Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107049347/sq3103sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270107049347/sq31034asup2.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270107049347/sq31034bsup3.hkl |
CCDC references: 677128; 677129
For related literature, see: Becker et al. (2001); Doherty et al. (2003, 2004, 2005); Flack (1983); Jacobsen et al. (1999); Mikami & Aikawa (2002); Mikami et al. (1999, 2004); Mikami, Aikawa, Yusa & Hatano (2002); Mikami, Aikawa, Yusa, Jodry & Yamanaka (2002); Noyori (1994); Ojima (2000); Ortéga et al. (2003); Robé et al. (2005); Robé, Hegedüs, Bakos, Coppel, Daran & Gouygou (2007); Robé, Hegedüs, Bakos, Daran & Gouygou (2007); Tissot et al. (1996, 2001); Walsh et al. (2003).
Complexes (4a) and (4b) were synthesized according to a reported procedure (Robé et al., 2005) (see reaction scheme). Crystals suitable for X-ray analyses were obtained by slow evaporation of a CH2Cl2 solution. The enantiomers were separated by what means?
All H atoms were positioned geometrically and treated as riding, with C—H = 0.93 (aromatic), 0.96 (methyl) or 0.97 Å (methylene) and with Uiso(H) = 1.2Ueq(Caromatic or Cmethylene) or 1.5Ueq(Cmethyl). Owing to the relatively poor quality of the data for (4b), the thermal displacement parameters for the C atoms were restrained using EADP constraints.
For both compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
[PdCl2(C28H30P2)]·CH2Cl2 | F(000) = 700 |
Mr = 690.69 | Dx = 1.551 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 4995 reflections |
a = 8.9333 (4) Å | θ = 2.7–32.2° |
b = 12.1598 (4) Å | µ = 1.12 mm−1 |
c = 14.0088 (6) Å | T = 180 K |
β = 103.678 (4)° | Needle, red |
V = 1478.58 (10) Å3 | 0.47 × 0.14 × 0.11 mm |
Z = 2 |
Oxford Diffraction Xcalibur diffractometer | 4911 independent reflections |
Radiation source: fine-focus sealed tube | 4022 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.045 |
Detector resolution: 8.2632 pixels mm-1 | θmax = 26.4°, θmin = 2.5° |
ω and ϕ scans | h = −10→11 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) (empirical (using intensity measurements) absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm) | k = −15→13 |
Tmin = 0.597, Tmax = 0.885 | l = −17→17 |
10919 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.051 | H-atom parameters constrained |
wR(F2) = 0.143 | w = 1/[σ2(Fo2) + (0.0885P)2 + 0.9712P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max = 0.001 |
4911 reflections | Δρmax = 2.05 e Å−3 |
330 parameters | Δρmin = −1.08 e Å−3 |
1 restraint | Absolute structure: Flack (1983), with how many Friedel pairs? |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.03 (5) |
[PdCl2(C28H30P2)]·CH2Cl2 | V = 1478.58 (10) Å3 |
Mr = 690.69 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 8.9333 (4) Å | µ = 1.12 mm−1 |
b = 12.1598 (4) Å | T = 180 K |
c = 14.0088 (6) Å | 0.47 × 0.14 × 0.11 mm |
β = 103.678 (4)° |
Oxford Diffraction Xcalibur diffractometer | 4911 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) (empirical (using intensity measurements) absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm) | 4022 reflections with I > 2σ(I) |
Tmin = 0.597, Tmax = 0.885 | Rint = 0.045 |
10919 measured reflections |
R[F2 > 2σ(F2)] = 0.051 | H-atom parameters constrained |
wR(F2) = 0.143 | Δρmax = 2.05 e Å−3 |
S = 1.09 | Δρmin = −1.08 e Å−3 |
4911 reflections | Absolute structure: Flack (1983), with how many Friedel pairs? |
330 parameters | Absolute structure parameter: 0.03 (5) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pd1 | 0.87403 (5) | 0.38163 (5) | 0.51128 (4) | 0.02459 (16) | |
Cl1 | 0.8725 (2) | 0.34940 (16) | 0.67610 (13) | 0.0347 (5) | |
Cl2 | 0.60521 (18) | 0.3908 (2) | 0.46057 (13) | 0.0332 (4) | |
P1 | 0.9006 (2) | 0.41117 (15) | 0.35820 (14) | 0.0252 (4) | |
P2 | 1.13145 (18) | 0.37192 (19) | 0.53132 (12) | 0.0231 (4) | |
C1 | 0.9946 (9) | 0.5450 (6) | 0.3508 (6) | 0.0294 (17) | |
H1 | 0.9102 | 0.5992 | 0.3260 | 0.035* | |
C2 | 1.2052 (10) | 0.5091 (7) | 0.5104 (6) | 0.0336 (18) | |
H2A | 1.2541 | 0.5425 | 0.5747 | 0.040* | |
H2B | 1.2856 | 0.5009 | 0.4729 | 0.040* | |
C3 | 1.0820 (10) | 0.5855 (7) | 0.4553 (7) | 0.0389 (19) | |
H3A | 1.1299 | 0.6576 | 0.4483 | 0.047* | |
H3B | 1.0057 | 0.5972 | 0.4953 | 0.047* | |
C4 | 1.0915 (12) | 0.5441 (8) | 0.2793 (7) | 0.050 (2) | |
H4A | 1.1228 | 0.6195 | 0.2686 | 0.074* | |
H4B | 1.0329 | 0.5133 | 0.2170 | 0.074* | |
H4C | 1.1832 | 0.4991 | 0.3046 | 0.074* | |
C11 | 1.0268 (9) | 0.2997 (6) | 0.3454 (6) | 0.0316 (17) | |
C12 | 0.9536 (9) | 0.2370 (6) | 0.2676 (6) | 0.0316 (17) | |
C13 | 0.8090 (9) | 0.2846 (6) | 0.2101 (6) | 0.0306 (17) | |
C14 | 0.7613 (7) | 0.3780 (9) | 0.2467 (5) | 0.0301 (14) | |
C21 | 1.1556 (9) | 0.2870 (5) | 0.4305 (5) | 0.0260 (16) | |
C22 | 1.2838 (9) | 0.2242 (6) | 0.4581 (5) | 0.0256 (15) | |
C23 | 1.3593 (8) | 0.2392 (6) | 0.5631 (6) | 0.0274 (16) | |
C24 | 1.2915 (8) | 0.3090 (6) | 0.6160 (6) | 0.0262 (16) | |
C121 | 0.9998 (10) | 0.1230 (7) | 0.2450 (7) | 0.045 (2) | |
H12A | 1.0610 | 0.1267 | 0.1955 | 0.067* | |
H12B | 0.9073 | 0.0787 | 0.2196 | 0.067* | |
H12C | 1.0613 | 0.0891 | 0.3050 | 0.067* | |
C131 | 0.7221 (11) | 0.2288 (8) | 0.1191 (6) | 0.045 (2) | |
H13A | 0.6668 | 0.1653 | 0.1369 | 0.068* | |
H13B | 0.7942 | 0.2040 | 0.0807 | 0.068* | |
H13C | 0.6481 | 0.2805 | 0.0800 | 0.068* | |
C141 | 0.6186 (9) | 0.4411 (7) | 0.2048 (6) | 0.0335 (18) | |
C142 | 0.4786 (9) | 0.3899 (10) | 0.1943 (5) | 0.0423 (19) | |
H142 | 0.4742 | 0.3169 | 0.2175 | 0.051* | |
C143 | 0.3423 (11) | 0.4447 (10) | 0.1497 (7) | 0.050 (2) | |
H143 | 0.2455 | 0.4091 | 0.1419 | 0.060* | |
C144 | 0.3504 (12) | 0.5507 (9) | 0.1173 (7) | 0.054 (3) | |
H144 | 0.2585 | 0.5880 | 0.0859 | 0.065* | |
C145 | 0.4884 (11) | 0.6030 (8) | 0.1295 (7) | 0.049 (2) | |
H145 | 0.4915 | 0.6769 | 0.1083 | 0.059* | |
C146 | 0.6258 (11) | 0.5487 (8) | 0.1732 (7) | 0.046 (2) | |
H146 | 0.7222 | 0.5849 | 0.1810 | 0.055* | |
C221 | 1.3547 (10) | 0.1522 (7) | 0.3957 (6) | 0.0375 (19) | |
H22A | 1.3339 | 0.0751 | 0.4083 | 0.056* | |
H22B | 1.4662 | 0.1646 | 0.4111 | 0.056* | |
H22C | 1.3108 | 0.1693 | 0.3263 | 0.056* | |
C231 | 1.5047 (9) | 0.1766 (6) | 0.6072 (6) | 0.0316 (17) | |
H23A | 1.5326 | 0.1880 | 0.6785 | 0.047* | |
H23B | 1.5883 | 0.2030 | 0.5788 | 0.047* | |
H23C | 1.4878 | 0.0980 | 0.5931 | 0.047* | |
C241 | 1.3557 (9) | 0.3545 (6) | 0.7140 (5) | 0.0292 (17) | |
C242 | 1.2795 (9) | 0.3535 (7) | 0.7883 (6) | 0.039 (2) | |
H242 | 1.1794 | 0.3222 | 0.7766 | 0.046* | |
C243 | 1.3447 (10) | 0.3968 (10) | 0.8794 (6) | 0.049 (2) | |
H243 | 1.2929 | 0.3922 | 0.9313 | 0.059* | |
C244 | 1.4871 (12) | 0.4472 (8) | 0.8940 (7) | 0.048 (2) | |
H244 | 1.5314 | 0.4794 | 0.9560 | 0.057* | |
C245 | 1.5649 (10) | 0.4519 (8) | 0.8222 (6) | 0.041 (2) | |
H245 | 1.6619 | 0.4879 | 0.8334 | 0.049* | |
C246 | 1.5016 (9) | 0.4035 (7) | 0.7319 (6) | 0.035 (2) | |
H246 | 1.5575 | 0.4037 | 0.6820 | 0.042* | |
C200 | 0.9295 (14) | 0.3315 (10) | −0.0757 (8) | 0.063 (3) | |
H20A | 0.9563 | 0.3594 | −0.1359 | 0.076* | |
H20B | 0.8229 | 0.3028 | −0.0947 | 0.076* | |
Cl21 | 0.9349 (4) | 0.4392 (3) | 0.0044 (2) | 0.0767 (9) | |
Cl22 | 1.0525 (4) | 0.2239 (3) | −0.0292 (3) | 0.0729 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pd1 | 0.0288 (3) | 0.0148 (2) | 0.0295 (3) | −0.0004 (2) | 0.00544 (17) | −0.0008 (3) |
Cl1 | 0.0410 (10) | 0.0335 (12) | 0.0295 (9) | −0.0030 (7) | 0.0083 (7) | −0.0004 (7) |
Cl2 | 0.0267 (8) | 0.0294 (11) | 0.0429 (9) | 0.0004 (9) | 0.0068 (6) | 0.0000 (11) |
P1 | 0.0301 (10) | 0.0190 (11) | 0.0262 (9) | 0.0019 (7) | 0.0062 (7) | 0.0006 (7) |
P2 | 0.0250 (8) | 0.0155 (9) | 0.0285 (8) | 0.0003 (9) | 0.0055 (6) | −0.0004 (9) |
C1 | 0.038 (4) | 0.015 (4) | 0.033 (4) | −0.002 (3) | 0.003 (3) | 0.000 (3) |
C2 | 0.043 (5) | 0.019 (4) | 0.034 (4) | −0.004 (3) | 0.000 (4) | 0.002 (3) |
C3 | 0.054 (5) | 0.015 (4) | 0.047 (5) | −0.003 (3) | 0.012 (4) | 0.001 (4) |
C4 | 0.071 (7) | 0.030 (5) | 0.045 (5) | −0.003 (4) | 0.009 (5) | 0.007 (4) |
C11 | 0.043 (4) | 0.013 (3) | 0.037 (4) | 0.004 (3) | 0.003 (3) | 0.005 (3) |
C12 | 0.043 (4) | 0.014 (4) | 0.037 (4) | 0.000 (3) | 0.007 (3) | 0.002 (3) |
C13 | 0.032 (4) | 0.023 (4) | 0.035 (4) | −0.002 (3) | 0.004 (3) | −0.004 (3) |
C14 | 0.034 (3) | 0.025 (3) | 0.032 (3) | 0.001 (4) | 0.010 (3) | −0.006 (4) |
C21 | 0.042 (4) | 0.005 (3) | 0.030 (4) | −0.004 (3) | 0.006 (3) | 0.000 (3) |
C22 | 0.035 (4) | 0.014 (3) | 0.029 (4) | 0.000 (3) | 0.009 (3) | 0.000 (3) |
C23 | 0.031 (4) | 0.010 (3) | 0.044 (4) | 0.006 (3) | 0.013 (3) | 0.004 (3) |
C24 | 0.022 (4) | 0.015 (3) | 0.036 (4) | 0.002 (3) | −0.003 (3) | 0.008 (3) |
C121 | 0.049 (5) | 0.020 (4) | 0.057 (6) | 0.005 (4) | −0.004 (4) | −0.012 (4) |
C131 | 0.055 (5) | 0.037 (5) | 0.035 (5) | −0.004 (4) | −0.006 (4) | −0.011 (4) |
C141 | 0.043 (5) | 0.030 (5) | 0.024 (4) | 0.004 (3) | 0.001 (3) | −0.003 (3) |
C142 | 0.047 (4) | 0.044 (5) | 0.033 (4) | 0.000 (5) | 0.004 (3) | 0.014 (5) |
C143 | 0.045 (5) | 0.061 (7) | 0.039 (5) | 0.005 (5) | 0.000 (4) | −0.004 (5) |
C144 | 0.061 (6) | 0.051 (6) | 0.040 (5) | 0.026 (5) | −0.010 (4) | −0.005 (5) |
C145 | 0.062 (6) | 0.034 (5) | 0.042 (6) | 0.016 (4) | −0.007 (4) | −0.003 (4) |
C146 | 0.057 (6) | 0.034 (5) | 0.038 (5) | 0.008 (4) | −0.004 (4) | 0.001 (4) |
C221 | 0.047 (5) | 0.029 (5) | 0.038 (5) | 0.011 (4) | 0.012 (4) | −0.003 (4) |
C231 | 0.035 (4) | 0.019 (4) | 0.040 (5) | 0.004 (3) | 0.009 (3) | 0.003 (3) |
C241 | 0.034 (4) | 0.020 (4) | 0.029 (4) | 0.004 (3) | −0.002 (3) | 0.001 (3) |
C242 | 0.037 (4) | 0.046 (6) | 0.031 (4) | −0.003 (3) | 0.005 (3) | −0.005 (4) |
C243 | 0.053 (5) | 0.058 (7) | 0.037 (4) | 0.014 (5) | 0.012 (4) | −0.003 (5) |
C244 | 0.059 (6) | 0.044 (6) | 0.033 (5) | 0.006 (4) | −0.005 (4) | −0.010 (4) |
C245 | 0.035 (5) | 0.039 (5) | 0.043 (5) | −0.005 (4) | −0.001 (4) | −0.003 (4) |
C246 | 0.041 (4) | 0.032 (6) | 0.029 (4) | −0.001 (3) | 0.003 (3) | −0.001 (3) |
C200 | 0.087 (8) | 0.057 (7) | 0.049 (6) | 0.010 (6) | 0.020 (6) | 0.006 (5) |
Cl21 | 0.087 (2) | 0.0577 (18) | 0.0673 (19) | 0.0085 (15) | −0.0192 (15) | −0.0221 (14) |
Cl22 | 0.084 (2) | 0.0469 (17) | 0.088 (2) | 0.0038 (14) | 0.0210 (16) | 0.0042 (15) |
Pd1—P1 | 2.2415 (19) | C121—H12C | 0.9800 |
Pd1—P2 | 2.2529 (16) | C131—H13A | 0.9800 |
Pd1—Cl2 | 2.3404 (16) | C131—H13B | 0.9800 |
Pd1—Cl1 | 2.3452 (18) | C131—H13C | 0.9800 |
P1—C14 | 1.797 (7) | C141—C142 | 1.374 (12) |
P1—C11 | 1.799 (8) | C141—C146 | 1.388 (13) |
P1—C1 | 1.845 (8) | C142—C143 | 1.398 (13) |
P2—C24 | 1.798 (7) | C142—H142 | 0.9500 |
P2—C21 | 1.803 (8) | C143—C144 | 1.374 (16) |
P2—C2 | 1.842 (8) | C143—H143 | 0.9500 |
C1—C4 | 1.470 (12) | C144—C145 | 1.361 (15) |
C1—C3 | 1.568 (12) | C144—H144 | 0.9500 |
C1—H1 | 1.0000 | C145—C146 | 1.401 (12) |
C2—C3 | 1.506 (12) | C145—H145 | 0.9500 |
C2—H2A | 0.9900 | C146—H146 | 0.9500 |
C2—H2B | 0.9900 | C221—H22A | 0.9800 |
C3—H3A | 0.9900 | C221—H22B | 0.9800 |
C3—H3B | 0.9900 | C221—H22C | 0.9800 |
C4—H4A | 0.9800 | C231—H23A | 0.9800 |
C4—H4B | 0.9800 | C231—H23B | 0.9800 |
C4—H4C | 0.9800 | C231—H23C | 0.9800 |
C11—C12 | 1.364 (11) | C241—C242 | 1.371 (12) |
C11—C21 | 1.456 (10) | C241—C246 | 1.401 (11) |
C12—C13 | 1.469 (11) | C242—C243 | 1.377 (12) |
C12—C121 | 1.501 (11) | C242—H242 | 0.9500 |
C13—C14 | 1.355 (12) | C243—C244 | 1.383 (14) |
C13—C131 | 1.490 (11) | C243—H243 | 0.9500 |
C14—C141 | 1.485 (11) | C244—C245 | 1.352 (14) |
C21—C22 | 1.355 (11) | C244—H244 | 0.9500 |
C22—C23 | 1.477 (11) | C245—C246 | 1.389 (11) |
C22—C221 | 1.481 (10) | C245—H245 | 0.9500 |
C23—C24 | 1.360 (11) | C246—H246 | 0.9500 |
C23—C231 | 1.507 (10) | C200—Cl21 | 1.718 (12) |
C24—C241 | 1.465 (10) | C200—Cl22 | 1.733 (12) |
C121—H12A | 0.9800 | C200—H20A | 0.9900 |
C121—H12B | 0.9800 | C200—H20B | 0.9900 |
P1—Pd1—P2 | 77.99 (7) | C12—C121—H12A | 109.5 |
P1—Pd1—Cl2 | 92.01 (7) | C12—C121—H12B | 109.5 |
P2—Pd1—Cl2 | 169.80 (6) | H12A—C121—H12B | 109.5 |
P1—Pd1—Cl1 | 174.41 (7) | C12—C121—H12C | 109.5 |
P2—Pd1—Cl1 | 96.43 (7) | H12A—C121—H12C | 109.5 |
Cl2—Pd1—Cl1 | 93.58 (7) | H12B—C121—H12C | 109.5 |
C14—P1—C11 | 93.8 (4) | C13—C131—H13A | 109.5 |
C14—P1—C1 | 112.3 (4) | C13—C131—H13B | 109.5 |
C11—P1—C1 | 110.7 (4) | H13A—C131—H13B | 109.5 |
C14—P1—Pd1 | 126.0 (3) | C13—C131—H13C | 109.5 |
C11—P1—Pd1 | 100.7 (3) | H13A—C131—H13C | 109.5 |
C1—P1—Pd1 | 110.4 (3) | H13B—C131—H13C | 109.5 |
C24—P2—C21 | 92.8 (4) | C142—C141—C146 | 120.2 (8) |
C24—P2—C2 | 103.4 (4) | C142—C141—C14 | 118.9 (9) |
C21—P2—C2 | 106.3 (4) | C146—C141—C14 | 120.8 (8) |
C24—P2—Pd1 | 137.1 (3) | C141—C142—C143 | 120.4 (10) |
C21—P2—Pd1 | 103.9 (3) | C141—C142—H142 | 119.8 |
C2—P2—Pd1 | 109.0 (3) | C143—C142—H142 | 119.8 |
C4—C1—C3 | 113.3 (7) | C144—C143—C142 | 119.1 (10) |
C4—C1—P1 | 112.4 (6) | C144—C143—H143 | 120.5 |
C3—C1—P1 | 110.9 (5) | C142—C143—H143 | 120.5 |
C4—C1—H1 | 106.6 | C145—C144—C143 | 120.9 (9) |
C3—C1—H1 | 106.6 | C145—C144—H144 | 119.6 |
P1—C1—H1 | 106.6 | C143—C144—H144 | 119.6 |
C3—C2—P2 | 113.2 (6) | C144—C145—C146 | 120.6 (10) |
C3—C2—H2A | 108.9 | C144—C145—H145 | 119.7 |
P2—C2—H2A | 108.9 | C146—C145—H145 | 119.7 |
C3—C2—H2B | 108.9 | C141—C146—C145 | 118.8 (9) |
P2—C2—H2B | 108.9 | C141—C146—H146 | 120.6 |
H2A—C2—H2B | 107.7 | C145—C146—H146 | 120.6 |
C2—C3—C1 | 115.3 (7) | C22—C221—H22A | 109.5 |
C2—C3—H3A | 108.5 | C22—C221—H22B | 109.5 |
C1—C3—H3A | 108.5 | H22A—C221—H22B | 109.5 |
C2—C3—H3B | 108.5 | C22—C221—H22C | 109.5 |
C1—C3—H3B | 108.5 | H22A—C221—H22C | 109.5 |
H3A—C3—H3B | 107.5 | H22B—C221—H22C | 109.5 |
C1—C4—H4A | 109.5 | C23—C231—H23A | 109.5 |
C1—C4—H4B | 109.5 | C23—C231—H23B | 109.5 |
H4A—C4—H4B | 109.5 | H23A—C231—H23B | 109.5 |
C1—C4—H4C | 109.5 | C23—C231—H23C | 109.5 |
H4A—C4—H4C | 109.5 | H23A—C231—H23C | 109.5 |
H4B—C4—H4C | 109.5 | H23B—C231—H23C | 109.5 |
C12—C11—C21 | 137.0 (7) | C242—C241—C246 | 118.4 (7) |
C12—C11—P1 | 107.9 (6) | C242—C241—C24 | 123.6 (7) |
C21—C11—P1 | 113.0 (6) | C246—C241—C24 | 118.0 (7) |
C11—C12—C13 | 114.2 (7) | C241—C242—C243 | 121.6 (8) |
C11—C12—C121 | 125.5 (7) | C241—C242—H242 | 119.2 |
C13—C12—C121 | 119.9 (7) | C243—C242—H242 | 119.2 |
C14—C13—C12 | 115.9 (7) | C242—C243—C244 | 118.6 (8) |
C14—C13—C131 | 123.9 (7) | C242—C243—H243 | 120.7 |
C12—C13—C131 | 120.1 (7) | C244—C243—H243 | 120.7 |
C13—C14—C141 | 126.9 (7) | C245—C244—C243 | 121.7 (8) |
C13—C14—P1 | 107.6 (6) | C245—C244—H244 | 119.1 |
C141—C14—P1 | 125.5 (7) | C243—C244—H244 | 119.1 |
C22—C21—C11 | 138.1 (7) | C244—C245—C246 | 119.3 (8) |
C22—C21—P2 | 110.4 (5) | C244—C245—H245 | 120.3 |
C11—C21—P2 | 111.3 (6) | C246—C245—H245 | 120.3 |
C21—C22—C23 | 111.7 (6) | C245—C246—C241 | 120.2 (8) |
C21—C22—C221 | 128.0 (7) | C245—C246—H246 | 119.9 |
C23—C22—C221 | 120.2 (6) | C241—C246—H246 | 119.9 |
C24—C23—C22 | 117.6 (6) | Cl21—C200—Cl22 | 114.4 (6) |
C24—C23—C231 | 122.9 (7) | Cl21—C200—H20A | 108.7 |
C22—C23—C231 | 119.5 (6) | Cl22—C200—H20A | 108.7 |
C23—C24—C241 | 128.3 (7) | Cl21—C200—H20B | 108.7 |
C23—C24—P2 | 107.0 (6) | Cl22—C200—H20B | 108.7 |
C241—C24—P2 | 122.1 (5) | H20A—C200—H20B | 107.6 |
C12—C11—C21—C22 | 23.0 (18) | P1—C11—C21—P2 | 9.8 (7) |
[PdCl2(C28H30P2)]·CH2Cl2 | F(000) = 700 |
Mr = 690.69 | Dx = 1.552 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 1192 reflections |
a = 8.963 (3) Å | θ = 2.9–32.0° |
b = 12.139 (5) Å | µ = 1.12 mm−1 |
c = 13.989 (6) Å | T = 180 K |
β = 103.87 (3)° | Box, red |
V = 1477.6 (10) Å3 | 0.38 × 0.24 × 0.21 mm |
Z = 2 |
Oxford Diffraction Xcalibur diffractometer | 4033 independent reflections |
Radiation source: fine-focus sealed tube | 1900 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.079 |
Detector resolution: 8.2632 pixels mm-1 | θmax = 25.0°, θmin = 2.9° |
ω and ϕ scans | h = −7→10 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) (empirical (using intensity measurements) absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm) | k = −14→14 |
Tmin = 0.688, Tmax = 0.791 | l = −15→16 |
5431 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.080 | H-atom parameters constrained |
wR(F2) = 0.226 | w = 1/[σ2(Fo2) + (0.0951P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.97 | (Δ/σ)max = 0.003 |
4033 reflections | Δρmax = 1.66 e Å−3 |
168 parameters | Δρmin = −1.30 e Å−3 |
13 restraints | Absolute structure: Flack (1983), with how many Friedel pairs? |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.02 (11) |
[PdCl2(C28H30P2)]·CH2Cl2 | V = 1477.6 (10) Å3 |
Mr = 690.69 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 8.963 (3) Å | µ = 1.12 mm−1 |
b = 12.139 (5) Å | T = 180 K |
c = 13.989 (6) Å | 0.38 × 0.24 × 0.21 mm |
β = 103.87 (3)° |
Oxford Diffraction Xcalibur diffractometer | 4033 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) (empirical (using intensity measurements) absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm) | 1900 reflections with I > 2σ(I) |
Tmin = 0.688, Tmax = 0.791 | Rint = 0.079 |
5431 measured reflections |
R[F2 > 2σ(F2)] = 0.080 | H-atom parameters constrained |
wR(F2) = 0.226 | Δρmax = 1.66 e Å−3 |
S = 0.97 | Δρmin = −1.30 e Å−3 |
4033 reflections | Absolute structure: Flack (1983), with how many Friedel pairs? |
168 parameters | Absolute structure parameter: −0.02 (11) |
13 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pd1 | −0.12540 (17) | 0.30787 (17) | 0.51225 (9) | 0.0231 (4) | |
Cl1 | −0.1251 (6) | 0.3397 (4) | 0.6772 (3) | 0.0351 (17) | |
Cl2 | −0.3941 (5) | 0.2977 (6) | 0.4621 (3) | 0.0278 (13) | |
P1 | −0.0991 (6) | 0.2789 (4) | 0.3590 (3) | 0.0254 (16) | |
P2 | 0.1327 (5) | 0.3167 (6) | 0.5329 (3) | 0.0218 (12) | |
C1 | −0.013 (2) | 0.1429 (17) | 0.3471 (13) | 0.0326 (14) | |
H1 | −0.0961 | 0.0898 | 0.3239 | 0.039* | |
C2 | 0.215 (2) | 0.1778 (17) | 0.5139 (13) | 0.0326 (14) | |
H2A | 0.2929 | 0.1866 | 0.4769 | 0.039* | |
H2B | 0.2636 | 0.1459 | 0.5774 | 0.039* | |
C3 | 0.091 (2) | 0.1015 (17) | 0.4593 (13) | 0.0326 (14) | |
H3A | 0.0206 | 0.0880 | 0.5007 | 0.039* | |
H3B | 0.1391 | 0.0316 | 0.4509 | 0.039* | |
C4 | 0.090 (2) | 0.1430 (17) | 0.2757 (13) | 0.0326 (14) | |
H4A | 0.1947 | 0.1557 | 0.3110 | 0.049* | |
H4B | 0.0584 | 0.2003 | 0.2278 | 0.049* | |
H4C | 0.0832 | 0.0730 | 0.2429 | 0.049* | |
C11 | 0.025 (2) | 0.3926 (17) | 0.3450 (13) | 0.0326 (14) | |
C12 | −0.047 (2) | 0.4488 (17) | 0.2694 (13) | 0.0326 (14) | |
C13 | −0.181 (2) | 0.4055 (17) | 0.2132 (13) | 0.0326 (14) | |
C14 | −0.241 (2) | 0.303 (2) | 0.2444 (11) | 0.0326 (14) | |
C21 | 0.151 (2) | 0.4048 (17) | 0.4329 (13) | 0.0326 (14) | |
C22 | 0.290 (2) | 0.4661 (17) | 0.4613 (13) | 0.0326 (14) | |
C23 | 0.368 (2) | 0.4502 (17) | 0.5656 (13) | 0.0326 (14) | |
C24 | 0.303 (2) | 0.3778 (18) | 0.6180 (13) | 0.0326 (14) | |
C121 | −0.012 (2) | 0.5602 (16) | 0.2397 (13) | 0.0326 (14) | |
H12A | −0.0993 | 0.6073 | 0.2371 | 0.049* | |
H12B | 0.0096 | 0.5572 | 0.1758 | 0.049* | |
H12C | 0.0753 | 0.5889 | 0.2866 | 0.049* | |
C131 | −0.278 (2) | 0.4694 (17) | 0.1215 (12) | 0.0326 (14) | |
H13A | −0.3011 | 0.5418 | 0.1412 | 0.049* | |
H13B | −0.3713 | 0.4303 | 0.0946 | 0.049* | |
H13C | −0.2190 | 0.4752 | 0.0725 | 0.049* | |
C141 | −0.372 (2) | 0.2452 (13) | 0.2074 (13) | 0.0326 (14) | |
C142 | −0.366 (2) | 0.1363 (13) | 0.1756 (12) | 0.0326 (14) | |
H142 | −0.2736 | 0.0982 | 0.1825 | 0.039* | |
C143 | −0.5108 (18) | 0.0886 (17) | 0.1321 (13) | 0.0414 (17) | |
H143 | −0.5079 | 0.0159 | 0.1117 | 0.050* | |
C144 | −0.659 (2) | 0.1357 (14) | 0.1153 (14) | 0.0414 (17) | |
H144 | −0.7488 | 0.0992 | 0.0837 | 0.050* | |
C145 | −0.656 (2) | 0.2430 (14) | 0.1514 (13) | 0.0414 (17) | |
H145 | −0.7486 | 0.2802 | 0.1466 | 0.050* | |
C146 | −0.5162 (17) | 0.2963 (19) | 0.1952 (11) | 0.0414 (17) | |
H146 | −0.5196 | 0.3685 | 0.2170 | 0.050* | |
C221 | 0.365 (2) | 0.5386 (19) | 0.4006 (13) | 0.0414 (17) | |
H22A | 0.3180 | 0.5271 | 0.3321 | 0.062* | |
H22B | 0.4723 | 0.5211 | 0.4134 | 0.062* | |
H22C | 0.3528 | 0.6143 | 0.4173 | 0.062* | |
C231 | 0.496 (2) | 0.5056 (19) | 0.6045 (13) | 0.0414 (17) | |
H23A | 0.5232 | 0.4947 | 0.6745 | 0.062* | |
H23B | 0.4792 | 0.5826 | 0.5904 | 0.062* | |
H23C | 0.5776 | 0.4796 | 0.5768 | 0.062* | |
C241 | 0.354 (2) | 0.3347 (18) | 0.7130 (12) | 0.0414 (17) | |
C242 | 0.273 (2) | 0.3307 (18) | 0.7864 (10) | 0.0414 (17) | |
H242 | 0.1739 | 0.3593 | 0.7731 | 0.050* | |
C243 | 0.334 (2) | 0.2856 (17) | 0.8788 (11) | 0.0414 (17) | |
H243 | 0.2796 | 0.2825 | 0.9274 | 0.050* | |
C244 | 0.482 (2) | 0.2459 (18) | 0.8932 (13) | 0.0414 (17) | |
H244 | 0.5301 | 0.2204 | 0.9557 | 0.050* | |
C245 | 0.565 (2) | 0.2412 (17) | 0.8205 (10) | 0.0414 (17) | |
H245 | 0.6603 | 0.2072 | 0.8323 | 0.050* | |
C246 | 0.499 (2) | 0.2893 (17) | 0.7295 (11) | 0.0414 (17) | |
H246 | 0.5525 | 0.2908 | 0.6803 | 0.050* | |
C100 | −0.041 (3) | 0.3599 (19) | −0.0763 (14) | 0.0414 (17) | |
H10A | 0.0107 | 0.3290 | −0.1239 | 0.050* | |
H10B | −0.1420 | 0.3834 | −0.1123 | 0.050* | |
Cl3 | −0.0634 (10) | 0.2539 (7) | 0.0054 (5) | 0.095 (3) | |
Cl4 | 0.0524 (9) | 0.4657 (7) | −0.0290 (6) | 0.085 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pd1 | 0.0243 (9) | 0.0167 (8) | 0.0300 (7) | 0.0006 (10) | 0.0095 (5) | −0.0001 (9) |
Cl1 | 0.038 (4) | 0.042 (5) | 0.028 (3) | 0.013 (3) | 0.014 (2) | 0.003 (2) |
Cl2 | 0.022 (3) | 0.026 (3) | 0.037 (3) | −0.001 (3) | 0.010 (2) | −0.003 (3) |
P1 | 0.024 (3) | 0.026 (5) | 0.025 (3) | 0.003 (3) | 0.005 (2) | 0.003 (2) |
P2 | 0.021 (3) | 0.014 (3) | 0.027 (2) | −0.009 (3) | 0.0001 (19) | −0.008 (3) |
C1 | 0.040 (4) | 0.027 (3) | 0.027 (3) | −0.002 (3) | 0.002 (2) | −0.001 (2) |
C2 | 0.040 (4) | 0.027 (3) | 0.027 (3) | −0.002 (3) | 0.002 (2) | −0.001 (2) |
C3 | 0.040 (4) | 0.027 (3) | 0.027 (3) | −0.002 (3) | 0.002 (2) | −0.001 (2) |
C4 | 0.040 (4) | 0.027 (3) | 0.027 (3) | −0.002 (3) | 0.002 (2) | −0.001 (2) |
C11 | 0.040 (4) | 0.027 (3) | 0.027 (3) | −0.002 (3) | 0.002 (2) | −0.001 (2) |
C12 | 0.040 (4) | 0.027 (3) | 0.027 (3) | −0.002 (3) | 0.002 (2) | −0.001 (2) |
C13 | 0.040 (4) | 0.027 (3) | 0.027 (3) | −0.002 (3) | 0.002 (2) | −0.001 (2) |
C14 | 0.040 (4) | 0.027 (3) | 0.027 (3) | −0.002 (3) | 0.002 (2) | −0.001 (2) |
C21 | 0.040 (4) | 0.027 (3) | 0.027 (3) | −0.002 (3) | 0.002 (2) | −0.001 (2) |
C22 | 0.040 (4) | 0.027 (3) | 0.027 (3) | −0.002 (3) | 0.002 (2) | −0.001 (2) |
C23 | 0.040 (4) | 0.027 (3) | 0.027 (3) | −0.002 (3) | 0.002 (2) | −0.001 (2) |
C24 | 0.040 (4) | 0.027 (3) | 0.027 (3) | −0.002 (3) | 0.002 (2) | −0.001 (2) |
C121 | 0.040 (4) | 0.027 (3) | 0.027 (3) | −0.002 (3) | 0.002 (2) | −0.001 (2) |
C131 | 0.040 (4) | 0.027 (3) | 0.027 (3) | −0.002 (3) | 0.002 (2) | −0.001 (2) |
C141 | 0.040 (4) | 0.027 (3) | 0.027 (3) | −0.002 (3) | 0.002 (2) | −0.001 (2) |
C142 | 0.040 (4) | 0.027 (3) | 0.027 (3) | −0.002 (3) | 0.002 (2) | −0.001 (2) |
C143 | 0.045 (4) | 0.048 (4) | 0.031 (3) | −0.003 (3) | 0.008 (3) | 0.007 (3) |
C144 | 0.045 (4) | 0.048 (4) | 0.031 (3) | −0.003 (3) | 0.008 (3) | 0.007 (3) |
C145 | 0.045 (4) | 0.048 (4) | 0.031 (3) | −0.003 (3) | 0.008 (3) | 0.007 (3) |
C146 | 0.045 (4) | 0.048 (4) | 0.031 (3) | −0.003 (3) | 0.008 (3) | 0.007 (3) |
C221 | 0.045 (4) | 0.048 (4) | 0.031 (3) | −0.003 (3) | 0.008 (3) | 0.007 (3) |
C231 | 0.045 (4) | 0.048 (4) | 0.031 (3) | −0.003 (3) | 0.008 (3) | 0.007 (3) |
C241 | 0.045 (4) | 0.048 (4) | 0.031 (3) | −0.003 (3) | 0.008 (3) | 0.007 (3) |
C242 | 0.045 (4) | 0.048 (4) | 0.031 (3) | −0.003 (3) | 0.008 (3) | 0.007 (3) |
C243 | 0.045 (4) | 0.048 (4) | 0.031 (3) | −0.003 (3) | 0.008 (3) | 0.007 (3) |
C244 | 0.045 (4) | 0.048 (4) | 0.031 (3) | −0.003 (3) | 0.008 (3) | 0.007 (3) |
C245 | 0.045 (4) | 0.048 (4) | 0.031 (3) | −0.003 (3) | 0.008 (3) | 0.007 (3) |
C246 | 0.045 (4) | 0.048 (4) | 0.031 (3) | −0.003 (3) | 0.008 (3) | 0.007 (3) |
C100 | 0.045 (4) | 0.048 (4) | 0.031 (3) | −0.003 (3) | 0.008 (3) | 0.007 (3) |
Cl3 | 0.111 (7) | 0.075 (6) | 0.080 (5) | 0.010 (5) | −0.017 (5) | 0.026 (4) |
Cl4 | 0.080 (7) | 0.066 (6) | 0.107 (6) | −0.006 (5) | 0.015 (5) | −0.008 (4) |
Pd1—P1 | 2.239 (5) | C121—H12C | 0.9600 |
Pd1—P2 | 2.264 (5) | C131—H13A | 0.9600 |
Pd1—Cl1 | 2.339 (5) | C131—H13B | 0.9600 |
Pd1—Cl2 | 2.345 (5) | C131—H13C | 0.9600 |
P1—C14 | 1.814 (16) | C141—C142 | 1.401 (10) |
P1—C11 | 1.82 (2) | C141—C146 | 1.406 (10) |
P1—C1 | 1.85 (2) | C142—C143 | 1.421 (9) |
P2—C21 | 1.80 (2) | C142—H142 | 0.9300 |
P2—C24 | 1.85 (2) | C143—C144 | 1.415 (10) |
P2—C2 | 1.89 (2) | C143—H143 | 0.9300 |
C1—C4 | 1.52 (3) | C144—C145 | 1.395 (10) |
C1—C3 | 1.70 (3) | C144—H144 | 0.9300 |
C1—H1 | 0.9800 | C145—C146 | 1.417 (10) |
C2—C3 | 1.51 (3) | C145—H145 | 0.9300 |
C2—H2A | 0.9700 | C146—H146 | 0.9300 |
C2—H2B | 0.9700 | C221—H22A | 0.9600 |
C3—H3A | 0.9700 | C221—H22B | 0.9600 |
C3—H3B | 0.9700 | C221—H22C | 0.9600 |
C4—H4A | 0.9600 | C231—H23A | 0.9600 |
C4—H4B | 0.9600 | C231—H23B | 0.9600 |
C4—H4C | 0.9600 | C231—H23C | 0.9600 |
C11—C12 | 1.29 (2) | C241—C246 | 1.381 (9) |
C11—C21 | 1.46 (2) | C241—C242 | 1.391 (9) |
C12—C13 | 1.38 (3) | C242—C243 | 1.389 (9) |
C12—C121 | 1.47 (3) | C242—H242 | 0.9300 |
C13—C14 | 1.46 (3) | C243—C244 | 1.378 (9) |
C13—C131 | 1.57 (2) | C243—H243 | 0.9300 |
C14—C141 | 1.36 (3) | C244—C245 | 1.395 (10) |
C21—C22 | 1.42 (3) | C244—H244 | 0.9300 |
C22—C23 | 1.47 (3) | C245—C246 | 1.396 (9) |
C22—C221 | 1.49 (3) | C245—H245 | 0.9300 |
C23—C231 | 1.32 (3) | C246—H246 | 0.9300 |
C23—C24 | 1.37 (3) | C100—Cl4 | 1.59 (2) |
C24—C241 | 1.40 (2) | C100—Cl3 | 1.77 (2) |
C121—H12A | 0.9600 | C100—H10A | 0.9700 |
C121—H12B | 0.9600 | C100—H10B | 0.9700 |
P1—Pd1—P2 | 77.94 (19) | C12—C121—H12A | 109.5 |
P1—Pd1—Cl1 | 174.0 (2) | C12—C121—H12B | 109.5 |
P2—Pd1—Cl1 | 96.11 (18) | H12A—C121—H12B | 109.5 |
P1—Pd1—Cl2 | 92.39 (18) | C12—C121—H12C | 109.5 |
P2—Pd1—Cl2 | 170.24 (17) | H12A—C121—H12C | 109.5 |
Cl1—Pd1—Cl2 | 93.56 (17) | H12B—C121—H12C | 109.5 |
C14—P1—C11 | 95.7 (10) | C13—C131—H13A | 109.5 |
C14—P1—C1 | 106.5 (10) | C13—C131—H13B | 109.5 |
C11—P1—C1 | 112.9 (10) | H13A—C131—H13B | 109.5 |
C14—P1—Pd1 | 127.5 (7) | C13—C131—H13C | 109.5 |
C11—P1—Pd1 | 101.1 (6) | H13A—C131—H13C | 109.5 |
C1—P1—Pd1 | 111.6 (6) | H13B—C131—H13C | 109.5 |
C21—P2—C24 | 92.7 (9) | C14—C141—C142 | 120.6 (17) |
C21—P2—C2 | 108.1 (9) | C14—C141—C146 | 120.3 (17) |
C24—P2—C2 | 99.1 (9) | C142—C141—C146 | 119.0 (19) |
C21—P2—Pd1 | 102.1 (7) | C141—C142—C143 | 114.6 (18) |
C24—P2—Pd1 | 139.5 (7) | C141—C142—H142 | 122.7 |
C2—P2—Pd1 | 111.2 (7) | C143—C142—H142 | 122.7 |
C4—C1—C3 | 108.7 (17) | C144—C143—C142 | 129 (2) |
C4—C1—P1 | 113.2 (14) | C144—C143—H143 | 115.3 |
C3—C1—P1 | 109.3 (13) | C142—C143—H143 | 115.3 |
C4—C1—H1 | 108.5 | C145—C144—C143 | 112 (2) |
C3—C1—H1 | 108.5 | C145—C144—H144 | 123.8 |
P1—C1—H1 | 108.5 | C143—C144—H144 | 123.8 |
C3—C2—P2 | 110.9 (15) | C144—C145—C146 | 121 (2) |
C3—C2—H2A | 109.5 | C144—C145—H145 | 119.3 |
P2—C2—H2A | 109.5 | C146—C145—H145 | 119.3 |
C3—C2—H2B | 109.5 | C141—C146—C145 | 123 (2) |
P2—C2—H2B | 109.5 | C141—C146—H146 | 118.5 |
H2A—C2—H2B | 108.0 | C145—C146—H146 | 118.5 |
C2—C3—C1 | 117.5 (16) | C22—C221—H22A | 109.5 |
C2—C3—H3A | 107.9 | C22—C221—H22B | 109.5 |
C1—C3—H3A | 107.9 | H22A—C221—H22B | 109.5 |
C2—C3—H3B | 107.9 | C22—C221—H22C | 109.5 |
C1—C3—H3B | 107.9 | H22A—C221—H22C | 109.5 |
H3A—C3—H3B | 107.2 | H22B—C221—H22C | 109.5 |
C1—C4—H4A | 109.5 | C23—C231—H23A | 109.5 |
C1—C4—H4B | 109.5 | C23—C231—H23B | 109.5 |
H4A—C4—H4B | 109.5 | H23A—C231—H23B | 109.5 |
C1—C4—H4C | 109.5 | C23—C231—H23C | 109.5 |
H4A—C4—H4C | 109.5 | H23A—C231—H23C | 109.5 |
H4B—C4—H4C | 109.5 | H23B—C231—H23C | 109.5 |
C12—C11—C21 | 140 (2) | C246—C241—C242 | 119.9 (17) |
C12—C11—P1 | 106.7 (16) | C246—C241—C24 | 112.7 (14) |
C21—C11—P1 | 110.8 (14) | C242—C241—C24 | 127.3 (17) |
C11—C12—C13 | 118 (2) | C243—C242—C241 | 122.7 (17) |
C11—C12—C121 | 128.1 (19) | C243—C242—H242 | 118.6 |
C13—C12—C121 | 113.9 (17) | C241—C242—H242 | 118.6 |
C12—C13—C14 | 119.1 (17) | C244—C243—C242 | 115.2 (17) |
C12—C13—C131 | 120.9 (18) | C244—C243—H243 | 122.4 |
C14—C13—C131 | 119.9 (17) | C242—C243—H243 | 122.4 |
C141—C14—C13 | 132.0 (17) | C243—C244—C245 | 124.5 (18) |
C141—C14—P1 | 127.6 (17) | C243—C244—H244 | 117.7 |
C13—C14—P1 | 100.1 (13) | C245—C244—H244 | 117.7 |
C22—C21—C11 | 137.2 (19) | C244—C245—C246 | 117.8 (18) |
C22—C21—P2 | 109.3 (13) | C244—C245—H245 | 121.1 |
C11—C21—P2 | 113.5 (16) | C246—C245—H245 | 121.1 |
C21—C22—C23 | 112.9 (17) | C241—C246—C245 | 119.6 (17) |
C21—C22—C221 | 129.4 (17) | C241—C246—H246 | 120.2 |
C23—C22—C221 | 117.8 (18) | C245—C246—H246 | 120.2 |
C231—C23—C24 | 123.1 (18) | Cl4—C100—Cl3 | 116.7 (12) |
C231—C23—C22 | 120.1 (19) | Cl4—C100—H10A | 108.1 |
C24—C23—C22 | 116.7 (19) | Cl3—C100—H10A | 108.1 |
C23—C24—C241 | 131.8 (19) | Cl4—C100—H10B | 108.1 |
C23—C24—P2 | 107.9 (14) | Cl3—C100—H10B | 108.1 |
C241—C24—P2 | 119.4 (15) | H10A—C100—H10B | 107.3 |
P1—C11—C21—P2 | −7 (2) |
Experimental details
(4a) | (4b) | |
Crystal data | ||
Chemical formula | [PdCl2(C28H30P2)]·CH2Cl2 | [PdCl2(C28H30P2)]·CH2Cl2 |
Mr | 690.69 | 690.69 |
Crystal system, space group | Monoclinic, P21 | Monoclinic, P21 |
Temperature (K) | 180 | 180 |
a, b, c (Å) | 8.9333 (4), 12.1598 (4), 14.0088 (6) | 8.963 (3), 12.139 (5), 13.989 (6) |
β (°) | 103.678 (4) | 103.87 (3) |
V (Å3) | 1478.58 (10) | 1477.6 (10) |
Z | 2 | 2 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 1.12 | 1.12 |
Crystal size (mm) | 0.47 × 0.14 × 0.11 | 0.38 × 0.24 × 0.21 |
Data collection | ||
Diffractometer | Oxford Diffraction Xcalibur diffractometer | Oxford Diffraction Xcalibur diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2006) (empirical (using intensity measurements) absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm) | Multi-scan (CrysAlis RED; Oxford Diffraction, 2006) (empirical (using intensity measurements) absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm) |
Tmin, Tmax | 0.597, 0.885 | 0.688, 0.791 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10919, 4911, 4022 | 5431, 4033, 1900 |
Rint | 0.045 | 0.079 |
(sin θ/λ)max (Å−1) | 0.625 | 0.595 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.051, 0.143, 1.09 | 0.080, 0.226, 0.97 |
No. of reflections | 4911 | 4033 |
No. of parameters | 330 | 168 |
No. of restraints | 1 | 13 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 2.05, −1.08 | 1.66, −1.30 |
Absolute structure | Flack (1983), with how many Friedel pairs? | Flack (1983), with how many Friedel pairs? |
Absolute structure parameter | 0.03 (5) | −0.02 (11) |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Parameter | (4a) | (4b) | (a) | BIPHOSb |
Pd1-P1 | 2.2415 (19) | 2.242 (5) | 2.2735 (6) | |
Pd1-P2 | 2.2529 (16) | 2.263 (5) | 2.2479 (6) | |
Pd1-Cl2 | 2.3404 (16) | 2.341 (5) | 2.3514 (6) | |
Pd1-Cl1 | 2.3452 (18) | 2.338 (5) | 2.3381 (7) | |
P1-Pd1-P2 | 77.99 (7) | 77.87 (18) | 78.02 (2) | |
P1-Pd1-Cl2 | 92.01 (7) | 92.31 (18) | 91.29 (2) | |
P2-Pd1-Cl2 | 169.80 (6) | 170.07 (16) | 169.31 (2) | |
P1-Pd1-Cl1 | 174.41 (7) | 174.0 (2) | 176.14 (3) | |
P2-Pd1-Cl1 | 96.43 (7) | 96.12 (18) | 98.16 (2) | |
Cl2-Pd1-Cl1 | 93.58 (7) | 93.70 (17) | 92.53 (2) | |
I/II | 68.3 (2) | 67.6 (5) | 68.62 (7) | |
I/III | 51.4 (2) | 52.2 (5) | 48.24 (6) | |
II/III | 60.3 (2) | 60.2 (5) | 63.16 (7) | |
P1-C11-C21-P2 | 9.8 (7) | -8(1) | -8.3 (3) | -39.7 (2) |
I/II refers to the dihedral angle between the P1/C11/C21/P2 and P1/C1/C2/P2 planes. I/III refers to the dihedral angle between the P1/C11/C21/P2 and P1/P2/Pd1/Cl1/Cl2 planes. II/III refers to the dihedral angle between the P1/C1/C2/P2 and P1/P2/Pd1/Cl1/Cl2 planes. (a) Please define this compound; Ortéga et al. (2003). (b) Please give reference for this datum. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register
Considerable effort has been devoted to the design of new ligands for asymmetric catalysis (Ojima, 2000; Jacobsen et al., 1999; Noyori, 1994). Asymmetric catalysts are generally metal complexes with stereochemically rigid enantiopure ligands. However, stereochemically dynamic ligands can also be controlled into a single enantiomeric conformation on a metal centre and hence this methodology opens a new synthetic approach for the synthesis of enantiopure ligands (Walsh et al., 2003; Mikami, Aikawa, Yusa, Jodry & Yamanaka, 2002). Good results have been obtained with flexible diphosphines such as BIPHEP [Please define] (Mikami et al., 1999, 2004; Mikami, Aikawa, Yusa & Hatano, 2002; Becker et al., 2001), DPPF [Please define] (Mikami & Aikawa, 2002) and NUPHOS [Please define] (Doherty et al., 2005, 2004, 2003).
Recently, we reported the first application of chiral stereochemically dynamic 2,2'-biphosphole (BIPHOS) to asymmetric allylic substitution involving crystallization-induced spontaneous resolution and kinetic stabilization by coordination to a Pd centre (Tissot et al., 2001). The flexibility of 2,2'-biphosphole ligands is reflected in the configurational instability of the axial chirality generated by the 2,2'-biphosphole framework and the central chiralities at the P atoms (Tissot et al., 1996). In a more convenient procedure, we have discovered that dual chirality control can be achieved by introducing a chiral carbon linker between the two P atoms that favours a single enantiomeric form on a metal centre (Ortéga et al., 2003). The strategy used is based on a two-step chirality control process, involving firstly a partial chirality control in order to maintain some degree of freedom, and secondly a total chirality control by diastereoselective coordination on a metal centre (see reaction scheme).
By asymmetric alkylation of a 2,2'-biphospholyl dianion, (2), under highly dilute conditions, using various enantiomerically pure diol ditosylates or mesylates, an equilibrium mixture of diastereoisomeric diphosphines was obtained (Robé et al., 2005). The reaction of this equilibrium mixture with transition metals such as Pd, Pt and Rh resulted in dynamic resolution leading to diastereo- and enantiopure complexes. These enantiomeric Pd, Pt and Rh complexes can be used in asymmetric allylic alkylation (Robé et al., 2005), hydroformylation (Robé, Hegedüs, Bakos, Coppel et al., 2007) and hydrogenation (Robé, Hegedüs, Bakos, Daran & Gouygou, 2007), respectively.
We report here the structural characterization of two enantiomerically pure palladium complexes, (4), containing a diphosphine, (3), derived from 2,2'-biphosphole (see reaction scheme). Complexes (4a) and (4b) were obtained from diphosphines (3a) and (3b), respectively, which differ in the chirality of atom C1 within the backbone linking the two P atoms.
The unit cell and space group for (4a) and (4b) are identical, which agrees with the occurrence of the formation of two enantiomers. In both structures, the coordination around the metal is square-planar, with a cis arrangement of the ligands (Figs. 2 and 3). The refinement of the Flack parameter (Flack, 1983) clearly indicates that they are both enantiomerically pure in the solid state and that the absolute configuration is S[sp,Rp Rc] (axial chirality [phosphorus chirality, carbon chirality]) for (4a) and R[Rp,sp Sc] for (4b).
It is interesting to note that the ligand adopts a single configuration in these palladium complexes in which the two P atoms have opposite configurations, [sp,Rp] or [Rp,sp]. The coordination to Pd locks both the central and axial chirality of 2,2'-biphosphole, leading to drastically reduced P1—C11—C21—P2 torsion angles in complexes (4a) and (4b) compared with the BIPHOS ligand (Tissot et al., 1996) (Table 1).
These results prove unambiguously the influence of the chirality of the carbon backbone on the axial and central configuration of the 2,2'-biphosphole skeleton in complexes (4a) and (4b), as the (R) configuration provides the S[sp,Rp] configuration of (4a), whereas the (S) configuration leads to the R[Rp,sp] configuration of (4b).
The geometry of the chelating PdCl2P2(C2)(C3) framework is obviously identical within experimental error for (4a) and (4b) and closely related to the reported PdCl2(BIPHOS) complex (Ortéga et al., 2003) containing a symmetrical chiral backbone (Table 1). This framework may be described in terms of the arrangement of the P1/C11/C21/P2, P1/C1/C2/P2 and P1/P2/Pd1/Cl1/Cl2 planes around the P1—P2 axes. The dihedral angles between these different planes are roughly identical in the three complexes (Table 1).