Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The silver bismuth trideca­sulfide Ag3.5Bi7.5S13 crystallizes in the monoclinic space group C2/m. Its structure is built up of two alternating kinds of layered modules parallel to (001). In the module denoted A, octa­hedra around the metal positions (M = Ag/Bi, M2 and an S atom on 2/m, other atoms on m) alternate with paired monocapped trigonal prisms around Bi. The NaCl-type module B is composed of parallel eight-membered chains of edge-sharing octa­hedra running dia­gonally across it. Ag3.5Bi7.5S13 is the member with N = 8 of the pavonite homologous series NP of ternary compounds with the general formula [Bi2S3]2·[AgBiS2](N-1)/2.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105007493/sq1196sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105007493/sq1196Isup2.hkl
Contains datablock I

Comment top

Current knowledge of ternary sulfides with silver and bismuth is somewhat incomplete. Only the existence of AgBiS2 (Geller & Wernick, 1959), `AgBi6S9' (N = 4; Mumme, 1990), Ag2Bi6S10 (N = 5; Makovicky et al., 1977) and Ag3Bi7S12 (N = 7; Herbert & Mumme, 1981) have been reported to date. All these phases lie on the Ag2S–Bi2S3 pseudo-binary section in the ternary Ag–Bi–S system. The three latter compounds crystallize in the monoclinic space group C2/m and adopt structures that are closely related to each other. Their structures are built up of two alternating kinds of layered modules, denoted A and B. Module A is composed of double chains of monocapped trigonal prisms around Bi atoms, which alternate in the [100] direction with octahedrally coordinated metal atoms (M = Ag or Bi). Module B represents NaCl-like fragments of varying thickness defined by the parameter N, which corresponds to the number of octahedra within the chain of edge-sharing octahedra that runs diagonally across the module (Fig. 1). The structures of the above-mentioned phases with N = 4, 5 and 7 belong to the homologous series [Bi2S3]2·[AgBiS2](N-1)/2 (pavonite series), denoted by NP (Makovicky et al., 1977). Known and hypothetical members of the series can be derived from the first member, Ag0.5Bi4.5S7 (N = 2), by successive additions of (AgBiS2)0.5 equivalents to the NaCl-like module B, AgBiS2 being the end member with N = .

The title compound, Ag3.5Bi7.5S13, represents the member with N = 8 of the homologous series [Bi2S3]2·[AgBiS2](N-1)/2. It crystallizes in the monoclinic space group C2/m and is isotypic with Cu1.34Ag2.38Pb1.44Bi6.28S13 (Mumme, 1990). Its structure is built up according to the principle described above. The NaCl-type module B is, in this case, eight octahedra thick (Fig. 2). Therefore, Ag3.5Bi7.5S13 can be denoted by the symbol 8P, according to the nomenclature of pavonite homologues.

Atom Bi1 displays a slightly distorted monocapped trigonal prismatic coordination of S atoms (Table 1). The cations M2 to M6 exhibit octahedral environments with varying degrees of distortion. The `octahedron' around M2 is the most distorted, with two short bonds [2.564 (3) Å] in trans positions and four elongated bonds [2.870 (8) Å] in the equatorial plane. This type of distortion towards a linear coordination ([2 + 4] geometry) is commonly observed for Ag atoms in the structures of multinary silver-containing bismuth chalcogenides. Typical examples are various members of the pavonite homologous series. The octahedra around the M3 and M4 positions are distorted towards [1 + 2+2 + 1] geometry, with short bonds trans to long bonds. Similar coordination environments are usually observed for Bi atoms in many multinary bismuth sulphosalts. The M5 and M6 positions display more regular octahedral environments, with bond distances ranging between 2.754 (2) and 2.899 (2) Å.

All octahedral metal positions show mixed occupancy between Ag and Bi. The composition of each position obtained from the refinement is consistent with the above analysis of the distortion of their coordination polyhedra. The M2 position shows a preference for Ag atoms (79%), while the M3 and M4 positions are predominantly occupied by Bi atoms (78% for M3 and 84% for M4). In the M5 position, Ag dominates. while in M6 more Bi is found. The Ag/Bi disorder generally observed in octahedrally coordinated metal positions in the structures of pavonite homologues can be related to their general formula. For odd members (N = 5 and 7), an ordered distribution of Ag and Bi between the metal positions may be envisaged, while for even members (N = 4 and 8), some octahedral positions will be necessarily of mixed occupancy or a superstructure must be established.

Experimental top

Single crystals of Ag3.5Bi7.5S13 were obtained as a by-product of a solid-state reaction involving AgI and Bi2S3 in the molar ratio 1:1. The mixture of the starting materials was thoroughly ground and loaded into a silica tube, which was flame-sealed under a pressure of 10 −2 Torr (1 Torr = 133.322 Pa). The tube was placed in a tubular oven, heated at 850 K for 7 d and then rapidly cooled to room temperature. The product consisted of a mixture of black plate crystals of AgBiS2 (Geller & Wernick, 1959), Ag2Bi6S10 (Makovicky et al., 1977) and Ag3.5Bi7.5S13 (about 30% of the product), together with grey needle-like crystals of (Bi2S3)9BiI3 (Miehe & Kup~cik, 1971). Qualitative energy-dispersive X-ray analysis performed on the single-crystal of Ag3.5Bi7.5S13 used for this study revealed an average composition Ag3.43 (2)Bi7.48 (2)S13. No indication of iodine in the crystal was detected.

Refinement top

In the first stage of the refinement, the Bi positions M3, M4 and M6 showed temperature factors larger than that of M1 = Bi1. This suggested that, in addition to bismuth, these positions are partly occupied by the lighter element Ag. On the other hand, the thermal parameters of the Ag positions M2 and M5 were smaller than that of Bi1 and mixed occupancy with the heavier element Bi was also considered for these positions. The SUMP restraint was used to ensure the electroneutrality of the compound. The final occupancies of these positions obtained from the refinement were: M2 = 79% Ag + 21% Bi, M3 = 22% Ag + 78% Bi, M4 = 16% Ag + 84% Bi, M5 = 64% Ag + 36% Bi and M6 = 33% Ag + 67% Bi.

Computing details top

Data collection: EXPOSE (Stoe & Cie, 2000); cell refinement: CELL (Stoe & Cie, 2000); data reduction: INTEGRATE (Stoe & Cie, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 and DIAMOND.

Figures top
[Figure 1] Fig. 1. Comparison of the structures of three [Bi2S3]2·[AgBiS2](N-1)/2 homologues. (a) `AgBiS9' (N = 4). (b) Ag2Bi6S10 (N = 5, pavonite). (c) Ag3Bi7S12 (N = 7). Bi atoms are denoted by black spheres, Ag/Bi by medium-grey spheres and S atoms by light-grey spheres.
[Figure 2] Fig. 2. The crystal structure of Ag3.5Bi7.5S13. Displacement ellipsoids are drawn at the 95% probability level for all atoms. M denotes Ag/Bi.
Silver bismuth sulfide (3.5/7.5/13) top
Crystal data top
Ag3.5Bi7.5S13F(000) = 1990
Mr = 2361.81Dx = 6.782 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C2yCell parameters from 1295 reflections
a = 13.3237 (2) Åθ = 2.9–26.0°
b = 4.0455 (4) ŵ = 60.9 mm1
c = 21.484 (3) ÅT = 297 K
β = 92.90 (1)°Plate, black
V = 1156.5 (2) Å30.14 × 0.04 × 0.02 mm
Z = 2
Data collection top
Stoe IPDS I
diffractometer
1295 independent reflections
Radiation source: fine-focus sealed tube980 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ oscillation scansθmax = 26.0°, θmin = 2.9°
Absorption correction: numerical
[X-RED32 (Stoe & Cie, 2001); crystal description using FACEIT (Stoe & Cie, 1999), optimization using equivalent reflections (X-SHAPE; Stoe & Cie, 1999)]
h = 1616
Tmin = 0.067, Tmax = 0.343k = 44
3944 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.041P)2 + 88.7342P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.104(Δ/σ)max = 0.009
S = 1.07Δρmax = 1.90 e Å3
1295 reflectionsΔρmin = 1.47 e Å3
81 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.00038 (6)
Crystal data top
Ag3.5Bi7.5S13V = 1156.5 (2) Å3
Mr = 2361.81Z = 2
Monoclinic, C2/mMo Kα radiation
a = 13.3237 (2) ŵ = 60.9 mm1
b = 4.0455 (4) ÅT = 297 K
c = 21.484 (3) Å0.14 × 0.04 × 0.02 mm
β = 92.90 (1)°
Data collection top
Stoe IPDS I
diffractometer
1295 independent reflections
Absorption correction: numerical
[X-RED32 (Stoe & Cie, 2001); crystal description using FACEIT (Stoe & Cie, 1999), optimization using equivalent reflections (X-SHAPE; Stoe & Cie, 1999)]
980 reflections with I > 2σ(I)
Tmin = 0.067, Tmax = 0.343Rint = 0.040
3944 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0441 restraint
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.041P)2 + 88.7342P]
where P = (Fo2 + 2Fc2)/3
S = 1.07Δρmax = 1.90 e Å3
1295 reflectionsΔρmin = 1.47 e Å3
81 parameters
Special details top

Experimental. collection of intensity data: phi movement mode (oscillation), crystal to detector distance (70 mm), lattice parameters from Stoe IPDS-I diffraction data using Mo Kα radiation

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. A disorder model M = Bi, Ag was applied for the atomic sites M2, M3, M4, M5 and M6 that were constrained to full occupation. In each mixed position both types of atoms were forced to have the same coordinates and thermal parameters. The mixed occupation in cation positions were restrained to keep the electroneutrality of the compound. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Bi10.23594 (6)0.00000.08464 (4)0.0322 (3)
Bi20.50000.00000.00000.0458 (7)0.2022 (10)
Ag20.50000.00000.00000.0458 (7)0.80
Bi30.01767 (7)0.50000.21444 (5)0.0313 (4)0.777 (4)
Ag30.01767 (7)0.50000.21444 (5)0.0313 (4)0.22
Bi40.30067 (6)0.50000.29459 (5)0.0292 (4)0.844 (4)
Ag40.30067 (6)0.50000.29459 (5)0.0292 (4)0.16
Bi50.08218 (9)0.00000.37761 (7)0.0374 (6)0.358 (4)
Ag50.08218 (9)0.00000.37761 (7)0.0374 (6)0.64
Bi60.36005 (7)0.00000.46000 (5)0.0323 (4)0.670 (4)
Ag60.36005 (7)0.00000.46000 (5)0.0323 (4)0.33
S10.3550 (4)0.50000.0257 (3)0.0227 (11)
S20.0975 (4)0.50000.1060 (3)0.0301 (13)
S30.3801 (4)0.50000.1850 (3)0.0241 (12)
S40.1612 (4)0.00000.2616 (3)0.0323 (14)
S50.4389 (4)0.00000.3418 (3)0.0298 (13)
S60.2184 (4)0.50000.4222 (3)0.0332 (14)
S70.50000.50000.50000.039 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.0322 (5)0.0330 (6)0.0311 (6)0.0000.0018 (3)0.000
Bi20.0356 (11)0.0460 (16)0.0551 (16)0.0000.0037 (10)0.000
Ag20.0356 (11)0.0460 (16)0.0551 (16)0.0000.0037 (10)0.000
Bi30.0331 (6)0.0303 (7)0.0310 (7)0.0000.0051 (4)0.000
Ag30.0331 (6)0.0303 (7)0.0310 (7)0.0000.0051 (4)0.000
Bi40.0273 (5)0.0275 (6)0.0331 (6)0.0000.0048 (4)0.000
Ag40.0273 (5)0.0275 (6)0.0331 (6)0.0000.0048 (4)0.000
Bi50.0331 (8)0.0346 (10)0.0444 (10)0.0000.0005 (6)0.000
Ag50.0331 (8)0.0346 (10)0.0444 (10)0.0000.0005 (6)0.000
Bi60.0328 (7)0.0309 (7)0.0334 (7)0.0000.0047 (5)0.000
Ag60.0328 (7)0.0309 (7)0.0334 (7)0.0000.0047 (5)0.000
S10.019 (2)0.021 (3)0.029 (3)0.0000.0056 (19)0.000
S20.031 (3)0.023 (3)0.037 (3)0.0000.008 (2)0.000
S30.020 (2)0.024 (3)0.028 (3)0.0000.001 (2)0.000
S40.026 (3)0.023 (3)0.046 (4)0.0000.008 (3)0.000
S50.030 (3)0.028 (3)0.032 (3)0.0000.005 (2)0.000
S60.029 (3)0.033 (4)0.037 (4)0.0000.000 (2)0.000
S70.030 (4)0.029 (5)0.056 (6)0.0000.016 (4)0.000
Geometric parameters (Å, º) top
Bi1—S1i2.608 (6)Bi6—S52.797 (6)
Bi1—S2ii2.791 (4)Bi6—S72.8539 (7)
Bi1—S22.791 (4)Bi6—S7ii2.8539 (7)
Bi1—S12.900 (4)Bi6—S6ii2.856 (4)
Bi1—S1ii2.900 (4)Bi6—S62.856 (4)
Bi1—S33.465 (4)S1—Bi1i2.608 (6)
Bi1—S3ii3.465 (4)S1—Bi2viii2.871 (3)
Bi2—S2iii2.565 (6)S1—Bi1viii2.900 (4)
Bi2—S2i2.565 (6)S1—S33.420 (8)
Bi2—S1ii2.871 (3)S1—S2i3.562 (7)
Bi2—S12.871 (3)S1—S2x3.562 (7)
Bi2—S1iv2.871 (3)S2—Bi2vii2.565 (6)
Bi2—S1v2.871 (3)S2—Bi1viii2.791 (4)
Bi3—S22.609 (6)S2—S1i3.562 (7)
Bi3—S3vi2.781 (3)S2—S1x3.562 (7)
Bi3—S3vii2.781 (3)S3—Bi3xi2.781 (3)
Bi3—S4viii2.929 (4)S3—Bi3iii2.781 (3)
Bi3—S42.929 (4)S3—Bi1viii3.465 (4)
Bi3—S5vii2.979 (6)S4—Bi4ii2.813 (4)
Bi4—S32.630 (6)S4—Bi3ii2.929 (4)
Bi4—S42.813 (4)S5—Bi5xi2.860 (4)
Bi4—S4viii2.813 (4)S5—Bi5iii2.860 (4)
Bi4—S5viii2.885 (4)S5—Bi4ii2.885 (4)
Bi4—S52.885 (4)S5—Bi3iii2.979 (6)
Bi4—S63.002 (6)S6—Bi6ix2.788 (6)
Bi5—S42.753 (7)S6—Bi5viii2.851 (4)
Bi5—S62.851 (4)S6—Bi6viii2.856 (4)
Bi5—S6ii2.851 (4)S7—Bi6xii2.8539 (8)
Bi5—S5vi2.860 (4)S7—Bi6xiii2.8539 (7)
Bi5—S5vii2.860 (4)S7—Bi6viii2.8539 (7)
Bi5—S7vi2.8990 (16)S7—Bi5ix2.8990 (16)
Bi6—S6ix2.788 (6)S7—Bi5xi2.8990 (16)
S1i—Bi1—S2ii82.50 (15)Bi1viii—S1—Bi188.46 (14)
S1i—Bi1—S282.50 (15)Bi1i—S1—S3157.97 (19)
S2ii—Bi1—S292.88 (16)Bi2viii—S1—S399.20 (14)
S1i—Bi1—S180.93 (13)Bi2—S1—S399.20 (14)
S2ii—Bi1—S1163.30 (17)Bi1viii—S1—S365.90 (11)
S2—Bi1—S186.96 (11)Bi1—S1—S365.90 (11)
S1i—Bi1—S1ii80.93 (13)Bi1i—S1—S2i50.97 (12)
S2ii—Bi1—S1ii86.96 (11)Bi2viii—S1—S2i95.65 (15)
S2—Bi1—S1ii163.30 (17)Bi2—S1—S2i45.43 (10)
S1—Bi1—S1ii88.46 (14)Bi1viii—S1—S2i150.0 (2)
S1i—Bi1—S3141.53 (7)Bi1—S1—S2i94.23 (8)
S2ii—Bi1—S3132.12 (16)S3—S1—S2i141.50 (11)
S2—Bi1—S379.90 (12)Bi1i—S1—S2x50.97 (12)
S1—Bi1—S364.28 (13)Bi2viii—S1—S2x45.43 (10)
S1ii—Bi1—S3112.36 (12)Bi2—S1—S2x95.65 (15)
S1i—Bi1—S3ii141.53 (7)Bi1viii—S1—S2x94.23 (8)
S2ii—Bi1—S3ii79.90 (12)Bi1—S1—S2x150.0 (2)
S2—Bi1—S3ii132.12 (16)S3—S1—S2x141.50 (11)
S1—Bi1—S3ii112.36 (12)S2i—S1—S2x69.19 (15)
S1ii—Bi1—S3ii64.28 (13)Bi2vii—S2—Bi3125.6 (2)
S3—Bi1—S3ii71.44 (10)Bi2vii—S2—Bi1viii99.37 (17)
S2iii—Bi2—S2i180.00 (14)Bi3—S2—Bi1viii116.73 (17)
S2iii—Bi2—S1ii98.31 (14)Bi2vii—S2—Bi199.37 (17)
S2i—Bi2—S1ii81.69 (14)Bi3—S2—Bi1116.73 (17)
S2iii—Bi2—S198.31 (14)Bi1viii—S2—Bi192.88 (16)
S2i—Bi2—S181.69 (14)Bi2vii—S2—S1i52.88 (12)
S1ii—Bi2—S189.60 (13)Bi3—S2—S1i143.75 (9)
S2iii—Bi2—S1iv81.69 (14)Bi1viii—S2—S1i97.75 (17)
S2i—Bi2—S1iv98.31 (14)Bi1—S2—S1i46.53 (10)
S1ii—Bi2—S1iv180.0 (2)Bi2vii—S2—S1x52.88 (12)
S1—Bi2—S1iv90.40 (13)Bi3—S2—S1x143.75 (9)
S2iii—Bi2—S1v81.69 (14)Bi1viii—S2—S1x46.53 (10)
S2i—Bi2—S1v98.31 (14)Bi1—S2—S1x97.75 (17)
S1ii—Bi2—S1v90.40 (13)S1i—S2—S1x69.19 (15)
S1—Bi2—S1v180.0 (2)Bi4—S3—Bi3xi94.96 (15)
S1iv—Bi2—S1v89.60 (13)Bi4—S3—Bi3iii94.96 (15)
S2—Bi3—S3vi95.19 (15)Bi3xi—S3—Bi3iii93.31 (15)
S2—Bi3—S3vii95.19 (15)Bi4—S3—S1150.71 (19)
S3vi—Bi3—S3vii93.31 (15)Bi3xi—S3—S1104.94 (14)
S2—Bi3—S4viii91.17 (16)Bi3iii—S3—S1104.94 (14)
S3vi—Bi3—S4viii172.87 (18)Bi4—S3—Bi1108.76 (13)
S3vii—Bi3—S4viii89.30 (10)Bi3xi—S3—Bi1154.74 (19)
S2—Bi3—S491.17 (16)Bi3iii—S3—Bi193.17 (6)
S3vi—Bi3—S489.30 (10)S1—S3—Bi149.82 (9)
S3vii—Bi3—S4172.87 (18)Bi4—S3—Bi1viii108.76 (13)
S4viii—Bi3—S487.36 (15)Bi3xi—S3—Bi1viii93.17 (6)
S2—Bi3—S5vii176.57 (18)Bi3iii—S3—Bi1viii154.74 (19)
S3vi—Bi3—S5vii87.16 (14)S1—S3—Bi1viii49.82 (9)
S3vii—Bi3—S5vii87.16 (14)Bi1—S3—Bi1viii71.44 (10)
S4viii—Bi3—S5vii86.34 (15)Bi5—S4—Bi492.87 (16)
S4—Bi3—S5vii86.34 (15)Bi5—S4—Bi4ii92.87 (16)
S3—Bi4—S493.73 (16)Bi4—S4—Bi4ii91.94 (15)
S3—Bi4—S4viii93.73 (16)Bi5—S4—Bi3ii92.32 (15)
S4—Bi4—S4viii91.94 (15)Bi4—S4—Bi3ii174.3 (3)
S3—Bi4—S5viii92.07 (14)Bi4ii—S4—Bi3ii90.11 (2)
S4—Bi4—S5viii174.00 (19)Bi5—S4—Bi392.32 (15)
S4viii—Bi4—S5viii89.22 (10)Bi4—S4—Bi390.11 (2)
S3—Bi4—S592.07 (14)Bi4ii—S4—Bi3174.3 (3)
S4—Bi4—S589.22 (10)Bi3ii—S4—Bi387.36 (15)
S4viii—Bi4—S5174.00 (19)Bi6—S5—Bi5xi91.83 (15)
S5viii—Bi4—S589.03 (16)Bi6—S5—Bi5iii91.83 (15)
S3—Bi4—S6177.69 (16)Bi5xi—S5—Bi5iii90.03 (16)
S4—Bi4—S687.87 (16)Bi6—S5—Bi4ii93.24 (14)
S4viii—Bi4—S687.87 (16)Bi5xi—S5—Bi4ii174.9 (2)
S5viii—Bi4—S686.29 (14)Bi5iii—S5—Bi4ii90.24 (3)
S5—Bi4—S686.29 (14)Bi6—S5—Bi493.24 (14)
S4—Bi5—S692.16 (15)Bi5xi—S5—Bi490.24 (3)
S4—Bi5—S6ii92.16 (15)Bi5iii—S5—Bi4174.9 (2)
S6—Bi5—S6ii90.39 (16)Bi4ii—S5—Bi489.03 (15)
S4—Bi5—S5vi92.11 (14)Bi6—S5—Bi3iii178.6 (2)
S6—Bi5—S5vi175.72 (19)Bi5xi—S5—Bi3iii89.19 (14)
S6ii—Bi5—S5vi89.63 (11)Bi5iii—S5—Bi3iii89.19 (14)
S4—Bi5—S5vii92.11 (14)Bi4ii—S5—Bi3iii85.73 (14)
S6—Bi5—S5vii89.63 (11)Bi4—S5—Bi3iii85.73 (14)
S6ii—Bi5—S5vii175.72 (19)Bi6ix—S6—Bi592.47 (15)
S5vi—Bi5—S5vii90.03 (16)Bi6ix—S6—Bi5viii92.47 (15)
S4—Bi5—S7vi179.72 (12)Bi5—S6—Bi5viii90.39 (16)
S6—Bi5—S7vi87.64 (13)Bi6ix—S6—Bi6viii90.82 (16)
S6ii—Bi5—S7vi87.64 (13)Bi5—S6—Bi6viii176.7 (3)
S5vi—Bi5—S7vi88.08 (12)Bi5viii—S6—Bi6viii89.62 (3)
S5vii—Bi5—S7vi88.08 (12)Bi6ix—S6—Bi690.82 (16)
S6ix—Bi6—S5179.97 (16)Bi5—S6—Bi689.62 (3)
S6ix—Bi6—S789.77 (8)Bi5viii—S6—Bi6176.7 (3)
S5—Bi6—S790.21 (8)Bi6viii—S6—Bi690.18 (16)
S6ix—Bi6—S7ii89.77 (8)Bi6ix—S6—Bi4179.4 (2)
S5—Bi6—S7ii90.21 (8)Bi5—S6—Bi487.09 (15)
S7—Bi6—S7ii90.27 (3)Bi5viii—S6—Bi487.09 (15)
S6ix—Bi6—S6ii89.18 (16)Bi6viii—S6—Bi489.63 (14)
S5—Bi6—S6ii90.84 (15)Bi6—S6—Bi489.63 (14)
S7—Bi6—S6ii178.95 (13)Bi6xii—S7—Bi6180.0
S7ii—Bi6—S6ii89.77 (8)Bi6xii—S7—Bi6xiii90.27 (3)
S6ix—Bi6—S689.18 (16)Bi6—S7—Bi6xiii89.73 (3)
S5—Bi6—S690.84 (15)Bi6xii—S7—Bi6viii89.73 (3)
S7—Bi6—S689.77 (8)Bi6—S7—Bi6viii90.27 (3)
S7ii—Bi6—S6178.95 (13)Bi6xiii—S7—Bi6viii180.00 (4)
S6ii—Bi6—S690.18 (16)Bi6xii—S7—Bi5ix89.88 (3)
Bi1i—S1—Bi2viii96.37 (14)Bi6—S7—Bi5ix90.12 (3)
Bi1i—S1—Bi296.37 (14)Bi6xiii—S7—Bi5ix89.88 (3)
Bi2viii—S1—Bi289.60 (13)Bi6viii—S7—Bi5ix90.12 (3)
Bi1i—S1—Bi1viii99.07 (13)Bi6xii—S7—Bi5xi90.12 (3)
Bi2viii—S1—Bi1viii88.90 (3)Bi6—S7—Bi5xi89.88 (3)
Bi2—S1—Bi1viii164.6 (2)Bi6xiii—S7—Bi5xi90.12 (3)
Bi1i—S1—Bi199.07 (13)Bi6viii—S7—Bi5xi89.88 (3)
Bi2viii—S1—Bi1164.6 (2)Bi5ix—S7—Bi5xi180.0
Bi2—S1—Bi188.90 (3)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y1, z; (iii) x+1/2, y1/2, z; (iv) x+1, y+1, z; (v) x+1, y, z; (vi) x1/2, y1/2, z; (vii) x1/2, y+1/2, z; (viii) x, y+1, z; (ix) x+1/2, y+1/2, z+1; (x) x+1/2, y+3/2, z; (xi) x+1/2, y+1/2, z; (xii) x+1, y+1, z+1; (xiii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaAg3.5Bi7.5S13
Mr2361.81
Crystal system, space groupMonoclinic, C2/m
Temperature (K)297
a, b, c (Å)13.3237 (2), 4.0455 (4), 21.484 (3)
β (°) 92.90 (1)
V3)1156.5 (2)
Z2
Radiation typeMo Kα
µ (mm1)60.9
Crystal size (mm)0.14 × 0.04 × 0.02
Data collection
DiffractometerStoe IPDS I
diffractometer
Absorption correctionNumerical
[X-RED32 (Stoe & Cie, 2001); crystal description using FACEIT (Stoe & Cie, 1999), optimization using equivalent reflections (X-SHAPE; Stoe & Cie, 1999)]
Tmin, Tmax0.067, 0.343
No. of measured, independent and
observed [I > 2σ(I)] reflections
3944, 1295, 980
Rint0.040
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.104, 1.07
No. of reflections1295
No. of parameters81
No. of restraints1
w = 1/[σ2(Fo2) + (0.041P)2 + 88.7342P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.90, 1.47

Computer programs: EXPOSE (Stoe & Cie, 2000), CELL (Stoe & Cie, 2000), INTEGRATE (Stoe & Cie, 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 1999), SHELXL97 and DIAMOND.

Selected interatomic distances (Å) (M = Ag/Bi) top
Bi1—S1i2.607 (3)M4—S52.885 (2)
Bi1—S22.791 (7)M4—S63.004 (2)
Bi1—S12.901 (2)
Bi1—S33.466 (3)M5—S42.754 (2)
M5—S62.851 (2)
M2—S2i2.564 (3)M5—S5ii2.860 (1)
M2—S12.870 (8)M5—S7ii2.899 (2)
M3—S22.610 (2)M6—S6iv2.787 (2)
M3—S3ii2.781 (8)M6—S52.797 (2)
M3—S42.929 (2)M6—S72.854 (10)
M3—S5iii2.980 (2)M6—S62.856 (10)
M4—S32.630 (2)
M4—S42.813 (9)
Symmetry codes: (i) 1/2 − x, 1/2 − y, −z; (ii) −1/2 + x, −1/2 + y, z; (iii) −1/2 + x, 1/2 + y, z; (iv) 1/2 − x, 1/2 − y, 1 − z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds