ii—Cu51—N52ii90.77 (11)
C55—C56—H56A125.2N57—Cu51—N52ii89.23 (11)
N52—C56—H56A125.2N52—Cu51—N52ii180.00 (9)
N57—C58—N59111.0 (3)N2—Cu1—N790.5 (1)
N57—C58—H58A124.5N2—Cu1—N12179.6 (1)
N59—C58—H58A124.5N2—Cu1—N1789.5 (1)
C61—C60—N59106.5 (3)N7—Cu1—N1289.5 (1)
C61—C60—H60A126.7N7—Cu1—N17177.7 (1)
N59—C60—H60A126.7N12—Cu1—N1790.6 (1)
C60—C61—N57109.2 (3)N2—Cu1—N2290.3 (1)
C60—C61—H61A125.4N2—Cu1—N2889.7 (1)
N57—C61—H61A125.4N7—Cu1—N2292.9 (1)
N62—C63—N64172.5 (4)N7—Cu1—N2890.2 (1)
N62—C63—N64172.5 (4)N12—Cu1—N2289.3 (1)
C3—N2—C6105.6 (3)N12—Cu1—N2890.7 (1)
C3—N2—Cu1126.4 (2)N17—Cu1—N2289.4 (1)
C6—N2—Cu1128.0 (2)N17—Cu1—N2887.6 (1)
C3—N4—C5107.9 (3)N22—Cu1—N28177.0 (1)
C3—N4—H4A126.1N35i—Cu34—N4088.1 (1)
C5—N4—H4A126.1N35—Cu34—N4091.9 (1)
C8—N7—C11105.5 (3)N35—Cu34—N4590.6 (1)
C8—N7—Cu1126.6 (3)N40—Cu34—N4590.1 (1)
C11—N7—Cu1127.6 (3)N35i—Cu34—N40i91.9 (1)
C8—N9—C10108.3 (3)N52—Cu51—N5790.8 (1)
C8—N9—H9A125.8N52—Cu51—N6290.1 (1)
C10—N9—H9A125.8N57—Cu51—N6287.0 (1)
C13—N12—C16105.5 (3)N57ii—Cu51—N5289.23 (12)
N4—C5—C6—N20.1 (4)C46—N47—N48—O501.6 (5)
N9—C10—C11—N70.1 (6)C46—N47—N48—O49178.8 (3)
N14—C15—C16—N120.1 (4)N54—C53—N52—C560.4 (4)
N19—C20—C21—N170.9 (4)N54—C53—N52—Cu51174.7 (2)
N37—C38—C39—N350.1 (6)C55—C56—N52—C530.3 (4)
N42—C43—C44—N401.1 (4)C55—C56—N52—Cu51174.4 (2)
N54—C55—C56—N520.2 (4)N52—C53—N54—C550.3 (4)
N59—C60—C61—N570.7 (5)C56—C55—N54—C530.0 (4)
N4—C3—N2—C60.2 (4)N59—C58—N57—C610.4 (4)
N4—C3—N2—Cu1178.3 (2)N59—C58—N57—Cu51176.6 (2)
C5—C6—N2—C30.2 (4)C60—C61—N57—C580.7 (4)
C5—C6—N2—Cu1178.3 (2)C60—C61—N57—Cu51177.0 (3)
N2—C3—N4—C50.2 (4)N57—C58—N59—C600.0 (4)
C6—C5—N4—C30.0 (4)C61—C60—N59—C580.4 (5)
N9—C8—N7—C110.6 (5)C63—N64—N65—O66179.7 (3)
N9—C8—N7—Cu1174.8 (3)C63—N64—N65—O670.9 (5)
C10—C11—N7—C80.3 (5)C8—N7—Cu1—N2149.6 (3)
C10—C11—N7—Cu1174.4 (3)C11—N7—Cu1—N237.5 (4)
N7—C8—N9—C100.7 (5)C8—N7—Cu1—N1230.1 (3)
C11—C10—N9—C80.5 (5)C11—N7—Cu1—N12142.9 (4)
N14—C13—N12—C160.2 (4)C18—N17—Cu1—N237.9 (3)
N14—C13—N12—Cu1165.9 (2)C21—N17—Cu1—N2132.7 (3)
C15—C16—N12—C130.1 (4)C18—N17—Cu1—N12141.7 (3)
C15—C16—N12—Cu1165.7 (3)C21—N17—Cu1—N1247.6 (3)
N12—C13—N14—C150.3 (4)C3—N2—Cu1—N795.9 (3)
C16—C15—N14—C130.2 (4)C6—N2—Cu1—N785.9 (3)
N19—C18—N17—C210.3 (4)C3—N2—Cu1—N1781.8 (3)
N19—C18—N17—Cu1171.8 (2)C6—N2—Cu1—N1796.3 (3)
C20—C21—N17—C180.8 (4)C13—N12—Cu1—N797.0 (3)
C20—C21—N17—Cu1171.5 (2)C16—N12—Cu1—N765.8 (3)
N17—C18—N19—C200.3 (4)C13—N12—Cu1—N1785.3 (3)
C21—C20—N19—C180.7 (4)C16—N12—Cu1—N17112.0 (3)
C23—N24—N25—O260.7 (4)C36—N35—Cu34—N40i101.4 (3)
C23—N24—N25—O27180.0 (3)C39—N35—Cu34—N40i64.6 (4)
C29—N30—N31—O320.6 (5)C36—N35—Cu34—N4078.6 (3)
C29—N30—N31—O33179.2 (3)C39—N35—Cu34—N40115.4 (4)
N37—C36—N35—C390.2 (5)C41—N40—Cu34—N35i99.0 (3)
N37—C36—N35—Cu34168.5 (2)C44—N40—Cu34—N35i69.8 (3)
C38—C39—N35—C360.1 (5)C41—N40—Cu34—N3581.0 (3)
C38—C39—N35—Cu34168.5 (3)C44—N40—Cu34—N35110.2 (3)
N35—C36—N37—C380.2 (5)C58—N57—Cu51—N52148.6 (3)
C39—C38—N37—C360.1 (5)C61—N57—Cu51—N5235.9 (3)
N42—C41—N40—C440.5 (4)C58—N57—Cu51—N52ii31.4 (3)
N42—C41—N40—Cu34171.3 (2)C61—N57—Cu51—N52ii144.1 (3)
C43—C44—N40—C410.4 (4)C53—N52—Cu51—N57ii87.6 (3)
C43—C44—N40—Cu34170.3 (3)C56—N52—Cu51—N57ii86.3 (3)
N40—C41—N42—C431.2 (4)C53—N52—Cu51—N5792.4 (3)
C44—C43—N42—C411.4 (4)C56—N52—Cu51—N5793.7 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N19—H19A···O67iii0.862.002.848 (4)171
N59—H59A···O33iv0.862.032.832 (4)155
N4—H4A···O27v0.862.062.910 (4)172
N14—H14A···O33vi0.862.062.886 (5)161
N9—H9A···O49vii0.862.062.819 (4)146
N54—H54A···O66v0.862.092.918 (4)163
Symmetry codes: (iii) x+2, y+1, z+1; (iv) x+1, y, z; (v) x1, y, z; (vi) x+1, y, z; (vii) x+2, y, z.

Experimental details

Crystal data
Chemical formula[Cu(CN3O2)2(C3H4N2)4]
Mr507.95
Crystal system, space groupTriclinic, P1
Temperature (K)304
a, b, c (Å)9.841 (2), 15.249 (3), 15.234 (3)
α, β, γ (°)104.17 (2), 96.65 (2), 96.86 (2)
V3)2175.6 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.06
Crystal size (mm)0.36 × 0.34 × 0.11
Data collection
DiffractometerOxford Diffraction Xcalibur CCD
diffractometer
Absorption correctionAnalytical
face-indexed (CrysAlis RED; Oxford Diffraction, 2003)
Tmin, Tmax0.704, 0.893
No. of measured, independent and
observed [I > 2σ(I)] reflections
14665, 8693, 7962
Rint0.030
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.088, 1.05
No. of reflections8693
No. of parameters599
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.42

Computer programs: CrysAlis CCD (Oxford Diffraction, 2001), CrysAlis CCD, CrysAlis RED (Oxford Diffraction, 2003), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 1998), program (reference)?.

Selected geometric parameters (Å, º) top
Cu1—N22.022 (3)Cu34—N452.548 (4)
Cu1—N71.998 (3)Cu51—N522.020 (3)
Cu1—N122.026 (3)Cu51—N572.005 (3)
Cu1—N172.002 (3)Cu51—N622.549 (3)
Cu1—N222.570 (3)N22—C231.151 (4)
Cu1—N282.509 (3)N28—C291.161 (5)
Cu34—N352.015 (3)N45—C461.144 (5)
Cu34—N402.021 (3)N62—C631.152 (5)
N2—Cu1—N12179.6 (1)N22—Cu1—N28177.0 (1)
N7—Cu1—N17177.7 (1)N35—Cu34—N4091.9 (1)
N7—Cu1—N2292.9 (1)N57—Cu51—N6287.0 (1)
N17—Cu1—N2887.6 (1)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N19—H19A···O67i0.862.002.848 (4)171
N59—H59A···O33ii0.862.032.832 (4)155
N4—H4A···O27iii0.862.062.910 (4)172
N14—H14A···O33iv0.862.062.886 (5)161
N9—H9A···O49v0.862.062.819 (4)146
N54—H54A···O66iii0.862.092.918 (4)163
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z; (iii) x1, y, z; (iv) x+1, y, z; (v) x+2, y, z.
Comparison of bond distances (Å) for compounds of the type [M(NL)4(NO2NCN)2] top
MCo-N(NL)Co-N(can)CSD refcode
Co2.098–2.1512.136–2.167DOQZISa, TUSLOIb
Ni2.067–2.0932.076–2.110DOQZEOa,OFILEUc
Cu2.000–2.0242.600–2.683BEFBETd,BEFCUKd
Notes: (a) Hvastijová et al. (2000); (b) Hvastijová et al. (2003); (c) Hvastijová et al. (2001); (d) Kohout et al., 1999);
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds